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BACKWARD EXTENSIONS AND
STRONG HAMBURGER MOMENT SEQUENCES

E.P. MERKES AND MARION WETZEL

ABSTRACT. Strong Hamburger moment sequences are
studied. Necessary and sufficient conditions for the strong
Hamburger moment problem to have a unique solution are
obtained. These results are based on certain of the solutions
to the classical Hamburger moment problem. The nested disks
and orthogonal polynomials associated with the correspond-
ing Jacobi type continued fraction are used.

1. Introduction. A double sequence of real numbers {c, : n =
0,+1,42,...} is called a strong Hamburger sequence (SHMS) if there
is a bounded nondecreasing function ¢ on the interval —oco < t < oo
such that

(1) e = /oo £ dg(2)

— 00

for all integers n. A real sequence {¢, : n =0,1,2,...} is a (classical)
Hamburger moment sequence (HMS) if there is a bounded nondecreas-
ing ¢ such that (1) holds for all nonnegative integers n. In each case,
the function ¢ is called a distribution function for the given sequence.

Extensive work has been done in recent years on the strong moment
problems. In particular, we mention the work of Jones, Thron, and
Waadeland [7] on a strong Stieltjes moment sequence (a Hamburger
moment sequence in which the distribution function ¢ is constant on
(—00,0)). In their study, they emphasized continued fraction meth-
ods, specifically T-fractions. More recently, Jones, Njastad, and Thron
[4,5] and Njistad and Thron [9] have investigated strong Hamburger
moment sequences. Their studies use several methods, including con-
tinued fractions, orthogonal polynomials, and nested disks. Good his-
torical sketches of moment problems can be found in the works of Jones
and Thron [6] and [9].
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An HMS is said to have an m-fold backward extension if there exist
real numbers ¢_opm, €241, .-, 1 such that {¢, 2, :n=0,1,2,...}
is itself an HMS. The concept of backward extension can be traced
to Hamburger [2], and later the theory was developed by Wall [13].
In this paper, we make use of the fact that a double sequence C =
{¢n : n =0,£1,42,...} is an SHMS if and only if the subsequence
Co = {cn : n = 0,1,2,...} has an m-fold backward extension to
Cm ={cn :n=—-2m,—2m +1,...} for each positive integer m [6,
pp- 20-21]. This enables us to parallel classical results on Hamburger
moment sequences to obtain new necessary and sufficient conditions for
the distribution function of an SHMS to be substantially unique. Two
approaches are presented. The first is in terms of nested circles and the
second is in terms of orthogonal polynomials that are denominators of
certain J-fractions.

2. Characterization of an SHMS. If ¢ is a bounded nondecreasing
function on —oco < t < oo, then the complex valued function

@) 1) - [ %Y

Ceo 1

is analytic for z in the upper half-plane Imz > 0 (and in the lower
half-plane). For the class D of bounded nondecreasing functions ¢ on
(—00,00) that are normalized to be right continuous and such that
¢(—00) = limy_,_oo ¢(t) = 0, the linear transformation (2) is one-to-
one into the class of analytic functions in the upper half-plane [12],
[14, p. 247f).

The fact that distinct bounded nondecreasing functions correspond
by (2) to distinct functions I is used throughout this paper. In
particular, this enables us to obtain a characterization of an SHMS
that ties strong moment problems to the classical Hamburger moment
problem.

Theorem 1. The sequence C = {¢, : n = 0,£1,£2,...} of real
numbers is an SHMS if and only if, for each integer m, the sequence
Cm ={cn-2m:n=0,1,2,...} is an HMS.
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Proof. If C' is an SHMS, there is a ¢ such that (1) holds for all integers
n. For each integer m, set

t

b (t) = / W A ().

By the hypothesis, ¢,, is a distribution function such that
/ t" A (t) :/ t" 2™ de(t) = cn—am

for all integers n. In particular, C), is an HMS with distribution
function ¢,,.

Conversely, for each integer m, there is a ¢, in D such that
cn,z,n:/Oo t" dopm (t), n=20,1,2,....
For integers k,m, 0 < k < m, set
®) T I )

Then vy, 1 is a distribution function and ffooo dpm, k(t) = c—ok. Thus
for fixed k, the sequence {¢; : m = k+ 1,k + 2,...} is uniformly
bounded. Furthermore, by (2) and (3) we have for k£ > 1,

I(2, o) = /_ o:o [22 (zfil) + %]tzk o (t)

0
j—2k _
Y )
j=0

We apply a result of Grommer [1] (see also [10, p. 207ff]) to obtain
a subsequence {m;} of indices and distribution functions v,y in

D such that ¥,k = Yk, Ym0 — Yo, 1(z,Ym, k) = I(z,¢), and
I(z,%m,;,0) = I(2,¢0). It follows that (4) holds when ., and ¥, 0
respectively are replaced by ¥, and 1. As in (4) we also have

2k—1

Cj—2k _
)= Y S [

j=0 —oo

00 t2k

dg(t).

z—t
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It follows from the uniqueness of the functions (2) over D that ¥y (t) =
fioo u?* dypy, (u). In particular,

cn:/ t"+2kdzpk(t):/ t" dapo(t), n=—2k —2k+1,....

— 00 — 00

Since k& was arbitrary, we conclude v is a distribution function for
the sequence C. Thus, C' is an SHMS and the proof is complete.
(We note that this result appears to have been observed by a number
of individuals including W.B. Gragg (see [6, p. 20]) and the present
authors.) O

For the (double) sequence C of real numbers, the Hankel determinants
are Hé") = én) (C)=1and

Cn Cnt1 Cntk—1
Cn+1 Cpt2 Cn+k
(n) _ gy(n) _ nt
HY =B (C)=| : oL
Cnt+k—1 Cn+k Cn42k—2

n=0,+1,22,...: k=1,2,....

A necessary condition for a sequence {c, : n = 0,1,2,...} of real

numbers to be an HMS is that H” > 0, k = 0,1,2,.... The
distribution function for such a sequence has infinitely many points
of increase if and only if H,EO) >0,k=0,1,2,..., [11; Theorem 1.2, p.

5]. By Theorem 1, therefore, a double sequence C' is an SHMS with a
distribution function that has infinitely many points of increase if and
only if H,ifzm) >0,m,k=0,1,2,.... Thereis, however, a redundancy
in these conditions as indicated in the following result.

Corollary 1. The real sequence C is an SHMS with a distribution
function that has infinitely many points of increase if and only if, for
some integer q, one of the following conditions holds:

(a) HZT™ >0, HYITP™ >0,m=0,1,2,...,

2m

or
(b) HP2™ 50, H??™ 5 0,m=1,2,....

m
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Proof. The Jacobi identities [3, p. 595]

n—1 n+1 n+1 n—1 n
BB D < P,

n=0,%1,+2 ..., k=1,2,...,

imply H,E"_I)H,E"H) > H,ETI_I)HIS_II). Therefore, we obtain by induc-

tion from either condition (a) or (b) that H,ngm) >0,k=0,1,2,...,
for all integers m. O

Condition (a) of Corollary 1 is, when ¢ = 0, known [4]. Owing to its
relationship with quadratic forms, we call a double sequence C' positive
definite whenever either condition (a) or (b) holds. A sequence C' can
be an SHMS and not be positive definite.

Corollary 2. The double sequence C is an SHMS with a distribution
function that has exactly a finite number p of points of increase if and
only if there is an integer q such that H,E2q) >0 for0<k<p, H,?q) =0
for k > p, and H},2q+2) > 0.

Proof. Tt is known [11, p. 5] that for a fixed integer ¢ the sequence
{c2g4n : m = 0,1,2,...} is an HMS with a distribution function ¢
that has exactly p points of increase if and only if H ]izq) > 0 for

0<k<pand H,?q) = 0 for k > p. For a ¢ with p points of increase
at a1, as,...,a,, we have

Cogin = / t" do(t) :Z)\ja?, n=0,1,2,...,

oo =
where A\; > 0, j = 1,2,...,p. If a;j # 0, j = 1,2,...,p, there is
a unique backward extension to an SHMS, namely, {E?Zl Ajal in =
0,+1,42,...}. On the other hand, if a; = 0 for some j, 1 < j < p, then
J75 t7d(t) fails to exist for n > 0. The HMS cannot be extended
backwards and, therefore, cannot be part of an SHMS. Thus, an HMS
with a distribution function that has only a finite number of points of
increase has a unique backward extension to an SHMS if and only if
the origin is not a point of increase of the distribution function. In
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terms of Hankel determinants it is known [8, Lemma 2] that the origin
is not a point of increase for a distribution function with p points of
increase if and only if HZ(,2q+2) > 0. (This fact can also be established
directly using elementary properties of determinants.) The corollary
now follows from Theorem 1. O

Corollary 3. The sequence C = {c, : n = 0,£1,%2,...} is an
SHMS if and only if C = {c_,, : n=0,+1,%+2,...} is an SHMS.

Proof. Tt is easily proved that the Hankel determinants for C' and C'
are related by the identity

n—k) /A —n—k
Hli+1 )(C) = Hli+1 )(C)
for kK = 0,1,2,... and all integers n. The stated result follows from

this identity and the previous corollaries. 0O

By (1) the index choice in a double sequence C appears to play a
role in determining when the sequence is an SHMS. We conclude from
Theorem 1 that a shift of indices by an even integer transforms one
SHMS into another.

Corollary 4. The sequence C' = {c, : n = 0,£1,%+2,...} is an
SHMS if and only if for some integer m the sequence C° = {cp_om :
n=0,£1,£2,...} is an SHMS.

Since the odd indexed entries of an SHMS can be negative, there is
no analogue for a shift of indices from even to odd integers.

3. Determinate and indeterminate sequences. A strong or
classical moment sequence is said to be determinate if the distribution
function of the sequence, when normalized to be in the class D, is
unique. Otherwise the moment sequence is called indeterminate.

If the distribution function of a moment sequence has only a finite
number of points of increase, then it is uniquely determined in D. This
observation, combined with a result of Wall [13; Theorem 9, p. 527]
for the case of a distribution function with infinitely many points of
increase, establishes the following theorem.
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Theorem 2. Let Cy = {c, : n=0,1,2,...} be a determinate HMS
with distribution function ¢. This sequence admits a unique backward
extension to an SHMS C = {c, : n = 0,£1,+2,...} if and only if
f_oooo t~"do(t) exists and equals c_,, for all integers n > 0. The SHMS
C is determinate in this case.

An immediate consequence of Theorem 1 and Theorem 2 is the
following sufficient condition for an SHMS to be determinate.

Corollary 5. The SHMS C s determinate if there is an integer m
such that C,, is a determinate HMS.

The converse of the implication in Corollary 5 is false. That is,
each subsequence C,,, of a positive definite double sequence C' can be
an indeterminate HMS while C' is a determinate SHMS. In fact we
characterize in the next section a determinate (and an indeterminate)
SHMS C based on classical properties applied to the subsequences C,.

When Cj is an indeterminate HMS, Wall [13; Theorem 10, p. 530]
(see also [8]) proved there are infinitely many backward extensions to
strong Hamburger moment sequences. More precisely, we paraphrase
his result as our next theorem.

Theorem 3. Let Cy = {c, : n = 0,1,2,...} be an indeterminate
HMS and let m be a given positive integer. Then there exists an
SHMS C = {c¢, : n = 0,£1,£2,...} such that Cpis = {cn :
n = —2m — 2s,—2m — 2s + 1,...} is an indeterminate HMS when
—m < s < 0 and a determinate HMS when s > 0. In addition, there
is an SHMS C’ such that C’ is an indeterminate HMS for all indices
s and C}) = Cy.

4. Nested disks. Let C' = {¢, : » = 0,£1,£2,...} be a given
positive definite double sequence, that is, an SHMS with a distribution
function that has infinitely many points of increase. For each integer m,
the sequence Cy, = {cn—om : m =10,1,2,...} is an HMS by Theorem
1. Let ¢,, be any distribution function of the sequence C,,. It is
known [11, pp. 46-47] that the function I(z, ¢,,) of (2) is asymptotically
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represented by the formal power series Y7 ¢j—am/ 2711 in each wedge
e <argz < m—¢, where 0 < ¢ < m/2, and the equivalent function of
the positive definite real J-fraction

(5) 60,m /Bl,m /Bn,m
Z—Qum —2Z—Q2m—  —Z—Qnilm—
where
(6) Boom =C-2m: B =HTVH T JIHT™R, n> 1

(The constants ay, ., of (5) are, of course, also determined by the mo-
ment sequence (see [10, p. 165]) but their formulas are not needed in

the sequel.) Let the nth approximant of (5) be Py(fzm)(z)/ngzm)(z),

where the polynomial Q%_Qm) (2) is of degree n with leading coefficient
1. For a fixed z in the upper half-plane, the linear fractional transfor-
mation

- o Prsi (@) = aPi "™ (2)

QA (2) — 0QTH™ (2)

maps Im o > 0 onto the interior of a closed disk F;;Zlm) (2) in the lower

half plane Im w < 0. Each boundary point of this disk is a value of the
linear functional I(z, (;’753 )) of (2), where qu,? )is a uniquely determined
distribution function in D with a finite number of points of increase
such that for ¢ = ¢,

(8) / th do(t) = cr_2m, k=0,1,2,...,2n.

The linear functional I(z, ¢) is in the closed disk Fn +1 )( ) whenever ¢
is a distribution function such that (8) holds and it is an interior point
of the disk if ¢ has infinitely many points of increase [11, p. 48]. By
(6) and the determinant formula for continued fractions, the radius of

the disk F(n+1 )( ) is found to be
H( 2m) /H(—Zm)
—2m 2m n n
© " =) = 5

2/m [\ (2)Q% ™ (2)]]
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As n increases, the disks Fglflm)(z) are nested [11; Theorem 2.8, p. 48].

They converge as n — oo to a disk T(=2")(z) with a positive radius
if and only if C), is an indeterminate HMS. The boundary of the disk
[(=2m) (%) is the circle

A () — 0C2M)(2)
~ B(2m)(z) — g D(=2m)(2)’

—o0 < o0 < 00,

where A(=2m) B(=2m) (=2m) and D(=2™) are certain entire functions
of z when (), is indeterminate [11; Theorem 2.12, p. 57]. Furthermore,

(10) T2 (2) = {I(2,¢um) : ¢ is a distribution function of C,, }.

These classical results play a vital role in our characterization of
indeterminate strong Hamburger moment sequences. Indeed, the disks
['(=2m) (%) can be mapped onto closed disks containing I(z, ¢) whenever
¢ is a distribution function of the SHMS C and C is such that C,, is
indeterminate for each integer m. We then prove the SHMS C is itself
determinate if and only if the intersection of the images under the
mapping of F(’2m)(z) is a unique point. The details are provided by a
sequence of lemmas.

Lemma 1. For a given positive integer n, let 777(;21 = F;Oll(z),

17,(;217") = {z2mw — Zf:l c_jzi tiw e Fgl_flm)(z)} form=1,2,....
Then, form > 1,

(11) nﬁﬁ@)={1&ﬂwﬁ)t¢$)el’mw‘/‘ £ Ay (1) = o

— 00

fork=—-2m,-2m+1,...,—2m + 2n}.

Proof. For a fixed integer m > 1 there is a one-to-one correspondence
between the distribution functions ¢ of D such that (8) holds and the 9
of D such that [*_t*dy(t) = cj for k = —2m, —2m+1,...,—2m+2n.
This correspondence is defined by

(12 wl) = [ " dotu).

— 00
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As in (4) we have

2m—1

(13) I(z,0) = Y LA +272"1(z9).

=0

Since

12" (2) = {I(2,4) : ¢ € D and (8) holds},

the result (11) follows from (13). O

Lemma 2. Forn > m > 1, the disks (11) are nested in the sense
that

—2m —om 0 0
77‘£L+1 ) c 775; ) . nr(z—)m-i—l = F;Emﬂ(z)-

Proof. If p € ng;zlm)’ there is a distribution function % in D such that

I(z,9) = p and

/ th dap(t) = ey, k=—2m,—2m+1,...,—2m + 2n.

— 00

The last equality holds for the parameter % in the more restricted range
—2m+2 < k < —2m + 2n which implies p € néﬁzmﬁ) by (11).

(—2m) (—2m)

In addition, we have the nesting 7,7 C nn for all integers

n > 0 which, by Lemma 1, is equivalent to the nesting of Fslflm) asn

increases. O

Define n(=2™) = 5(=2m)(2) by

= = (ns 1™

n

Then by (10), (12), and (13), we have

7](*2771) = {I(za'(/}m) : wm € D and /Oo tk d’(/]m(t) = Ck

for k=—-2m,-2m+1,...}.
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(=2m)

Thus, the distribution functions associated with 7 are those for

Cy that have an m-fold backward extension to C,,. Let
(14) n=mn(z) ="

Then 7 is a proper disk, called the limit circle case, or a single point,
called the limit point case. The points of 7(z) are the values of I(z, )
where ¥ € D and 9 is a distribution function of the SHMS C.

The analysis so far was confined to a fixed z in the upper half-plane.
Without significant change, we could consider a fixed z where Im z < 0.
In particular, if the limit point case holds for a nonreal z, then it holds
also for z since for all m > 0, we have n(=2™)(z) = n(=2m)(z). There is,
however, a stronger “invariability theorem” connected with the strong
moment problem.

Lemma 3. If the limit point case holds for some nonreal zg, then it
holds for all nonreal z.

Proof. If for some integer m the subsequence C,, of C is a determinate
HMS, then n{=2™)(2) is a point for each z in Imz > 0 (or Imz < 0).
The limit point case, therefore, holds for all nonreal z. Assume that
C,, is an indeterminate HMS for all integers m > 0 and that the limit
point case holds at z; while the limit circle case holds at z;. Replacing
either z; or 2o by its conjugate, if necessary, we can assume Imz; > 0
and Imzs > 0. There is a one-to-one correspondence, independent of
the choice of z, between points on the circumference of I'(=2"™)(z) and a
subset of the distribution functions for the indeterminate HMS C,, [11;
Theorem 2.12, p. 57] for each m > 0. By Lemma 1, therefore, there
is a one-to-one correspondence, independent of z, betweeen points on
the circumference of (2™ (z) and a particular subset of distribution
functions of Cy that have a backward extension to C,,. Now let ¢ be a
distribution function of C such that I(z2,) is an interior point of 1(22).
Since the limit point case holds at z1, there is a sequence of distribution
functions {t,,} such that, for each integer m > 0, I(z1, %y, ) is on the
boundary of n{~2™)(z;) and ¥, — 1 as m — 0o pointwise on (—o0, 00).
By a theorem of Grommer [1] we conclude I(z2, %) — I(22,%) as
m — oo. However, each I(z,,,) is on the boundary of n(=2™)(z,)
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whereas I(z2,%) is an interior point of the intersection of these disks.
This contradiction proves the lemma. ©

If the limit point case holds, then I(z, ) = I(z,%) for all z, Imz # 0,
whenever ¢ and 1 are distribution functions of C'. Thus ¢ = ¢ if each
distribution function is normalized to be in D.

Theorem 4. Let C = {c, :n =0,£1,42,...} be a positive definite
double sequence. Then C is a determinate SHMS if and only if the
limit point case holds for some zy, Im zy # 0.

In the limit circle case, the radius of the disk T'(=2™)(2) is [2Im
A{B(2M)(2)D(=2™)(2)}] 1, since the entire functions A(~2™) B(~2m)
C~2?m and D(=2™) are real for real z and related by the identity
A=2m) p(=2m) _ p(=2m)(=2m) = 1 for all z [11, p. 52]. The radius
of n(=2™)(2) is |z|>™ times the radius of I'(=2™). This observation and
Theorem 4 imply the following result.

Corollary 5. Let C be a positive definite double sequence such that
C is an indeterminate HMS for all integers m > 0. Then C is a
determinate SHMS if and only if for some nonreal z

- [Im [BC?™) () D2 (z))|

m |2]2m =

The nesting of the disks 7(=2")(z) assures the existence of the limit
in the wide sense.

Rather than letting n — oo and then m — co independently, we can
obtain the limit point or limit circle 5(z) by relating n to m. One such
choice is the subject of the next lemma.

Lemma 4. The limit point case holds if and only if for some nonreal
z

(15) Tim |22 %) =0,

where ré:na_”;) is given by (9).
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Proof. By Lemma 2 and the nesting of m(;rzlm)

have

with incresing n, we
-2 -2 —2(m—1

Since |z|2mrér_n2+";) is the radius of né;ig), the limit on the left of (15)

exists and it is zero if and only if
~ —2m
M(z) = ﬂ’?émm)
is a unique point. In view of (11) with n = 2m + 1, we have

f(z) = {I(2,%¢) : ¥ € D and ¢ is a distribution function of C},

that is, 7j(z) = n(z), where n(z) is given by (14). Therefore, (15) holds
if and only if n(z) is a unique point. O

Corollary 6. Let C be a positive definite double sequence. Then C
is a determinate SHMS if and only if (15) holds for some nonreal z.

5. Characterization using orthogonal polynomials. Let
C ={c,:n=0,£1,42,...} be a positive definite double sequence
with distribution function ¢. For each integer m, define, on the space
P of all polynomials in z, the bilinear functional

(16) (f, 9 = /7 " f(0)al T da(t)

for all polynomials f,g in P. In fact, this bilinear functional is an
inner product since Cy,, = {¢p_2m : n =0,1,2,...} is positive definite
and ¢, (t) = fioo u” 2™ d¢p(u) is a distribution function of C,,. The
denominators of the approximants of the J-fraction (5) form, relative
to this inner product, an orthogonal sequence {Q%_2m)}z°:0 that spans
the space P. Thus, the sequence

1/2
(~2m) a1 (~2m)
(17) w,, () = e Q,, (2), n=0,1,2,...
n+1

is an orthonormal basis of P [11, p. 46ff].
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The sequence C' = {e—n :n =0,£1,£2,...} is, by Corollary 3, also
positive definite. Let ¢ be a distribution function of C'. For each integer
m, we have that the bilinear functional

(19 nlhio) = [ 1@ avo),

defined for all polynomials f, g in P, is also an inner product on P. An
orthonormal basis {d}ﬁfzm)}?f’zo of P relative to this inner product can
be obtained from the J-fraction associated with C.

Let L be the space of complex polynomials in z and 1/z. Then for
f,g in L, the bilinear functional

(19 )= [ swaas)

is an inner product on L since C is a positive definite double sequence.
By a diagonalization type process applied to the orthonormal bases of
P for the sequences C), and C,,, we obtain an orthonormal basis of L.

Lemma 5. Let Wy = w(()o) and, for h=0,1,2,..., let

(20)  Wapir(2) = 272050 (), Wanga(z) = 2720, 1 (2),
(21)

. 1 . 1
Win+s(z) = Z2h+2wz(11}r§4) <;> ; Win+a(z) = Z2h+2wz(1;1fﬂ4) <;> :

Then {W,}2, is an orthonormal basis of L relative to the inner
product (19).

Proof. Since Wy = w((JO) = 661/2, we have by (16) that (Wy, Wy) = 1.
For £ =0,1,2,..., we obtain from (16) and (19),

—4h o —ah _
(2, Wit an = / 4 G (1) de(t) = (25720, Wan ).
Since wigi}i)

wig_ﬁ) implies Wy, 11 is orthogonal to all polynomials in L(—2h,2h),

is a polynomial in P of degree 4h + 1, the orthogonality of
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where L(—p,q) denotes the polynomials in L of degrees at most p in
1/z and ¢ in z. Moreover, by (16), (17), (19), (20), and properties of
inner products, we have

2h+1 dh+1 | (—4h
(Wanht1, Want1) = aangr (2", Wanga) = aanpa <Z + ’w‘(‘h+1)>2h

_ [/, (=4h)  (—4h) _
= <w4h+1 »Wapt1 >2h =1,

—4h)

where aqpy1 = [Hi;f;)/Hthrz ]'/2. By a similar argument, Wy, o
is a unit vector in L orthogonal to all polynomials in L(—2h,2h + 1).

From (18), (19), and (21), we obtain for k =0,1,2,...,

o (00050 ) = [ 1 @) v

— 00

= [ ey dat)

= <t2h+2_k, Wints) -

We conclude that Wy, 3 is orthogonal to all polynomials in L(—2h, 2h+

2) since the left hand inner product is zero for k = 0,1,2,...,4h + 2.
Since wﬁ}f;) is a polynomial of exact degree 4h+3, we can prove Wy, 13
is a unit vector in L by an argument similar to that for Wy 1. In the
same manner, we can also prove Wap44 is a unit vector orthogonal to

all polynomials in L(—2h — 1,2h + 2).

This proves {W,,}5° , is an orthonormal sequence in L. Since, for each
integer n, there is a nonnegative integer m such that (2™, W,,,) # 0, this
orthonormal sequence spans the space L and the proof of the lemma is
complete. O

The orthonormal basis of Lemma 5 can also be obtained by applying
the Gram-Schmidt process to the sequence {1, z,2%,271,272 2% ... }.
The order of the sequence gives us the connection with denominators
of J-fractions and hence ties the discussion to the classical moment
problem. On the other hand, Njdstad and Thron [9] considered the
sequence {1,271, 2,272, 22,...} and thereby made an association with

T-fractions.
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Our next lemma is the analogue in the L space of the reproducing
property of the kernel polynomial for ordinary orthogonal polynomials.
The proof follows the standard pattern for orthogonal polynomials and
it is therefore omitted.

Lemma 6. Let K,(z,y) = > p_o Wk(z)Wi(y), and let p be a
polynomial in the subspace L,, of L spanned by {Wy}}_,. Then for
any nonzero real y

(22) (p(z), Kn(z,y)) = p(y)-

Conversely, if K(x,y) is in L, whenever either x or y is fixed and if
(22) with K,, replaced by K holds for all p in L, and all nonzero real
y, then K(x,y) = K,(z,y) for all nonzero real x and y.

A Christoffel-Darboux type identity also holds for the orthonormal
basis in Lemma 5. For the applications to strong moment sequences,
we require only the special cases of the following lemma.

Lemma 7. If x # y and h is a nonnegative integer, then

(23)
asht1 Wang2(@)Wan11(y) — Wany2(y) Wan41(z) _ 41521 Wi (2)Wi(y)
Qaht2 T -y P ’

where aqpy1 and ayqpy2 are respectively the leading coefficients of Wap 11
and Wyp42.

Proof. Let K(z,y) denote the expression on the left-hand side of the
equality (23). Since Wyp, 11 and Wyp 2 are in L(—2h, 2h +2), it follows
that for fixed nonzero y, the function K (z,y) is in L(—2h,2h+1) when
K is defined by continuity for z = y.
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For any positive integer n and for p in L, the algebraic identity

Wn-}-l(x)Wn(y) - Wn-&-l(y)Wn(w)
T—yY

_ [WnH(x)Wn(y) - Wn+1(y>wn<x>] a(xy)

p()

Waiti(®) = Waia(y)
o) [, (o T
B - Wh(z) — Wa(y)
Wn+1( ) T—y :| )
where () )
_ p(@) —ply
a(z,y) =—— " y

holds for all distinct nonzero x and y. Let n = 4h + 1 and let y be
a fixed nonzero real number. If the above identity is integrated with
respect to a distribution function ¢ of the positive definite sequence C,
we obtain from (19) that

B (), K (0,) = Waly) (Wi (&), 0(o-0)
— Wat1(y) (Wa(x),q(z,y))

+p(y) <Wn (), W"“(xi — ZV"H(y) >
=) (Wi (@), = a0,

By the orthogonality of W,, and W,,; 1 the terms on the right hand side
of the equality are zero when p € L(—2h,2h + 1) except for the third.
This term is p(y) multiplied by

Wiii(z) = Wiy (y)
z—y

<Wn(ac), > = apy1 (Wh(z),2") = ant1/an.
It follows that
(p(z), K(z,y)) = p(y)

for all polynomials p in L,,. By Lemma 6, therefore, (23) is proved for
all nonzero real z and y, x # y. Since the function of (23) is rational,
the identity holds as well for all complex nonzero z and y. O
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We apply these lemmas to obtain a characterization of indeterminate
strong Hamburger moment sequences. This is analogous to one of the
series characterizations of indeterminate Hamburger moment sequences
[11, p. 50].

Theorem 5. Let C be a positive definite double sequence, and let
{W; }?’;0 be the corresponding orthonormal polynomials of Lemma 5. A
necessary and sufficient condition for C to be an indeterminate SHMS
is that the series 3 7° |W;(2)|? converges for some nonreal z. In this
case the series converges for all z, Im z #£ 0.

Proof. By Corollary 6 and (9) C is an indeterminate SHMS if and
only if for a nonreal z the sequence

4h 4h)
R(—4h) = ||*F 4h+2)/Hih+1

e 2/Im [Q',4%) (2) Q2" (2)]]

converges to a nonzero limit as h — oo. By Lemma 5 and (17), we
have

h) —4h h h h h)
(Hipts /Hipit ) ity /Hip ) ) (3 15 i 5)

R(;‘lh) - h+ h+1 4h+1 4h+2 4h+2 4h+3
4h+2 4h 4h —4h 4h
2]~ w1 (2wl i (2) — Wit ()i (2)]
-1
a.
—{ Ly (e >W4h+1<z>—W4h+2<z>w4h+1<z>|} ,
A4h+2
where
1/2 1/2
—4h 4h —4h 4h
Qqpy1 = [ 4h+1)/Hih+2:| ’ G4ht2 = [ 4h+2 /H4h+3)] '

By (17) and (20) a4p+1 and agp2 are, respectively, the leading coeffi-
cients of Wyp, 1 and Wyp1o. In view of Lemma 7, we conclude

4h+1
4h _
R ={2Imz Y Wy(2)W;(2)} L
7=0

Thus, Ri;j‘_};) tends to a nonzero limit as h — oo if and only if
ZJ o |[W;(2)|]* converges. The last statement in the theorem is a
consequence of the invariability result Lemma 3. O
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A sufficient condition in terms of Hankel determinants for a posi-
tive definite double sequence to be determinate is obtained from this
theorem.

Corollary 7. A positive definite double sequence C = {c, : n =
0,£1,42,...} is a determinate SHMS if

.. 4h 4h
hhlgg.}f{CLhHihH)HihH)/[H ] }1/ *h) = 0.

Proof. As in the classical case [11, p. 59], we have for nonreal z that

_4h — 1/2
Tm z||z| e 4h64hJ{2 2n = < [ Wang1(2 )| +|W4h+2(z)‘2-

The condition stated in this corollary implies the series

Yoo C an ﬂ4h¥§ ,,P"t is divergent for all p # 0. By Theorem 5,

therefore, C'is a determinate SHMS. O

6. Open problems. A determinate HMS need not have a backward
extension to an SHMS by Theorem 2. When such an extension exists,
the backward extension is a unique determinate SHMS. The behavior
of an indeterminate HMS is quite different. Such a sequence always ad-
mits infinitely many backward extensions to strong Hamburger moment
sequences. It would be interesting to obtain necessary and sufficient
conditions on an indeterminate HMS for it to have a backward exten-
sion to an indeterminate SHMS. Perhaps every indeterminate HMS has
such a backward extension.

It is known that an HMS Cy = {¢, : n =0, 1,2, ...} is determinate if
and only if lim,_, . (H, 7(321 /H, 4)1) = 0. The analogue of this result for

an SHMS to be determinate has not been found by the present authors.

In recent years various moment problems have been studied from a
geometric point of view (see [8]). No such study has been attempted
for strong moment problems. A geometric discussion of an SHMS may
provide additional insights and new criteria for the strong Hamburger
moment problem.
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