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FINITE GROUPS ACTING ON BORDERED SURFACES
AND THE REAL GENUS OF A GROUP

COY L. MAY

1. Introduction. Group actions on compact bordered surfaces
have recently received considerable attention. The surface has often
carried a dianalytic structure and been considered a Klein surface
or, equivalently, a real algebraic curve with real points. The new
monograph [4] is an excellent general reference for the work on bordered
Klein surfaces.

Many results have concerned the size and structure of the automor-
phism group of a bordered surface of algebraic genus greater than one.
Let X be a compact bordered Klein surface of algebraic genus g > 2.
Then the automorphism group G of X is finite, and the order of G is at
most 12(g — 1) [16]. If the order of G is the largest possible, then G is
called an M*-group. M*-groups have received special attention. There
is certainly a wealth of these groups and, in fact, many important finite
groups are M *-groups.

The general upper bound for the size of the automorphism group can
be improved, of course, in special cases. For example, if the group G is
nilpotent, then its order is at most 8(g — 1) [19]. Cyclic groups acting
on bordered surfaces were studied in [18, 6, 4]. Abelian groups were
considered briefly in [4].

Other research has concentrated on group actions on bordered sur-
faces of a fixed algebraic or topological genus [5, 3, 2]. In some of
the older research [12, 13|, only orientable surfaces and orientation-
preserving automorphisms were considered.

Many of these results, however, hold for arbitrary topological group
actions on bordered surfaces, not just actions by dianalytic groups.
Perhaps the language of Klein surfaces has obscured the generality of
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these results. In fact, Tucker’s similar remarks about the symmetric
genus and Riemann surfaces [24] provided some motivation for our
work here.

In connection with group actions on bordered surfaces, then, there is
a natural parameter associated with each finite group. A finite group G
can be represented as a group of automorphisms of a compact bordered
Klein surface, that is, G acts on a bordered surface. We define the real
genus p(G) to be the minimum algebraic genus of any bordered surface
on which G acts. There are, of course, other genus parameters for
the group G. Two of the most important are the graph-theoretical
genus [25] and the symmetric genus [24]. We use the adjective real
for our parameter because of the important correspondence between
compact Klein surfaces and real algebraic curves; the bordered surfaces
correspond to curves with real points.

We initiate our study of the real genus of a group by applying the
work done on automorphism groups of compact Klein surfaces. This
yields upper and lower bounds for the real genus of a group in terms of
its order. One consequence is that for each p > 2 there are only a finite
number of groups of real genus p. Another consequence is a formula for
the real genus of an M*-group. This is used to give genus formulas for
three important families of groups, the large symmetric and alternating
groups and almost all the projective special linear groups PSL(2,q).

We also establish some relationships between the real genus and other
genus parameters and classify the groups with real genus p < 3. There
are infinitely many groups of real genus zero and also infinitely many
of real genus one. However, there are no groups with p = 2 and exactly
two with p = 3. In addition, we find genus formulas for three other
families of groups, the elementary abelian 2-groups and 3-groups and
the dicyclic groups. Finally, we determine p(G) for each group G with
order less than 16.

Some of these results are pretty well known in some form or another.
But this is not surprising, considering the recent activity in the field
along with its older roots. We have attempted to present the material
in a new and interesting context, and certainly some of the results are
new. We close with some natural open problems about the real genus
parameter.
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2. Preliminaries. We shall assume that all surfaces are compact.
If X is a bordered surface, then X is characterized topologically by
orientability, the number &k of components of the boundary X and the
topological genus p.

The bordered surface X can carry a dianalytic structure [1, p. 46]
and be considered a Klein surface or a nonsingular algebraic curve over
R. Thus X has an algebraic genus g, which is given by the following
important relation:

_ [2p+k—1 if X is orientable
p+k—1 if X is nonorientable.

The algebraic genus appears naturally in bounds for the order of an
automorphism group of a Klein surface [16, 18, 19, 6, 4], and, in
fact, the integer g has often been referred to simply as the genus of the
surface.

Non-Euclidean crystallographic (NEC) groups have been quite useful
in investigating group actions on bordered Klein surfaces. Let £ denote
the group of automorphisms of the open upper half-plane U, and let £
denote the subgroup of index 2 consisting of the orientation-preserving
automorphisms. An NEC group is a discrete subgroup I' of £ (with the
quotient space U/T" compact). If I' C L7, then T is called a Fuchsian
group. Otherwise, I is called a proper NEC group; in this case I' has a
canonical Fuchsian subgroup I'" = I' N LT of index 2.

Associated with the NEC group T is its signature, which has the form

(21) (p;ﬁ:; [)\1,... 7)\7’];{(’/117--- 71/1.91)7--- ,(I/k]_,... 7Vk:sk)})-

The quotient space X = U/T is a surface with topological genus p
and k holes. The surface is orientable if the plus sign is used and
nonorientable if the minus sign is used. The integers Aq,... , A, called
the ordinary periods, are the ramification indices of the natural quotient
mapping from U to X in fibers above interior points of X. The integers
Vi1, ... ,Vis,, called the link periods, are the ramification indices in fibers
above points on the ith boundary component of X. Associated with
the signature (2.1) is a presentation for the NEC group I', although
the form of the presentation depends on whether the plus or minus
sign is present. For these presentations and more information about
signatures, see [14, 22, 4].
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Let I be an NEC group with signature (2.1) and assume k£ > 1 so
that the quotient space U/ is a bordered surface. The non-Euclidean
area u(T) of a fundamental region for ' can be calculated directly from
its signature [22, p. 235]:

RS ES DI (R S ) St (e

where v is the algebraic genus of the quotient space U/T". If A is a
subgroup of finite index in I, then

(2.3) [T A] = u(A)/u(D):

An NEC group K is called a surface group if the quotient map from
U to U/K is unramified. Fuchsian surface groups contain no elements
of finite order. If the quotient space U/K has a nonempty boundary,
then K is called a bordered surface group. Bordered surface groups
contain reflections but no other elements of finite order.

Let X be a bordered Klein surface of algebraic genus g > 2, and
let G be a group of dianalytic automorphisms of X. Then X can
be represented as U/K where K is a bordered surface group with
p(K) = 2m(g — 1). Further, there are an NEC group I' and a
homomorphism ¢ : I' — G onto G such that kernel ¢ = K [17]. The
group G = T'/K, so that from (2.3) we obtain

(2.4) g=1+0(G) - pu(T)/2m.

Minimizing g is therefore equivalent to minimizing u(T'). Among the
NEC groups I' for which G is a quotient of I" by a bordered surface
group, then, we want to identify one for which u(T') is as small as
possible.

Let G be a finitely presented group. If the generating set has the
minimum size, then this number of generators is called the rank of G.
If G’ is a quotient group of G, then clearly rank (G) > rank (G'). In
particular, suppose the group H acts on a bordered surface, and we
represent H as a quotient of the NEC group I'. Then rank (I') gives an
upper bound for rank (H).
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The canonical presentation for an NEC group almost always involves
redundant generators, however. Let I" be an NEC group with signature
(2.1) and associated canonical presentation. Suppose k£ > 1 and exactly
l of the k period cycles are empty. Regardless of whether the plus or
minus sign is present, the number of generators in the presentation is

N=r+S+k+vy+1,

where S = s; + --- + s; and 7 is the algebraic genus of the quotient
space U/T. Of these, @ = 1+ (k—1) are clearly redundant. Thus, I" has
a simplified presentation with N — @ generators, and rank (T') < N —Q),
that is,

(2.5) rank (T) <~y+r+S+1L.

Of the elements in the simplified presentation, clearly at most v + r
can have order larger than two.

3. The real genus. We begin by showing that each finite group
acts on a bordered surface. This result is certainly not surprising and
should be considered something of a folk theorem. The corresponding
result about Riemann surfaces is in [9, p. 572].

Theorem 1. Let G be a finite group. Then there is a bordered Klein
surface X such that G is a group of automorphisms of X.

Proof. If the group G is cyclic or dihedral, then certainly G acts on the
disc (with its unique dianalytic structure). Suppose G has generators
Z1y... ,2 where r > 2 and o(z;) = m;. If r = 2, then further assume
that mj or my is at least 3 (if m; = mg = 2, then G is a dihedral group).
Then let I' be the NEC group with signature (0; +; [my, ... ,m.]; {()}).
The group I' is generated by xi,...,x,, e and the reflection ¢ with
defining relations

()™ =c? =ece lc=a120- -z re = 1.

Define a homomorphism ¢ : I' — G by ¢é(z;) = z;, ¢e) =
(2129+++2.)7%, ¢(c) = 1. Let K = kernel¢. Then ¢ € K and K
contains reflections but no other elements of finite order. Thus, K is a
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bordered surface group, and G 2 I'/K is a group of automorphisms of
the bordered Klein surface U/K. O

Thus each finite group G acts on a bordered surface (as a group
of homeomorphisms), and it is natural to seek the surface of smallest
genus. We define the real genus p(G) to be the minimum algebraic
genus of any bordered surface on which G acts. The real genus, in one
guise or another, has been studied by several mathematicians working
on Klein surfaces (for example, see [4, Section 4]). However, they have
usually added the restriction that the surface have algebraic genus at
least two. We feel it is more natural to allow actions on surfaces of genus
zero and one. This agrees with the conventions for the graph-theoretic
genus [25] and the symmetric genus [24].

If H is a subgroup of G, then obviously p(H) < p(G). Also, suppose
is a quotient group of G and X is a bordered surface of genus p = p(G)
on which G acts. Then @ acts on a quotient surface Y of X, and
the genus of Y is at most p, just from the Riemann-Hurwitz formula.
Hence, p(Q) < p(G).

A nice consequence of our proof of Theorem 1 is an upper bound for
p(G). The similar upper bound for the graph-theoretical genus of a
group is in [25, p. 93].

Corollary. Let G be a finite group with generators z1,...,z, and
o(z;) = m;. Then

T

(3.1) p(G) <1+ 0(@) [r— 1—2—].

ms
i=1 "

Proof. In the simple cases (r =1 and r = 2 = m; = mg) p(G) =0,
and the formula holds. Now consider the remaining cases; we continue
to use the notation in the proof of the theorem. Let g be the genus of
the bordered Klein surface X = U/K. Then from (2.2)

T

u(r):%[r—l—zmii].
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Applying (2.4) we obtain

T

g:1+o(G)[r—1—Zi].

=1
Since G acts on X, p(G) < g, and we have our upper bound.

4. Bordered Klein surfaces. Next we prove a result that allows us
to apply work done on bordered Klein surfaces to arbitrary topological
actions. Like Theorem 1, this result is probably a folk theorem. Indeed,
it was stated without proof in the introduction of [10].

Theorem 2. Let G be a finite group of homeomorphisms of a
bordered surface X onto itself. Then X carries a Klein surface structure
that makes G a group of dianalytic automorphisms of X.

Proof. The quotient space Y = X/G is a bordered surface, and the
quotient mapping 7 : X — Y is a ramified covering with folding. Give
the surface Y a dianalytic structure [1, p. 46]. It is not hard to see that,
locally, the quotient mapping 7 acts like a morphism of Klein surfaces.
Then, by one of the main results of [1], 7 is a morphism globally;
there is a dianalytic structure on X such that 7 is a morphism of Klein
surfaces [1, p. 28].

Now let f € G. Then wf = m, of course. Since both 7 and =wf
are morphisms, so is f [1, p. 19]. Thus G is a group of dianalytic
automorphisms of X. O

Each upper bound for the order of a group acting on a bordered Klein
surface can now be interpreted in terms of the real genus.

Corollary 1 [16]. Let G be a finite group with p(G) > 2. Then
o(GQ) < 12[p(G)—1], and o(G) = 12[p(G) —1] if and only if G is an M*-
group. Furthermore, if o(G) < 12[p(G) — 1], then o(G) < 8[p(G) — 1].

Corollary 1 has the following important consequence.
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Corollary 2. For each integer p > 2, the number of groups of real
genus p is finite.

Corollary 3 [19]. Let G be a finite nilpotent group with p(G) > 2.
Then o(G) < 8[p(G) — 1]. Moreover, if G is not a 2-group, then
o(G@) < 8[p(G@) —1].

Corollary 4 [6]. Let p be an odd prime, and let G be a finite p-group
with p(G) > 2. Then o(G) < (p/(p — 2))[p(G) — 1].

Corollary 1 also yields a formula for the real genus of an M*-group.
Several families of groups (and lots of isolated groups) have been
recognized as M *-groups. For example, Singerman [23] has shown that
most of the projective special linear groups PSL(2,q) are M*-groups.

Corollary 5 [23]. Let q be a prime power other than 2,7,11 or 3™,
where n = 2 orn is odd. Then

p(PSL(2,9)) = 1+ (¢ +1)(¢* — q)/12d,
where d = (2,9 — 1).

Conder [7] obtained partial presentations for the symmetric group
Sp, and the alternating group A, that show that both groups are M*-
groups for all n > 167 (each of these groups is also an M*-group for
many n < 167). For the large groups, we have the following formulas.

Corollary 6 [7]. For each n > 167, p(S,) = 1 + nl/12 and
p(A,) =1+ n!/24.

5. The symmetric genus. The real genus of a group is naturally
related to the symmetric genus. The symmetric genus o(G) of a finite
group G is the minimum genus of any Riemann surface on which G
acts. The strong symmetric genus o°(G) is the minimum genus of
any Riemann surface on which G acts preserving orientation. This
terminology was introduced by Tucker in [24].
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Associated with each bordered surface X in a natural way is its
complex double X., [1, pp. 37-41], a Riemann surface of the same
algebraic genus. The surface X, has an orientation-reversing involution
o : X. — X, such that X./oc = X. The automorphism groups of the
two surfaces are intimately connected [1, p. 79]. Let H and G denote
the automorphism groups of X and X, respectively. Also let GT be the
subgroup of G consisting of the orientation-preserving automorphisms
of X., and set L = (o). then

H={feG"|fo=0f},

and thus G contains a subgroup isomorphic to L x H =2 Z; x H.

Now let G be a group with real genus p = p(G) so that G acts on
a bordered surface X of algebraic genus p. Then Z5 x G acts on the
complex double X, and G acts on X, preserving orientation. Thus we
immediately obtain the following inequalities.

(5.1) 0(Z2 x G) < p(G)
o°(G) < p(G).

Each inequality obviously implies o(G) < p(G).

The group G also acts on the surface X* obtained from X by
attaching a disc to each boundary component [10, p. 268]. Let p denote
the topological genus of the bordered surface X, and let k denote the
number of components of 0X.

Suppose first that X is orientable, so that p(G) = p = 2p+ k — 1.
Then X* is an orientable surface without boundary of topological (and
algebraic) genus p. In this case,

(5.3) o(G) < (1/2)[p(G) — k +1].

Next suppose that X is nonorientable, so that p(G) = p=p+k — 1.
Then X* is nonorientable with topological genus p and algebraic genus
p—1. Let W be the complex double of X*. Then the group G also
acts on W, an orientable surface of genus p — 1. Thus, in this case

(5.4) o(G) < p(G) — k.
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From the inequalities (5.3) and (5.4), we easily obtain the following.

Proposition. Let G be a finite group. If p(G) > 0, then
o(G) < p(G).

6. Groups of small real genus. Here we classify the groups with
real genus p < 3. This is not difficult. We begin with a few observations
about the automorphism groups of bordered surfaces.

Let X be a bordered Klein surface with k boundary components,
and let G be a group of automorphisms of X. Then G acts as a
group of permutations of the boundary 0X. In other words, there
is a representation § : G — S, where H = kernel§ is the subgroup
of G that fixes each component of 0X. Then H is a normal subgroup
with [G : H] < kl. This representation is useful if k is small.

Now let C' be one of the boundary components, and let H. be the
subgroup of G that fixes C'. Of course, H C H.. Then H. is a dianalytic
group of automorphisms of C, which topologically is just a circle. If an
automorphism f acts as the identity on C, then f must be the identity,
by standard methods of analytic continuation. Hence, H, is either a
dihedral group or a cyclic group, and its subgroup H must also be a
group of one of these two types.

The groups of real genus zero are not surprising. The only bordered
surface of algebraic genus zero is the disc D. Clearly the groups Z,, and
D,, act on D, and these are the only possible automorphism groups,
since D has a single boundary component.

Theorem 3. The finite group G has real genus zero if and only if G
is Z,, or D,,.

The bordered surfaces of algebraic genus one are the annulus and the
Mobius strip.

Theorem 4. The finite group G has real genus one if and only if G
1§ Zy X D, with n even or Zs X Z, with n even, n > 4.

Proof. Let n > 2. Then it is easy to see that there is an action of
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Zy X Dy, on the annulus. If n is odd, Z3 x D,, =2 D5, of course. But if
n is even, then p(Zy x D,) = 1 and if also n > 4, p(Zs X Z,) =1 as
well.

Now suppose G is a finite group with p(G) = 1. A group acting
on the Mobius strip must be cyclic or dihedral, since this surface
has only one boundary component. Thus G must act on an annulus
X, so that o(G) = 0 by (5.3). Let H be the subgroup of G that
fixes both components of 0X. Then H is a cyclic or dihedral group
with [G : H] < 2. Since p(G) # 0, we must have [G : H| = 2.
Now an inspection of the list of groups of symmetric genus zero [11,
pp. 287-291] shows that the only possibilities are G = Zy x D,, or
G = Zy x Z,, for some even n. n]

Neither Theorem 3 nor Theorem 4 is really new, of course. Group
actions on spheres with holes are well known. Especially relevant here
are [2] and [12].

Thus there are infinitely many groups with p = 0 and infinitely many
with p = 1. For each larger value of p, we already know that there are
only finitely many groups. Interestingly, for p = 2, there are none at
all.

Theorem 5. There are no groups of real genus two.

Proof. Suppose G is a group with p(G) = 2. Then o(G) < 12 by
Corollary 1 to Theorem 2. But the only M*-group of order 12 is Dg
[10, p. 278] and p(Dg) = 0. Hence, o(G) < 8. The only group with
order 8 or less that does not have real genus zero or one is the quaternion
group @, and we shall show in Section 7 that p(Q) = 5. O

We must mention here that in [5] Bujalance and Gamboa determine
all possible automorphism groups of bordered Klein surfaces of genus
two. Their results together with Theorem 3 yield Theorem 5.

The classification for real genus three is messier but still not difficult
with the ideas of this section. There are five topological types of
surfaces to consider. We shall not provide a proof, however. Bujalance,
Etayo and Gamboa have already classified the full automorphism
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groups of bordered Klein surfaces of genus three in [3], although they
provide a proof for only one topological type. Their results, combined
with Theorems 3-5, yield Theorem 6.

Theorem 6. The finite group G has real genus three if and only if
G is Ay or Sy.

There are at least three groups of real genus four. The M*-group
D3 x D3 acts on a torus with three holes [10, Section 2]. Hence, D3 x Ds
and its subgroups Z3 X Zs and Zs X D3 have real genus four.

7. Genus formulas. We have already seen formulas for the real
genus of several important families of groups. Next we find the real
genus of the elementary abelian 2-groups and 3-groups.

Theorem 7. p(Z3)" =1+ 2" 2(n—3) forn > 1.

Proof. The formula holds for 1 < n < 3 by Theorems 3 and 4. Let
n >4 and write G = (Z3)". Let A be the NEC group with signature
05+ [ 1:{(2,2,711,2)}).

(The single period cycle has n + 1 periods equal to 2.) Then
p(A) = w(n — 3)/2 by (2.2), and A has a presentation with genera-
tors ¢y, 2, ... ,cne1 and relations (¢;)2 = 1, (c1c2)? = (cac3)? = -+ =
(encnt1)? = (cny1c1)? = 1. Let 21,..., 2, be a set of n generators for
G. There is a homomorphism ¢ of A onto G defined by ¢(c¢;) = z; for
i=1,...,nand ¢(cp41) = 1. Then L = kernel ¢ is a bordered surface
group, and G acts on the bordered surface Y = U/L. If g denotes the
algebraic genus of Y, then from (2.4) we obtain g = 1 + 2"=2(n — 3).
Consequently, p(G) < 1+ 2"72(n — 3) (this improves (3.1)).

Now suppose G acts on the bordered surface X of algebraic genus
g. We know g > 4. Then represent X as U/K where K is a
bordered surface group. Obtain an NEC group I' with signature (2.1)
and a homomorphism a : I' —+ G onto G such that kernel o = K.
Also Zy x G = (Z2)™*! acts on the complex double X, and in fact
/KT = (Z3)™*! |20, Section 3]. Therefore,

(7.1) rank (T') > n + 1.
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Each element of G has order two, of course. Since the bordered
surface group K = kernel a contains reflections but no other elements
of finite order, each period m; and each link period n;; in the signature
of I must be two. Let v denote the algebraic genus of U/T'. From (2.2),
we obtain

w(l) = (1/2)w(4y — 4+ 2r + 5),

where S = s; + -+ + s,. Again, let [ denote the number of empty
period cycles in the signature of I', so that 0 <1 < k.

First suppose v > 1. Since y+1 > k, 4y +2r > v+ k +r and
p@ > (/2)7(y+r+ S+ k—4) > (1/2)r[rank (I') — 4], using
(2.5). Next let v = 0, so that K = 1. If I = 0, then easily
p(T) = (1/2)m(—442r+s1) > (1/2)w[rank (') — 4], again using (2.5). If
I =1, then s; = 0 and rank (I') < r+ 1. Then r > 4 by (7.1) so that in
this case u(I') = (1/2)7w(2r —4) > (1/2)7(r —3) > (1/2)w[rank (T') —4].

Therefore, in any case, by applying (7.1) we obtain u(T') > (1/2)7r(n—
3). A simple calculation using (2.4) now gives g > 1+ 2" 2(n — 3).
Hence, p(G) > 1+ 2" 2(n — 3). This completes the proof. O

Maclachlan has computed the strong symmetric genus for each finite
abelian group [15]. Applying his main result [15, p. 711], we see that
0°(Z2)™ = p(Z2)™ for n > 4. Thus we have an infinite family of groups
for which the strong symmetric genus and the real genus are the same.

The inequality (5.2) could have been applied, of course, to shorten the
proof of Theorem 7. We preferred instead to give a proof indicating
a general technique that should be useful in studying the real genus
parameter.

An interesting consequence of Theorem 7 is a formula for the symmet-
ric genus of an elementary abelian 2-group. We have (5.1) and always
the graph-theoretical genus v(G) < o(G) [24, p. 90].

Corollary. o(Zy)" =1+ 2""3(n—4) for n > 2.

Proof. This follows immediately from Theorem 7 and the formula for
v(Z2)™ [25, p. 88], since v(Z2)"™ and p(Z3)" ! agree. O

The proof of the following is similar to that of Theorem 7 but easier
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because 3-groups have no involutions. Also, the upper bound (3.1) is
attained. We omit this proof.

Theorem 8. p(Z3)" =1+ 3""1(2n—3) forn > 1.

Finally we consider the infinite family of dicyclic groups. For n > 2,
let G, be the group with generators z, y and defining relations

22 =1, z" = o2, y~loy = 2L

Then G, is called the dicyclic group of order 4n [8, p. 7]. Each
element outside the big cyclic subgroup (z) has order 4, and there
is a unique element (z™) of order 2. Also, the subgroup J = (z") is
normal in G,,, and clearly G,,/J = D,,. Thus z" is not part of a two-
element generating set for G,,, and it follows that there are at least two
generators of order larger than two in any generating set for G,,. The
group G, is also generated by the two elements w = xy and y of the
order 4 [8, p. 8] with defining relations

w? =y = (wly)"

The smallest dicyclic group G5 is isomorphic to the quaternion group
@, and the group G3 is isomorphic to the nonabelian group T of order
12 that is not A4 and not Dg. Also, the group T is a semidirect product
of Z3 by Z4 [21, p. 138]

Theorem 9. If n # 3, p(G,) =1+ 2n. Furthermore, p(G3) = 6.

Proof. Since G, is generated by two elements of order 4, (3.1) gives
p(Gr) <14 2n. We also have p(G3) < 6, since G3 = T is generated
by an element of order 3 and another of order 4.

Now let GG, act on a bordered surface X of algebraic genus g. We
shall show that g > 14 2n in general. We know g > 2. Obtain an
NEC group I' with signature (2.1) and a homomorphism ¢ : I' — G,
onto G, such that X = U/K, where K = kernel ¢ is a bordered surface
group with u(K) = 2m(g — 1). Let -y denote the algebraic genus of the
quotient space Y = U/T', and simplify the canonical presentation for I'
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as in Section 2. In this simplified presentation, there must be at least
two elements with order larger than two, since I'/K 2 G,,. Therefore,

(7.2) v > 2.
Applying (2.3), we have

(9 — 1)/4n = p(T) /2,

which is given by (2.2). We obtain a lower bound for this expression.
If v > 2, then easily (9 —1)/4n > 1 and g > 4n + 1. Suppose v = 1.
Then from (7.2) we have r > 1 with at least one ordinary period larger
than two. Thus, (g —1)/4n > 2/3 and g > 1+ 8n/3.

Now assume v = 0 so that Y is the disc D. Using (7.2) again,
we have r > 2 and at least two of the ordinary periods are greater
than two. If » > 3, then (¢ — 1)/4n > -1+ 2(2/3) + 1/2 = 5/6 and
g > 1+10n/3. Suppose r = 2. Assume first that the quotient mapping
m: U — D is ramified above the boundary of D. In this case there are
at least two link periods equal to 2 [16, pp. 204, 205]. Thus we have
(9—1)/4n > —-1+2(2/3)+2-(1/4) and g > 1+ 10n/3.

Finally, assume r = 2 and there is no ramification above 0D. Then
I" has signature (0;+;[my, m2];{()}) and is generated by 1, z2,e and
the reflection c. But e is clearly redundant and ¢ € K = kernel ¢, since
the bordered surface group K contains reflections and any reflection
in I is conjugate to ¢ [14, p. 1198]. Thus G,, is generated by the two
images ¢(z1), ¢(x2) with orders my, ms.

Suppose G,, has elements of order 3. Then 3 divides n, of course.
So write n = 3l. But the two elements of GG,, of order 3 are contained
in the normal subgroup N = (%), and it is not hard to see that the
quotient group G,,/N is the dicyclic group G; if I > 1. Hence, if [ > 1,
an element of order 3 cannot be part of a two-element generating set for
G- Also, G3 is not generated by two elements of order 3. For the group
(s, then, if my = 3, ma > 4 and we have (g—1)/12 > —1+(2/3)+3/4
and g > 6.

Assume n # 3. Whether G,, has elements of order 3 or not, we must
have my; > 4, ma > 4. Then we obtain (g — 1)/4n > —1 + 2(3/4).
Hence, g > 2n + 1 in the hard case. Therefore, p(G,) > 1+ 2n. u]
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Theorem 9 completes the calculation of the real genus of each group
of order less than 16. The following table gives p(G) and also (G) for
each group G with o(G) < 16 and p(G) > 0.

TABLE 1. Groups of small order with positive real genus.

order | group G | p(G) | o(G)
8 Zy X Ly 1 0
8 (Z2)3 1 0
8 0 5 1
9 Zs X Zs 4 1
12 Zy X Zg 1 0
12 Ay 3 0
12 T 6 1

8. Open problems. There are many unsolved problems about
the real genus parameter. We mention some of the more natural and
accessible ones.

Problem 1. For each p > 4, classify the groups with real genus p.
Problem 2. Determine p(A) for each finite abelian group A.
Problem 3. Determine p(H) for each finite Hamiltonian group H.

Of course, there is a problem of this type for each class of finite
groups.

Problem 4. Find p(G) for each group G of order less than 32.

This is already an interesting problem for order 16. There are 14
groups of order 16. Our results here give the real genus of 3 of the 5
abelian groups and just 3 of the 9 nonabelian ones.

For each integer n > 2, define f(n) to be the number of groups with
real genus n. We know that f(2) = 0 and f(3) = 2. From Theorem
9 it follows that f(n) is positive for all odd n, except perhaps n = 7.
Also, there are quite a few sequences of values of g for which there is
a bordered surface of genus g with maximal symmetry and associated
M*-group [10, 17]. Some of the sequences contain only even values
(for example, see [17, p. 9]). Hence, f(n) is positive for infinitely many
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even n. Thus there is the following intriguing problem.

Problem 5. Determine whether f(n) =0 for any n > 2.
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