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POLYNOMIAL INTERPOLATION OF HOLOMORPHIC
FUNCTIONS IN C AND C»

T. BLOOM*, L. BOS, C. CHRISTENSEN AND N. LEVENBERG

0. Introduction. This paper is concerned with polynomial inter-
polation, particularly Lagrange interpolation, of functions holomorphic
in a neighborhood of a polynomially convex nonpluripolar compact set

K C C™. The general framework is as follows: let hy = hg(n) = (";d>

denote the dimension of the complex vector space Py of holomorphic

polynomials of degree at most d in n variables z1,...,z,. For each

positive integer d, we choose hq points Agi,. .. , Agp, in K; thus we get

a doubly-indexed array {Agj};—1,... n, of points in K. Given a function
Pl

f holomorphic in a neighborhooci of K , we would like to know under
what conditions on the array do the Lagrange interpolation polynomi-
als Lyf associated to f and {Ag4} converge uniformly to f on K. In
one variable (n = 1), Walsh [23] proved a necessary and sufficient con-
dition on the array {Ag4;} in order to guarantee uniform convergence of
the sequence {Lyf} to f on K for each such f (see 1.4). In theorem
1.5 we give several other conditions—they are not equivalent to Walsh’s
condition and in theorem 1.5 we give the precise relation between the
various conditions.

The proof of Walsh’s condition depends on the Hermite remainder
formula (1.3). No such simple formula is available in the case n > 1.
We will show, via several examples, that many analogues of the one
variable results do not hold. Theorem 4.1 summarizes our knowledge
of the generalization of Theorem 1.5 to several variables. The results
are not as complete as the one variable case (see, in particular, Problem
5.5).

Finally, in Section 5 we list a few open questions on polynomial
interpolation in C™.

1. One-variable case. 1.1 Let K C C be compact, nonpolar, and
polynomially convex. For simplicity, we assume K is regular for the
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exterior Dirichlet problem, although most of the results below remain
true without this assumption. Since n = 1, hy = h4(l) = d+ 1 and
we can take as a basis for P; the standard monomials 1, z, 22, ... , 2%.
We denote a triangular array of points in K by {z4}j—01,... 4, i.e., for

each degree d, we have d+ 1 points z4q, ... , Zdd. Provided these points
are distinct, the associated Vandermonde determinant

V(zdo,- -+ »24q) = det [zsj]j,k=0,---,d
|
(1.1.1) Zao o Zad
=det . .
28 24

is nonzero and the fundamental Lagrange interpolating polynomials

(FLIP)

 (G+1)th
V(Zd() cee 9 Ry de) 1 ifz:zd~
1.1.2) 19D = A EILALR _ i
W12 4R = = 2w 0 ifz=zgp k]

are well defined; this allows us to write down the Lagrange interpolating
polynomial (LIP) L, of degree d associated to a function f and the array

{zaj} as

d
(1.1.3) Laf(2) =Y flza)lP(z), d=1,2,...
j=0
so that
(1.1.4) Laf(zaqj) = f(z4),  7=0,1,...,d.

In order to determine how well the polynomials L;f approximate f
at other points in K, we recall the following concepts. The d*"* Lebesgue
function of the array {z4;} is the ‘piecewise’ polynomial

(1.1.5) Aa(z) = Y19 (2)).

d
Jj=0
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The supremum norm of this function on K is called the d*® Lebesgue
constant (by abuse of notation we use the same letter for the function
A4(z) and the constant Ay), i.e.,

(1.1.6) Ag = ||Adl|lx = sup{|Ad(z)] : z € K}

This number is the operator norm of the projection from the Banach
space of functions continuous on K to the space P, (with the sup norm).
Thus the slower the rate of growth of the sequence {A;}, the better the
array is for uniform approximation. One cannot, however, expect the
Lebesgue constants to be bounded. In fact, a result of Faber-Bernstein
[15] shows that there is a constant ¢ > 0 such that, for any array in
K =10,1] we have A4 > clogd.

The asymptotic behavior of the Vandermonde determinants
V(2d0,--- ,24d) as d — +oo also give an indication of the approxi-
mation properties of the LIPs Ly f. For an arbitrary set of d + 1 points
205---,24 in K, V(zg,...,24) is a polynomial in d + 1 variables of

degree ZZ:1 k= (d;‘l); the number

(LL7)  Dapi(K)= max  |V(zg,...,20)| (3D =v,?

1
20,.. 324 € +

~—|

is called the d + 1°¢ order diameter of K. It is easy to see that
the sequence of numbers {Dg;1(K)}4=1,2,.. is nonincreasing; since
Dy(K) = ‘ordinary’ diameter of K and K is compact, the sequence
has a limit

(1.1.8) D(K) = lim Dgii(K)

d—+oo

called the transfinite diameter of K (see, e.g., [11] or [7] for details).
The assumption that K be nonpolar is equivalent to D(K) > 0;
this implies that Dg1(K) > 0 for each d and thus ensures the ex-
istence of triangular arrays {zgq;} with V(2q40,...,24a) # 0. The
relationship between the limit points of the sequence of numbers

1
{V(zd0, -+, 2a0)|(*') Ygo10. and D(K) will be useful in what fol-
lows. We remark that the above definition of D(K) is equivalent to the
following notion of Chebyshev constant T'(K); for each d = 1,2,..., let
Pé” denote the class of monic polynomials of degree d, i.e.,

(1.1.9)  PY ={ps(2) =2 + a2 ' +---+ag;a1,... ,aq € C}.
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Set Ty = Ty(K) = [inf{||pa||x : pa € P} }]M4, then limg ;o Tu(K) =
T(K) exists; from the simple inequalities 7¢ < (Vy/Vy_1) < dT9 (see,
e.g., [11]), it follows that T'(K) = D(K).

Finally, given an array {zg4}, we can form, for each d, the discrete
probability measure g = (1/d + 1) Z?:O[Zdj] where [z4;] denotes the
unit Dirac measure at the point z4;. We will study the set of weak-* lim-
its of the family {#q}4=1,2,... and the relationship with the eguilibrium
measure g on K, ie., the unique probability measure on K which
minimizes the energy integrals I(pn) = [, [ log(1/|z — &) du(€) du(z)
over all probability measures p supported on K. The associated log-
arithmic potential function p,, (z) = [ log(1/|z — &) duk(§), z € C,
associated to pug is then a superharmonic function which is harmonic
off K and is equal to the constant value —log D(K) = I(ug) on K;
indeed, —p,, . (2) —log D(K) = uk(z), the Green function for the com-
plement of K, which will be defined in Theorem 1.4. We remark that

(1.1.10) I(px) = sup pu, (z) < sup pu(2)
zeEK zeEK

for any other probability measure p supported on K.

1.2 As a concrete example of a natural array of points {zg;}, we can
take, for each d = 1,2,..., a set of d + 1 Fekete points, i.e., points
2d0s - - - » 2dd Which achieve the maximum in (1.1.7) (such points are in
general not unique). By construction

(A) lim [V(zdo,- . s 2a0)| (2D = D(K);

d—+o00

by definition of Fekete points, each FLIP satisfies |l§-d)(2)‘ <1lon K so
that Ay < d + 1; hence

(B) lim AY*=1.

d——+oo

Finally, it will follow from the proof of Theorem 1.5 that

(C) lim pg = px(weak-*).

d—+oo

Each of these three conditions (A), (B), (C) will imply that for any
f holomorphic in a neighborhood of K, the LIPs {L;f} converge
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uniformly to f on K, (we write Lyf = f on K). A direct proof of
this fact for arrays of Fekete points was proved by Shen [19]; his proof,
as well as Walsh’s more general result (to be stated below), follow from
Hermite’s remainder formula.

1.3 Hermite’s Remainder Formula (HRF): Given d+1 points zg, . . . ,
zgqa € C, let ' be a contour surrounding these points. If f is any
function analytic in a neighborhood of the region bounded by I', then

(1.3.1) £(2) = Laf(2) = — /Fwd(z) ) g

T 2w Jp wa(t) t— 2

for z inside T where wy(2) = (2 — zao) - - - (2 — 24a)-

HRF is an easy consequence of the residue theorem; however, a more
enlightening proof is to notice that for any point t ¢ {zqo, ... , 244}, the
integrand (wq(2)/waq(t))(1/(t — 2)) is exactly the difference between
g(z) = (1/t — 2) and its LIP Lgg(z) at the point z; multiplying by
f(t) and integrating around T" then yields the general formula. Clearly
then, the behavior of the polynomials wy(z) associated with the array
{#4j} determine the approximation properties of LIPs. We now state,
without proof, the fundamental result of Walsh [10].

Theorem 1.4. (Walsh) Let K C C be compact, nonpolar, polyno-
mially convex and regular. Let {zq4;} be an array of points in K. Then
for any function f which is holomorphic in a neighborhood of K (which
may depend on f), we have Laf = f on K if and only if

1
. d+1i
(14.1) Jim w7 = D(K)

or, equivalently,

(1.4.2) Hm |wg(z)|7T = D(K)e"x %)

d—+o00

uniformly on compact subsets of the complement of K where

p(2)]

(2) = L 1 : l jal
uk (z) = sup deg (7) og P : p polynomia

(143) pal2)]

1
= lim sup{—lo 1p EP}
dortoo d 8 pall P21
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is the Green function for the complement of K with logarithmic pole at
00.

We now state the main theorem of this section.

Theorem 1.5. Let K C C be compact, nonpolar, polynomially
convez, and regular. Let {zq;} be an array of points in K. Consider
the following four properties which an array may or may not possess.

1. limgs 400 Al/d 1
1
. d+1
2. limgs 400 [V (240, - - - ,de)\( 5')
3. limgy 4o g = px weak-*
4. Laf = f on K for each f holomorphic on a neighborhood of K .
Then

. 1=2=3=4.

= D(K)

II. None of the reverse implications in I are true.

Proof. 1. 1.6 (1 = 2) (see Bos [6]). Let Vgi1 = |V (€aos--- »&dd)l,

i.e., €40,... ,&qq are a set of d + 1 Fekete points for K. Then p(o)(f) =
V(& €a1,- - ,€qq) is a polynomial of degree d in &; hence

(1.6.1) p () = Lap Zp (za) S (€),

S0, in particular, at £ = €49, we have

d
(1.62) P (€a0) = V(Edoy- - »€aa) = > Vizajbar, - ,§dd) ) (€a0)
=0

so that
(1.6.3) Var1 = |V(&ao,--- »Eaa)| < AdeHOIaXdW(Zdj,ﬁdl, oy 8ad)l-

For simplicity in notation, assume max;—o. . 4|V (24, &a1,- .- ,&daa)| =
|V (240,€a1, - .- ,€daq)| so that

(1.6.4) Vir1 < AalV(2a0, &t - - - 5 €ad)l-
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Now pgl)(f) = V(zao, &, &a2, - - - ,€4q) is a polynomial of degree d in &;
repeating the above argument we get

(1.6.5) |V (zdo,&ar,8azs - - - »&€aa)| < AalV (240, 2a1, a2, - - - €dd)|
so that

(1.6.6) Var1 < A2V (240, 21, €az, - - - €da)|-

After d — 1 more steps, we finally obtain

(1.6.7) Vig1 < Aj+1|V(zd0, Zdly .- - ,de)‘ < AZ-HVd_H

d+1

by definition of Fekete points. Taking ( 5

) roots yields the result.

1.7 (2 = 3). We first reformulate condition 2: If we write

[V (2dos - -+ »2dd)| = ca+1Va+1, then 2 is equivalent to
1
(1.7.1) lim cd% = lim c(g) =1
o d—+oo d d——+o0 d ’
Now for each d = 1,2,..., we define a measure g as follows: let

Ay ={z: |z — 24| < 1/\/7(d+1)}, j =0,...,d; these are d + 1
discs of radius 1/4/m(d + 1) and area (1/(d +1)). Let fiq be Lebesgue
measure dm on C restricted to U?ZOAdj. Then jig is a probability
measure satisfying

d
1
(1.7.2) supp flg = U Ag; C {z s dist (2, K) < —}

NerE)
The proof of (1.7.1) = 3 will consist of three steps:

Step 1. limg, oo I(fig) = I(px) (= —log(D(K))).

Proof of Step 1. Fix § > 0 and choose an open set O D K satisfying

(1.7.3) D(O) < D(K) +.
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Since O is open, {z : dist (z, K) < p} C O for p > 0 sufficiently small;
hence, we can choose N large so that

(1.7.4) supp jiqg C O for d > N.
For such d,
(1.7.5)
1 1 . B
: <1 —- = inf{I(r): =1
og DK+ = og D(O) inf{I(r) : r(O) ,suppr C O}

< 1(ia) = [ [ tom g dia(2) diate)

(by superharmonicity of u(z) =log(1/|z —£]))

1 1
i [;/A 8 g O Z/Adl og g m €)

1 1 1
< 1 d
= d+1 [; 041 %8 oy — 2 )

1
+(d+1) /|€|< . log E dm (5)]

where we have used superharmonicity of w;(z) = log(1/|z4i — £|) on
the integrals over Ag, ¢ # j, and a translation to integrals over
|€] < (1/+/7(d + 1)) for the others. By direct computation of the latter

integral, we obtain
(1.7. 6)

1
d+122 (d+1)

2 1 d 1 logd
- 1 + I 10
[+ 1) e <d+ 1> % @D ( d >

+ log /m(d+1)+

|2di — Zd]|
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d+1
by definition of c4y;. Since limg_, oo leﬁ =) = D(K) and limg_, ;

/DT = 1 by (L7.1), log(1/(D(K) + 6)) < lim, . I(ja) <
limg_, o0 I(fia) < log(1/D(K)) for all § > 0 and the result follows.
Note that since supp fig C O for d > N, we can choose a subsequence,

which we still denote by {fis}, that converges weak-* to a probability
measure [ supported on K.

Step 2. I(f) = —log D(K).
Proof of Step 2. Since I(f) > I(px) = inf{I(v) : v(K) = 1,

suppv C K} we need to show that I(fi) < I(uk). First of all, note
that for any compactly supported measure v,

(1.7.7) (v) = lim, //log —d, dv(z) dv(§)
where
(1.7.8)

log ———

log 2y if |z —€l>p
{ =< is continuous in (z,§).

1
o &l,  \logl  ifle—gl<p

The weak-* convergence of {fis} to i implies the weak-* convergence

of {fiqg X fiq} to fi X fi; since log(1/|z —&|,) is continuous, we thus have
(1.7.9)

/ / log — |Z7€|p (z)dﬂ({)ngrfw//logﬁdﬂd(z)dﬂd(f)

. 1 . -
< dkgloo // log Z—g dpia(z) dira ()
= Jim I(Aq) = I(px)

A

from Step 1. This inequality holds for all p > 0 and the result follows.

Note that the above argument actually shows that for any subse-
quence of {fiz} which converges weak-* to (necessarily) a probability
measure v supported on K, I(v) = I(uk); thus, by uniqueness of the
equilibrium measure, i = v = pg, i.e., {fiq} has a unique weak-* limit,
namely, pg. Thus, it suffices now to show that for any subsequence
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of {uaq} which converges weak-*, we get the same weak-* limit from
the corresponding subsequence of {fis}. If we again use {uq}, {fia} to
denote the subsequences, we must prove the following.

Step 3. Let limy o0 tg = p weak-* and limy_, ;o fig = i weak-*.
Then p = fi.

Proof of Step 3. Given g continuous on a neighborhood O of K, we
must show that limg ;e [, 9dpa = limg o0 [, gdjig. Fix U open
with

KcUcUco
and choose N; so that if d > Nj, then suppjiq C U. Since g is
uniformly continuous on U, given ¢ > 0, we can find N, so that

lg(2) — g(€)| < e if 2,€ € U satisfy |z — €| < (1/+/7(d + 1)) for d > N».
For d > max(Ny, N2),

(1.7.10) d
‘/Ogdud/ogdﬂd = JZ {ﬁg(zdj)/%gdm]
. 9(z5) — 9(2))dm (2)|  (since m(Agj) = ﬁ)

Thus limg— 40 | [, 9dpa — [» 9 dital = 0. Since each of the limits

tim [ gdus,  tim / gdiia
(@}

exists by hypothesis, the result follows and the proof of (1.7.1) = 3 is
complete.

8 (3 = 4). For each point z ¢ K, u(£) = log(1/|z—¢|) is continuous
on a neighborhood of K. Thus, by weak-* convergence of {14} to px,
the logarithmic potentials

_ 1 1 1
(1.8.1)  pu,(2) = /Klogmdud(f) =it ;logp—

— z4j]
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converge pointwise to py, (z) = [ log(l/|z — &) du(f) = uk(z) —
log D(K), i.e., exponentiating, we obtain

(1.8.2) lim |wg(z)|TT = D(K)e*x(?)
d——+oo
pointwise for z ¢ K. Clearly, for z lying in some fixed compact subset

A of the complement of K, there exist constants ¢y, co > 0 depending
only on A and K so that

(1.8.3) g <lz—¢& <eo

for z € A, £ € K; thus, the convergence above is uniform on compact
subsets of the complement of K. By Walsh’s theorem (Theorem 1.4),
this is equivalent to (4). O

Proof. 1I. 1.9 (2 # 1). Suppose K is connected. Let {4} be an
array of Fekete points, i.e., for each d, |V (€40, - - - ,€dd)| = Vi+1. Choose
a sequence {cq} of real numbers satisfying

(a) 0<eca<l,d=1,2,...

(b) limg—s 400 C(li/dz =1

(¢) Timay 4ot/ <1
(for example, for any 0 < v < 1, the sequence cqy = v? will work). We
define an array of points {z4;} in K which satisfies 2, but not 1 by
modifying the first points €49, d = 1,2, ..., of our Fekete array. For
eachd =1,2,..., we choose z4; = {g; for j = 1,2,...,d; and we choose
240 € K so that

(1.9.1) \V(2d0,&a1,- -+ »€da)| = car1Vas1.

We can find such points zgy € K since |pg(&)| = |V (€, €ars-- - Ead)]
is a continuous function on the connected compact set K with 0 <
|pa(§)] < Vg1 on K, the extreme values are achieved, and 0 <
¢¢ < 1. Clearly, then, (1.9.1) and (b) imply that the array {zq}

satisfies (1.7.1). On the other hand, if we form the FLIP I{"(z) =

(V (2 €a1s- - +€4a)/(V (200, €a1 - - - »€aa)); then 1§V (€ao)| = (1/cazr) s0
that Ag > ||l(()d)|| > (1/cq41), which, together with (c), contradicts 1.
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1.10 (3 # 2). Take any array {zq} satisfying 3. Replace, for each
d=1,2,..., the first point z49 by z41, i.e., consider the new array

ZdlyZdly Zd2s - 5 2dd; d:l,2,

Clearly, if pg = (1/(d + 1))2?:0[,2(1]-] converges weak-* to ug,

then g = (2/(d + 1))[za1] + Z?:z[zdj] does also since pg — jig =
(1/(d + 1))([za0] — [za1]) and limg—,o0(1/(d + 1)) = 0. However,
V(zdl, Zdly Rd2y - -« ,de) = 0, for all d.

1.11 (4 # 3). By Theorem 1.4, it suffices to find an array
{zq4j} satisfying limg ||wd||}(/dle = D(K) but limg 400 td # px
weak-*. Take K to be a disc K = {z : |2| < R} and 24 = 0, for all
j=0,1,...,d;d=1,2,.... Then pug = [0], for all d = 1,2,..., but
px # [0] and wa(z) = 29 so that

1
(1.11.1) [lwal| £ = lim (RN @1 = R = D(K). 0
—00

lim
d— o0

2. Remarks. 2.1 The only results which appear to be new are
2 % 1 and 2 = 3. This latter result was stated but proved incorrectly
for arrays of Fekete points in Hille ([17], Vol. IT). We have essentially
followed arguments in Tsuji’s book [22] to obtain a correct proof of the
more general statement. A result similar to 2 = 3 of Theorem 1.5 of
this paper appears in the proof of Theorem 1 in Blatt et al. [3]

2.2 We can give a direct proof of 1 = 4 which generalizes to C",
n > 1. First of all, the polynomial convexity of K ensures the existence,
for each f holomorphic in a neighborhood of K, of constants A > 0,
0 < 6 < 1, and a sequence of polynomials {p;} with degps < d
satisfying ||f — pal|lxk < A6Y, ie., the polynomials {ps} converge
uniformly to f on K at a geometric rate—indeed, the LIPs Ly f = pq
associated to an array of Fekete points will work. Forming the LIP of
degree d for f — pg associated with a given array {zq;} satisfying (1),
since Lgpg = pq and Ly is a linear operator, we have

(2.2.1) Lq(f —pa) = Laf — Lapa = Laf — pa
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so that

I|f = Lafllk = ||f —pa+pa— Lafllx
= ||f —pa+ Lapa — Laf||x
(2.2.2) = ||f —pa+ La(f — pa)| x
<||f = pallx + Adl|f — pallx
§A9d(1+Ad).

Hence, limg ;oo AY/? = 1 implies Lyf = f on K.

2.3 Since supp px = 0K under the hypothesis of the main theorem,
when discussing condition 3 it is natural to restrict attention to arrays
{z4j} C OK. Indeed, under this restriction, conditions 3 and 4
are equivalent. Suppose 3 does not hold, i.e., limg oo ptg # UK
weak-*. We can find a subsequence, which we still denote by {uq},
such that limg 4o, pg = p weak-* where p is a probability measure
with supp g C 0K which is not the equilibrium measure pyg. As in the
proof of 3 = 4, for z ¢ K, the logarithmic potentials

(2.3.1) -

1 1 1
T 18 ()| = P(2) = g [ 108 g da(©

converge pointwise to p,(z) = [ log(1/|z — €]) du(§) and the conver-
gence is uniform on compact subsets of C — K. Since 4 is equiva-
lent to p,(2) = pux(z) for z ¢ K, we show that there exists a point
z ¢ K at which p,(z) # pu.(2) to reach a contradiction. Since

[ # K, SUP.ck Pu(2) > log D(K) = sup_c g pux (2) by (1.1.10). But

since supppu C 0K, p, is harmonic in K° = interior of K so that
SUp,c g Pu(2) = sup,cyx Pu(z). Thus, there exists zp € OK such that
(2.3.2) Pu(z0) > —log D(K) = ppuy (20)-

By lower-semicontinuity of p,(z) — pu, (z) (logarithmic potentials are
superharmonic; p,, is continuous by assumption), this inequality
persists for z in a neighborhood of zj, hence at points z € C — K.

2.4 Condition 1 implies that the Lebesgue functions can be used to
obtain the Green function px in the sense that

(2.4.1) lim Ag(z) = e®x(®),

d—+o00



454 T. BLOOM, L. BOS, C. CHRISTENSEN AND N. LEVENBERG

For clearly Ay(z) < (d+ 1)max;j_o1,.. 4 |l§-d)(z)\; since

1D, 1D,
242 CHCILAC TR
d 1127 |

by the definition of ug (1.4.3), we obtain

1
< d+1 d euK(Z)
= Ad

for all z € C. On the other hand, given a polynomial p; of degree
d, we have pa(z) = Y1_opa(z4)1}" (2) so that |pa(2)] < ||pallx Aa(z)-
Hence, again from (1.4.3), we get e“5(*) < Ay4(2)'/4. Thus, 1 implies
(2.4.1). However, (2.4.1) is not true under the weaker assumption 2.
This follows from a modification of Fekete points similar to that used
in showing 2 # 1. Starting with Fekete points {£4;}, i.e., for each
d, |[V(€a0,--- ,€ad)] = Viy1, we fix a point z ¢ K. Order the points
£d07 ... 7£dd so that

=

(2.4.3) Ad(z)

(2.4.4) _max d|z§.d>(z)| =19),  i=12....

J=0,1,...,

Now, given a sequence {cq} C (0,1) satisfying a, b, ¢ of (1.9), we again
modify €40 to 249 so that (1.9.1) holds. Calling the new FLIPs l~§-d), we
clearly have that

~ i0
(2.4.5) D) = <—1D()  for some 6 € [0, 27].
Cd+1

In particular, at £ = z,

(2.4.6)
Ai(z) = S @) > 110 () = —— 9 (2)] > e Ag(2).
parie - Car1 ~ (d+1)ca
Thus,
1

h_m Ad(z)l/d > e“K(z) > eUK(Z)

- T 1/d
d——+oo limg 400 cy

by b) and the fact that {{q;} satisfy 1.



POLYNOMIAL INTERPOLATION OF HOLOMORPHIC FUNCTIONS 455

2.5 We now give a well-known algorithm which can be used to con-
struct arrays satisfying properties 2, 3 and 4, so-called Leja sequences
[13]. We use the term ‘sequence’ instead of ‘array’ because z4 = z;,
i.e., these ‘arrays’ have a desirable permanence property: to choose the
d+1 points of the dth row of our array, we keep the d points of the previ-
ous row and add one more. Indeed, having chosen zy, 21, ... ,24-1 € K,
we choose z4 € K so that

(2.5.1) |za—20l|za—21| - |2a—24—1| = max |z—z0||z— 21| - - - |[2—24_1]-
zeK

The choice of z; is not necessarily unique; in any case, we show
that such sequences satisfy 2 of the main theorem (and hence also
3 and 4). Note that, by definition of the point z4, ||wa-1||lx =
|za — 20||za — 21|+ "+ |2d — zd—1|- Since for any monic polynomial pg4
of degree d we have ||pg||x > D(K)? (see [7] or [11]), we have

Vas1 > |V (20, -+ s 2d)| = [Jwa-1]lr||wa—2|| - - - [|wol|x

(2.5.2) > DK+ D(K)(dél)_

d+1
Hence, leﬁ +) > |V (zo,... ,zd)\l/(d;ﬂ) > D(K); letting d — +o0

yields the result. We remark that Leja [13] proved directly that such
sequences satisfy 4; he required a rather technical lemma relating the
sequences {|V (zo,...,24)|} and {||wgq||x}- As an exercise, the reader
should verify that if K = {z: |z| < 1} and z is chosen with |zo| = 1,
then for each d = 2% —1, the 2% points 2, ... , 24 form a rotation of the
dth roots of unity, i.e., zg, ... ,zq form a set of Fekete points for K.

Leja sequences were first introduced in a paper of A. Edrei [9].

3. C*, n>1. 3.1 Let KC C" n>1, be compact, nonpluripolar,
and polynomially convex. When we refer to the set K as a regular set,
this now means the following: as in the one-variable case, we can form
a Green function uk associated to K by setting

p(2)]|

|lpllx

(3.1.1) ug(z) = sup{ log ) polynomial} zeC".

deg (p)

However, in general u(z) need not be plurisubharmonic (psh), nor
continuous. If we set u}, = lim¢_,, ux (§), then either uj, = +o0 in C”
(in case K is pluripolar) or u} € L where

(3.1.2) L ={u€epsh(C"):u(z) <logl|z| +O(1) as |z| = +o0}.
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We say that K is regular if ug = uj, i.e., ux is continuous on C".
This occurs, for example, if K is regular for the exterior (R*") Dirichlet
problem; for more general criteria for regularity, see [17].

To discuss LIPs, we continue using the notation from the introduc-
tion. For each positive integer d, we choose a basis eq,... ,ep, for the
vector space Py of polynomials of degree at most d with the {e;} or-
dered so that ‘¢ < j” implies dege; < dege;. Given a set of hy points
Ad1,---,Adn, € K which do not lie on any algebraic surface of degree
< d (such points exist if K is not pluripolar), we form the generalized
Vandermonde determinant

(313) V(Adl, . ;Adhd) = det[ei(Adj)]i’j:L_“ ha 7é 0.

As in the one variable case, we can construct the hy FLIPs of degree d
by setting
ith
V(Adgi, - ,2,--., A 1 ifz=A,
(314) l;d) (Z) = ( di, 1) ’ dhd) _ { 1 z dj ' ‘
V(Adlv"' aAdhd) 0 leZAdi; l#]

for j = 1,...,hq. Thus, the LIP Lyf of degree d associated to a
function f and the array {Agj}j—1,.. n, is
ha

(3.1.5) Laf(z) = f(AIP(z),  d=1,2,....

j=1

Again, we have the Lebesgue functions A4(z) = Z?il |l§-d)(z)\ and the
Lebesgue constants Ay = ||Agl|k-

An important difference occurs with the generalized Vandermonde
determinants (3.1.3) in the several variable case: in one variable, the

ratio used to construct the FLIPs l;d) can be simplified:

(3.1.6)
To(z — zai)

l‘gd)(z) = V(Zd(), cee 3Ry ,de) B i) wd(z)

V(dea S 7zdd) ngq(zdj — Zdi) (z - zdj)wzl(zdj) -
i#]

No ‘cancellation’ occurs in (3.1.4) for n > 2. Furthermore, in one vari-
able, the dth order diameters {Dg(K)}4=1,2, .. decrease with d which
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easily implies the existence of the limit D(K) = limg 400 Da(K). In
several variables, one can again define dth order diameters as

1
= T4
(3.1.7) DyK) = max_ V(oo &)

where [y = E;l:lj(hj —hj_1) = degree of V(&1,... ,&n,) as a polyno-

mial in &;,...,&,, but the existence of the limit
(3.1.8) D(K)= lim Dyu(K)
d—+oo

for arbitrary compact sets was not proved until 1975 by Zaharjuta [24].

3.2 We briefly indicate the idea behind Zaharjuta’s proof since this
will be used in what follows. We order the monomials e;(z) = zF() =
zfl(i)...zﬁ"(i) so that, as before, ‘¢ < j implies dege; = |k(i)] =
ki(¢) + -+ + k,(i) < dege;. For each ¢ = 1,2,3,..., we consider the
class of normalized polynomials

(3.2.1) Pl = {pi(2) = e;(2) + che]-(z) : ¢; € C}

Jj<i

We call 7; = M/ *Ol = [inf{||p;||x : pi € P}/ kO the itP- Chebyshev
constant of K. Note that for each degree d, there are hg — hq—1
polynomial classes P® with |k(i)| = d; Zaharjuta showed that the
geometric mean of the corresponding Chebyshev constants, i.e.,

(3.2.2) )= LkH 7

:| 1/hd7hd_1
(i)]=d

converge as d — +oo by relating the 79’s to an ‘average’ of directional
Chebyshev constants

3.2.3 K,0)= lim 7
(3-2.3) 7(K,0) o 7
R 0
where § = (61,...,6,) is a point on the standard n-simplex ¥ = {# €

R":Y " 0;=1,6;>0,j=1,...,n}. Precisely, he showed that

1
24 lim In7) = ———
(3:24) d—tso 4T Meas (%)

/ In7(K,0)do
by
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where meas(X) = [, df. In any case, using standard arguments
analogous to the one-variable case, one can show that

(3.2.5) ROl < Vi <irFOL =12,
Vici

multiplying these inequalities together for ¢ such that |k(¢)| = d, one
obtains

Vhy _ _hd!

3.2.6 7re <
(3.2:6) (rd)™ < g < s

(), d=1,2,...

where rq4 = d(hq — h4g—1). Letting Vy = 1 and multiplying the
inequalities (3.2.6) for 1,2,... ,d, one obtains

d
(3.2.7) H(TJQ)’"J' < Vhy < Al H(T]Q)”-

Taking lqg = Z';:lj(hj —hjq1) = Z';:l r; roots in (3.2.7) and using
the fact that the geometric mean of the TJO’S converge yields the desired
result. Note we have used the important fact that while hy = O(d"™),
lg = O(d™*") so that limy_, | o (hg!)*/'e = 1.

We now indicate a method for computing the transfinite diameter of

a compact set K without explicitly calculating the maximal Vander-
monde determinants, Vj.

Theorem 3.3. Let K C C" be compact and let u be a nonnegative
Borel measure with supp u C K such that the pair (K, u) satisfies the
Bernstein-Markov property:

(BM)
YA>1, 3M >053||pllg < MAE®)||p||y for all polynomials p

where ||p||3 = [ [p|*dp. Then D(K) = limg—, o0 Gi{fld where Gy, =
det [fK ei€;dpl; j=1,.. k is the kth Gram determinant associated with
(K, p)-

Remark. The proof is essentially due to Bos [5]. We note that if K
is regular, then the Monge-Ampere measure px = (ddu} )™ associated
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with the function ug = uj, is a measure with supp ux C K such that
(K, ug) satisfies (BM) (see [16, 1] for the definition and properties
of (ddu’)™). Also, if, in this case, p is a measure such that pg
is absolutely continuous with respect to u, then (K, u) also satisfies
(BM). If K = 09 where  is a bounded pseudoconvex domain with
C! boundary, then ux is absolutely continuous with respect to dSq =
surface area measure on 0f; also if K is a regular subset of R™ C C"
with nonempty interior, then ux is absolutely continuous with respect
to Lebesgue measure on R"™ restricted to K. Thus, in principle, one
can compute the transfinite diameter of such sets by computing the
integrals [, , 29 2% dSq(2) in the first case and [, 2*Pz*) dm (x)
in the second case where z = (x1,...,2,) = (Rez1,... ,Rez,). Bos
used the latter case to compute D(K) for the real disc K = By =
{(21,22) € C? : Imz; = Imz = 0, 23 + 22 < 1}; he obtained
D(By) = (1/v/2€) [5]; we will use this fact later.

Proof. We want to relate the Gram determinants G; to the Chebyshev
constants 7; using (BM). Let

(3.3.1) i = KON = Jinf{||pi] 2 < p; € PYYROL

It follows that (see, e.g., [8, p. 181]) K? = (G;/G;_1). Furthermore, if
t; € P' is a Chebyshev polynomial, i.e., ||t;||x = M;, and if A; € P?
satisfies ||A;||2 = K, then we have, assuming p(K) = 1 for simplicity,

(3.3.2) Ki = [[Asll2 < [ltill2 < [|tillx = M;
and, by (BM), given a fixed A\ > 1, 3M so that
(3.3.3) M; = ||ti]|x < ||Allx < MAFOL| A4l = MAFOIK;,

Hence,

[k(2)]
1L (1 k@2 < g2 _Gi k(i) 2
(334) EYD) <F> (Ti ) S i = Gi71 S (Ti ) 5

an inequality analogous to (3.2.5). Following Zaharjuta’s reasoning, we

multiply the inequalities (3.3.4) for each ¢ with |k(¢)| = d to get

L\ 1\ e
3. = . Td < _ —Ra < 0274
(3 3 5) <M2 > ()\2 > (Td) — Ghd,1 — (Td) ’
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similar to (3.2.6). Again, letting Gy = 1 and multiplying the inequali-
ties above for 1,2,... ,d, we obtain

d .
1 Do rild 1\
(336) <W> (p) () < G, < (1),

Taking 2l; roots in (3.3.6) and letting d — -+oo, we obtain, via
Zaharjuta,

1 -
(3.3.7) $DU) < lim G/ < Tim G/% < D(K).

d=+o00 d— o0

Since the above inequality holds for all A > 1, the result follows. O

Remark 3.4 The Chebyshev polynomials ¢; € P associated to a
nonpluripolar compact set K C C™ (n > 1) are not necessarily unique
as occurs in the one-variable case. As a simple example, consider the
simplex K = {(z1,22) € R? C C?:0 < x1,72 < 1,0 < @1 + 22 < 1}
Then P? = {23 + az; +b : a,b € C}; one can easily show that
M3z = inf{||ps||x : p3 € P3} = 1/2 and that for a = 0 or a = 1,
p3(2z1,22) = 23 + az; — 1/2 satisfies |[ps||[x = 1/2. On the other
hand, for any completely circular set K C C", i.e., (21,...,2,) € K
implies (a121,--.,n2,) € K for all |o;| < 1, any p; € P’ satisfies
[lpillx > |leillx by the Cauchy estimates so that the Chebyshev
polynomials ¢; are precisely e; (and hence are unique).

3.5 As an alternate method for computing D(XK) under the hypoth-
esis of Theorem 3.3, note that from (3.3.4),

1/1k(2)]
1 1 i
(351 () 3mslady™ <n
sothat for 0 e 3o ={0eX:6,>0,i=1,...,n}
(3.5.2)
srE 6 < m o (Al < Tm (4l < r(K,0)

i——+00 k() g

k(4) :
=D —0 [k(8)]
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for all A > 1 since the limit in the definition of 7(K, #) exists for such
6 (Lemma 1, [24]). Hence, for such 6,

(3.5.3) r(K,60) = lim_|lAdly"
z~_>+oo
%*}9
i.e., the L? norms of the orthogonal polynomials {4;} with respect
to the measure p can be used to compute the directional Chebyshev
constants 7(K, §) and hence D(K) by (3.2.4). If the geometry of the set
K is relatively simple, e.g., if K = Bs, then the orthogonal polynomials
A; with respect to certain natural measures p on K can be computed
explicitly. In this regard, we mention that under the hypothesis of
Theorem 3.3, Zeriahi [25] has shown that one can recover the extremal
function ug as a pointwise upper limit of the orthonormal polynomials

Bi(2) = Ai(2)/[|Aill2-

Theorem 3.6. [25, Theorem 1]. Let K C C™ be compact and let p
be a nonnegative Borel measure on K such that (K, p) satisfies (BM).
Then

lim |B;(z)|Y/ POl = eux(®) e C" - K.

i—+o00

We again utilize Zahajuta’s proof to construct sequences of points
which can be used to compute the transfinite diameter.

Proposition 3.7. Let K C C™ be compact. Define the sequence
{&i}i=1,2,... in K as follows. Having chosen &1,... ,&k—1, choose &, €
K so that |V (&1,...,&)| = maxeck |V (&1, .. €k—1,€)|. Then

lim ‘V(gla 7£hd)|1/ld = D(K)

d—+o0

Remark. In analogy with the one-variable case, we call such a
sequence of points a Leja sequence for K.
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Proof. Let Ly = |V(&,...,&)|. We relate Ly to Vi. Clearly,
L; < V. On the other hand, since

(3.7.1)
V(... €, .
‘521,-.. ?Zklj) = er(§) + Y cje;(€) = pi(€) and ||pi|x = ﬁ

i<k

by definition of &, we have

(3.7.2)

Ly
Ly 1

= llpwlx > |ltel|x = 7o),

Thus, again letting Ly = 1, we have

Via o Lha _ Lha Lha-1  In

Vi =
PV T L Lp, , Lp, —

(3.7.3)

l/ld

Taking lq4 roots and using (3.2.7), we see that limg o0 Ly ¢ = D(K).

O

4.

Theorem 1.5 in C". Theorem 4.1. Let K C C" (n > 2) be

compact, nonpluripolar, polynomially convex, and regular. Let {Agq;} be
an array of points in K. Consider the following four properties which
an array may or may not possess.

1.
2.

3.

1imd_>+oo A:'i/d =1
limd_H_oo |V(Ad1, . ,Adhd)|1/ld = D(K)
lim g o0 (1/ha) Y521 [Ags) = enpirc = enlddeuf)™ weak-*

4. Lygf = f on K for each f holomorphic on a neighborhood of K
(in 3, ¢y, is a dimensional constant chosen so that px(K) =1/cy).

Then

L 1= 24

IL 241,34 1,2,4.

Proof. 1. 4.2 (1 = 2). This is a corollary 2.2 of [5]; the proof is as in
the one-variable case. The only difference is that instead of inequality
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(1.4), we obtain, after hg steps,
(4.2.1) Vig < AV (Agy, ..o, Agny)) < ARV,

Since hq/lg = O(1/d), taking l4 roots and using 1 yields 2 upon letting
d — 400. (1 = 4). Since K is polynomially convex, from Siciak [20],
given f holomorphic on a neighborhood of K, 34 > 0,0 < 6 < 1, and a
sequence {p4} of polynomials with deg pg < d so that ||f —pg||x < A6<,
d=1,2,.... Thus, from Remark 2.2 in Chapter 2, the result follows.
O

Proof. 1I. 4.3 (2 # 1). This also follows as in the one-variable case;
indeed, we now have more flexibility with the sequence {cq4} (1.9), we
can relax condition (b) to limg c;/ ' — 1. This is now equivalent

to 2 where ‘V(Adl,.. . aAdhd)‘ = Cthd.

(3 %4 1,2,4). Note that 3 % 2 can be seen as in the one-variable case;
also, since 1 = 4, it suffices to construct an example of a compact set
K C C” and an array {Ag4;} C K satisfying 3 but not 4 to complete the
proof. To get such an array, and also to get a more interesting example
of 3 % 2, we follow the technique used by Bos to construct ‘natural’
arrays {A4} on the real disc B, C C%. Note in C?, hy = (d"gz).
For simplicity in describing Bos’s scheme, we let d = 2s be even.
Choose s + 1 radii Ryg < Rs1 < --- < Rgs = 1 and choose 45 + 1
points on the circle #7 + 23 = R3;. This gives us >.7_((4j + 1) = hq
points. The maximal Vandermonde determinant |V (Ag1,... ,Adn,)|
out of such configurations is achieved by choosing equally spaced points
on the circles—the determinants are then independent of the location
of the points on one circle relative to the location of the points on
any other circle—and the value of the determinant |V (Aq41, ... , Adn,)|
becomes

V(Aas, - s Adny)| =Ca [ [ (B2,_;) =290 (s=20)/2

$,8—]
Jj=0
s |:i1 2(2s—2t)+1)

' H H(Rz,s—i - Rz,s—j)

i=1 Lj=0

(4.3.1)

where Cy is a constant depending on d, n. The idea behind (4.3.1) (and
the motivation for the scheme) is that by performing elementary row
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operations on the matrix V(Aq1,... , A4n,) one obtains a matrix con-
sisting of (454 1) x (45 +1) blocks which are, up to a constant, Vander-
monde matrices in one variable for points on a circle. The dimension of
the space of trigonometric polynomials, ao—i—ZiJ:l (ay cos k6+by, sin k0),
of degree < 2j is 45 + 1; these block determinants are maximized by
choosing equally spaces points (see [6] for details).

We want to relate the distribution of radii {R,;} to a distribution
of points {vs;} on the unit interval. To make things precise, let
G : [0,1] — [0,1] be a strictly increasing continuous function which
satisfies G(0) = 0 and G(1) = 1, let F = G~1. We want to realize
F' as the limiting cumulative distribution function associated with an
array of points {vs;};=o,1,...,s on [0,1]—the ~,; will just be given by

s=1,2,...

Vsj = sz. To achieve this,’ define, for j =0,1,...,s,

(4.3.2) vsj=G<L>=F—1< J ) ie., F(ys;) = J

s+1 s+1 s+1°

Defining Fs(a") = (.7 + 1)/(8 + 1) for z € [’YSja'Ys,j-i-l)a J=01,...s,
it follows easily that the step functions Fy converge uniformly to F
on [0,1]. Setting R?;, = 74, 7 = 0,1,... s, and following the above
procedure of placing 4j + 1 equally spaced points on z% + 2% = jo,
we get an array {Ag}j=0,1,.. h, o0 B2 (for d = 2s even; a similar
procedure with slight modifications can be used for d odd to achieve
our goal). The distributions F on [0, 1] give rise to radial distributions

(43.3) H,(R)= #(j:|Ag| <R}, O0<R<1

2
(2s +2)(2s+1)

(d = 2s) on By, it follows from the combinatorics and the fact that
Fs = F on [0,1] that
(4.3.4)

[4, Lemma 4.5] lim H,(R) = (F(R?))? uniformly on 0 < R < 1.

s— 400

This gives us a mechanism for creating ‘Bos arrays’ on By from arrays
on [0,1]. We now state several propositions without proof which will
lead us to the construction of a Bos array satisfying 3 but not 2 or 4.
The first proposition tells us what D(Bs) is.
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Proposition 4.4. [5, Theorem 2.6] D(Bz) = 1/+v/2e.

To prove this, Bos used a special case of Theorem 2.1 (which moti-
vated this theorem) as mentioned previously.

Now we need to know how to compute limg_, oo |V(Ag1, - - ., Agn, )|/
for Bos arrays constructed above.

Proposition 4.5. Given G : [0,1] — [0,1] continuous, onto, strictly
increasing, define RY , ; = G(s — j)/(s + 1) (this is just (4.3.2) with
jo =7s5),7=0,1,...,s, s=1,2,... and construct a corresponding

Bos array {Agj}. Then

. 1 3
45 m [Vdae Aa) = oo ($260))

where

(4.5.2) L(G) E/O z?log G(z) da:+2/0 / zlog[G(y) — G(z)] dy dz.

The proof of Proposition 2.4 follows as in Bos’s [5, Theorem 3.2].
Setting R, ; = G((s — j)/(s + 1)) in (4.3.2), taking logarithms and
using (4.3.3), we recognize the sums as Riemann sums for the sum of
the two improper Riemann integrals in (4.5.2). Letting s — +oo yields

the result.
We need to relate the function G to property 4.

Proposition 4.6. [4, Section 4]. Given G as above and a corre-
sponding Bos array {Aq;}, if G(z) # (1 — cosmx)/2, then 4 does not
hold.

The reason is that if G(z) # (1 — cosmz)/2, then the array {gs;}
on [0,1] cannot have the Chebyshev distribution F(z) = 1/2 +
(1/7)sin™*(2z — 1) as its limiting distribution; it is known in this case
that one can find a function g analytic in a neighborhood of [0,1] in
C such that the LIPs Lgg(z) = ijog(’ysj)lg-s)(z) do not converge
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uniformly to g on [0,1]. The function f(z1,22) = g(2? + 22) is then
analytic in a neighborhood of B in C?, and as a function on R? it is
a radial function (f(z1,z2) = g(z? + 22) = g(r?)); for such functions,
the two-variable LIPs L;f reduce to one-variable radical LIPs (see [5])
so that Lgf =2 f on Bs.

Finally, we need to know the Monge-Ampere measure pp, = (dd°uj, )*.

Proposition 4.7. [18]. coup, = (1/27)(rdrd0/v'1 — r2) where (r,0)

are polar coordinates on RZ.

We now have all the ingredients we need. Set G(z) =1 — (2? — 1)2.
This gives (F(R?))? = 1 — V1 — R2 = [ [T(1/27)(r/V1 —12) dr df,
i.e., 3 holds. Since G(z) # (1 — cosmz)/2, by Proposition 4.6, 4 does
not hold. Finally, by setting G(z) = 1 — (2% — 1) in Proposition 4.5
and by direct (but tedious!) calculation, one computes L(G) < —2/3.
Since L(G) = —2/3 if and only if limg_, o0 [V(Aar,- - - , Agn,)|/" =
1/v2e = D(B) by Proposition 4.4, 2 does not hold. Thus, the
construction, the example, and hence the theorem are done. O

We close this section with a positive result, due to Bloom and Siciak,
for product sets in C? [see 18; 4; Section 4.8].

Theorem 4.8. Let K7, Ko C C be compact, nonpolar, and polyno-
mially convex. Then there exist arrays {Aqj} C K = K1 x Ky satisfying
2,3, and 4.

Proof. We give the construction of {A4} and outline the proofs
that the array satisfies 2, 3, and 4. Let (z,w) be the variables in
C2. We choose one-variable Leja sequences {zj}j:07172,,__ Cc K; and

{’wk}k:()yl’z’__ C Ks. Then for each d, the hg points Agq, ... :Adhd will
consist of the triangular array
(4.8.1) {Agiti=1... .na ={(zj,wr) : j +k < d}.

The array {Aq;} satisfies 2. Schiffer and Siciak showed [18] that
for such ‘intertwined’ arrays, the two-variable Vandermonde determi-
nant |V(Ag,... ,Adn,)| can be written as the product of one-variable
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Vandermonde determinants, i.e.,

(4.8.2)
d

V(Aar,-- s Aany) | = ] IV (20, 215 -, 2)|[V (wo, w1, - ., wj)]-
j=1
Since |V (20, 21, .. , )| > D(E1)("2) and [V (wp, . .. ,w;)| > D(K2)("2)

by (2.5.2), using the fact that I; = ijlj(j +1) in C?, we get, from
(4.8.2) that

L
T

(4.8.3) V(Aar, ..., Ag, )| > [D(K1)D(K)]?.

However, Schiffer and Siciak also proved that

(4.8.4) lim Da(K) < [D(K1)D(K>)]?
d—+o0

This, combined with (4.8.3) yields 2 (and D(K) = [D(K;)D(K>)]'/?).

The array {Aq} satisfies 3. First of all, since one variable Leja
sequences satisfy 2 and hence 3 limg, o (1/(d + 1)) ijo[zj] = uk,
weak-* and limg ;o0 (1/(d + 1)) Zzzo[wk] = pk, weak-*. It follows
from a general measure theory lemma due to Assani [4, Lemma 4.9] that
limgs 100 (1/hg) E?il[Adj] = ug, X pk, weak-*. Finally, from work of
Bedford and Taylor [2, Proposition 2.2], (dd°u%)? = px = cpik, X piK,
and 3 holds.

The array {Aq4;} satisfies 4. To see this, given f holomorphic in a
neighborhood of K7 x K3, we write the LIPs Ly f in a different manner,
namely as Newton polynomials: write

(4.85) Laf(z,w) = Y aj(z—20) (2 —2)(w —wp) -+ (w — wy)
jt+k<d

where, in order to achieve Lqf(z;,wr) = f(2;,wx) for j +k < d, we
choose
(4.8.6)

1 f(z,w) >
" (m)?/pz/pw<z—zo>---<z—zj)<w—wo>---<w—wk>dd
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where I', is a contour surrounding 2y, z1,...,2; and I'y, is a contour
surrounding wg,ws,... ,w,. We thus have, in this case, an explicit
formula for the remainder |f(z,w) — Lyf (2, w)| as an iterated contour
integral; using the properties of our one-variable Leja sequences {z;}
and {wg} (precisely, property 4), we have that in the denominator
|z — 2]+ |z — 2|17 = D(K;)e"x1(*) on compact subsets of C — K
and |w — wo| - - - |[w — wy|/*1 = D(K5)e®<2() on compact subsets of
C — Ky; these facts imply that Lyf = f on K = K; x K3. We refer
the reader to [21] for details. O

5. Open questions. We end the discussion with a list of open
problems involving polynomial interpolation, both in C! and C©,
n > 1. The list is ‘chronological’ in the sense of following the order
of presentation in the first two chapters. Many problems listed below
are first mentioned by others; we make no claims of originality nor do
we make judgments as to the difficulty of the questions.

(5.1) Do the one-variable Leja sequences {z;} defined in Section 2,
Remark 2.5, satisfy 17

(5.2) If K C C™ (n > 1) is compact, non (pluri)-polar and not
regular, does there exist a measure y with supp p C K such that (K, )
satisfies (BM) (see Theorem 3.3)7 More specifically, does px satisfy
(BM) in this case?

(5.3) Do the normalized Chebyshev polynomials {t; = (t;(z)/|[t:]|x)}
satisfy lim;_, oo |6 (2)|V/*0) = evx(3) 2 € C" — K, if K is regular? If
K is completely circular (see the remark after Theorem 3.3), then the
result is true [20, Prop. 5.4].

(5.4) Do the several-variable Leja sequences {£;} defined in Propo-
sition (3.10) satisfy 1? Do they satisfy 47

(5.5) For a compact, polynomially convex, nonpluripolar, regular
compact set K C C™ (n > 1) does 2 = 37 Does 2 = 47

(5.6) For sets as in (5.5), does an array {Ag4;} C K of Fekete points
satisfy 37

(5.7) Find an example of a compact set K C C", n > 1, and an
explicit array {Aq;} C K which satisfies 4.

(5.8) Find an example of a compact set K C C", n > 1, for which
one can explicitly construct an array of Fekete points.
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(5.9) Does there exist a Bos array in By with L(G) = —2/3 (if so,
we get a negative answer to (5.5))7

(5.10) Do the arrays in Theorem 4.8 satisfy 1?7
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