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ANALYTIC CONTINUATION OF FUNCTIONS
GIVEN BY CONTINUED FRACTIONS,
REVISITED

LISA LORENTZEN

ABSTRACT. Let the continued fraction K(an(z)/bn(z))
converge to a meromorphic function f(z) in a domain D.
This function f(z) may very well be meromorphic in a larger
domain D¢ containing D, even if the continued fraction itself
diverges in D§\D. The value of f(z) for points z € D§\D
can then be obtained by using modified approximants. This
technique is known. We shall give sufficient conditions for
obtaining a continuous extension of f(z) to the boundary of
Dg by the same method.

1. Introduction. Let us illustrate the idea with some very simple
examples which are taken from Thron and Waadeland’s paper [11].

Example 1.1. The periodic, regular C-fraction

(1.1) K(az/l):“—f+$+$+ ...;  acC\{0}

converges in the cut plane D := {z € C;|arg(l + 4az)| < 7} to the
holomorphic function

(1.2) w(z) == %((1 +4az)/? —1)  forze D.

Clearly, R((1 + 4a2)*/?) > 0 for z € D in w(z), and clearly, w(z) can
be extended analytically to the function

(1.3) W(z) := %((1 +4az)'? - 1) for z € D*,

where D* is the two-sheeted Riemann surface on which W(z) is holo-
morphic. (That is, D* is a Riemann surface with branch points of
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684 L. LORENTZEN

order 1 at z = —1/4a and at z = co0.) There is no way that the clas-
sical approximants of (1.1) can converge to W (z) at points z € D*\D,
since they are rational functions (with no branch points). The modified
approximants

az az az

(1.4) 8, (W(2),2) = T ST AT W(R)

(n terms);

however, converge for all z € D* to the right function, W(z). In fact,
Sp(W(z),z) = W(z) for all n and all z € D*.

These properties are to a certain extent inherited by the limit periodic
regular C-fraction
(1.5)
K(anz/l):ailz_k%_i_%_’_ where a,, € C\{0}, a, — a.
Firstly, (1.5) converges to a meromorphic function f(z) in the cut plane
D, [7, p. 95]. That is, its classical approximants

a1z asz an2
$,(0,2) = 8= 922 G2
O2) == 5,

converge to f(z) in D. Its modified approximants

a1z a2z Ap 2
S,(W(z),z) = == =22 . %
(1.6) (W(z),2) 1 + 1 + + 1+ W(z)

forz€ D*, n=1,2,3,...

are well-defined, meromorphic functions in D*. For z € D we know that
lim S,,(W(z),z) = f(2), [9]. Moreover, the convergence is uniform on
compact subsets of {z € D; f(z) # oo}, and 1/, (W (z), z) converges
uniformly to 1/f(z) on compact subsets of {z € D; f(z) # 0}. We
shall in the following say that S, (W (z),z) converges C-uniformly
on compact subsets of D, or that S, (W (z),z) converges locally C-
uniformly to f(z) in D to describe this kind of convergence. (C =
CU{o0}.)

The point now is that if a,, — a sufficiently fast, then {S,(W(z),z2)}
converges locally C—uniformly not only in D, but in a larger domain C
D* to a function F(z). That is, the modified approximants S,,(W (z), z)
converge in a larger domain than the classical approximants S, (0, z).
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Since F(z) = f(z) in D, it follows that F'(z) represents a meromorphic
extension of f(z). Without loss of generality, we let a = 1/4:

Theorem A [11]. Let C >0, 0<r <1 and

(1.7a) Dy := {z € D*; H—Lé;zz) < %}
where
(1.7b) W) = 5 ((1+2)"2 1),

If la, —1/4] < Cr™ forn = 2,3,4,..., then {S,(W(z),2)} converges
locally C-uniformly in D}.

Remarks. 1. Dy is a domain in D*. It increases if r decreases.
D; = D and D§ = D*\{0 in the sheet D*\D}.

2. Dy is all of D* except for a bounded hole H := D*\ D¢ which lies
in the sheet D*\ D, symmetric about the axis arg z = 2. Since z € H
if and only if v(2) := (1 + 2)'/? satisfies |v(z) — 1|/|v(2) + 1| > 1/r; i.e.,
if and only if R(v(z)) < 0 and

1+ 172 2r

_1—7'2 and R:= m,

|v(z) — C| < R; where C :=

it follows that H is contained in the circul’:xr disk with center at C2 —1
and radius R(2|C|+ R) in the sheet D*\D.

3. The branch points z = —1 and z = co of W (z) are bounded away
from the hole H. Hence, F'(z) = lim S, (W (z), z) also has branch points
of order 1 at z = —1 and z = oo.

The question we are interested in in this paper can in this context be
phrased as follows: Under what conditions will {S,,(W(z), z)} converge
C-uniformly in the closure D} of D} in D*?

Theorem 1. Let 0 <r <1, and let C,, > 0 be such that

(1.8) ZCn<OO ifr <1, ZnCn<oo ifr =1,
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and let D} and W(z) be given by (1.7). If |an —1/4] < Cpr™ from
some n on, then {Sn(W(z),2)}, given by (1.6), converges C-uniformly
wmn Df.

A similar result is proved in [8] and [10]. We shall generalize this
result in Section 2. Our main result contains both Theorem 1 and the
following example:

Example 1.2. The periodic general T-fraction
(1.9)

K(Fz/(1 - Fz)) = 2 okl ki

1-Fz+ 1-Fz+1-Fz 4+ "
converges to the function w(z) = Fz for |z| < 1/|F| and to the function
w(z) = —1 for |z| > 1/|F|. The limit periodic general T-fraction
o F1Z FQZ F3Z

T 14Giz + 14Gez + 14+Gsz +

where F' # 0

(1.10) K(F,z/(1+Gp2)):

)

where
F, € C\{0}, F, — F € C\{0}, G, € C\{0}, G, —> —F

converges to a meromorphic function f(z) in the disk |2| < 1/|F| and
to another meromorphic function g(z) in its exterior |z| > 1/|F|. Its
modified approximants S, (F'z,z) or S,(—1,2) may converge in larger
domains, though. Without loss of generality, we let F' = 1:

Theorem B [11]. Let C' > 0,0 <r < 1, and let |F, — 1| < Cr™ for
n=2,3,4,... and |G, +1] < Cr" forn=1,2,3,.... Then {S,(z,2)}
converges locally C-uniformly for |z| < 1/r and {Sn(—1,z)} converges
locally C-uniformly for |z| > r.

Since lim S,,(z,2) = lim S,(0,%) for |z| < 1 and lim S,(-1,2) =
lim S,,(0, ) for |z| > 1, we see that Theorem B gives us meromorphic
extensions of f(z) to |z| < 1/r and of g(z) to |z| > r. The continuous
continuation to the boundaries is then secured under conditions similar
to the ones in Theorem 1:

(1.11)
|Fn, — 1] < Cpr™, |G, + 1] < Cpr™, where 0 <r <1, C, >0,

ZC’n<oo ifr<1 and Zn0n<oo ifr=1.
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This method for analytic continuation originated with Waadeland, [13,
14]. It is described for limit periodic continued fractions in [10, 11]
and for more general continued fractions in [1]. The main results of
this paper will be presented in Section 2. In Section 3 we consider the
question of sharpness. The proofs are given in Section 4.

Throughout this paper we shall consider continued fractions K (a,(z)/
b, (z)) where z lies in a domain. (Domain = open, connected set, pos-
sibly including (parts of) its boundary.) The convergence results we
obtain are also valid in more general sets, but that is beyond the scope
of this paper.

2. The main result. The previous examples can be regarded as
nearness (or perturbation) results: The continued fraction K(a,z/1)
in Example 1.1 is near the periodic continued fraction K((z/4)/1) (or
it is a perturbation of this one). K((z/4)/1) converges to

w(z) == %((1 +2)1/2 - 1), where R ((1+ 2)¥%) > 0

in the cut plane D := {z € Cj;|arg(l + z)| < 7}, and it can be
continued analytically to W (z) in D*, as given in (1.3). It has modified
approximants

= z/4  z/4 z/4

(2.1) Sp,(W(z),z) := T+ ITWe =W(z) in D*.

When K(a,z/1) is near enough to K((z/4)/1), then the modified
approximants S, (W (z),z) of K(a,z/1) also converge to the right
function in a larger domain. The nearer K(a,z/1) is to K((z/4)/1),
i.e., the smaller 7 > 0 is in Theorem A, the larger is this domain D}.

Similarly, K(F,z/(1 + Gpz)) in Theorem B is near the periodic
general T-fraction K (z/(1 — z)) which converges to z for |z| < 1 and
to —1 for |z| > 1. In this case, we have a choice: Either we can regard
w(z) := z and W(z) := —1 as two separate functions in D* = C, or
we can choose D* to be a Riemann surface consisting of two separate
sheets (which both are isomorphic to C), and let W(z) := z in one
sheet, W(z) := —1 in the other sheet, and thus regard w(z) and @(z)
as one holomorphic function W(z) in D*. For simplicity, we choose the
latter version.
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The idea of Theorem A and B was extended in [1]. Let K (@n(2)/bn(2))
be a continued fraction converging to a holomorphic function wy(z) in
a domain D. Let w,(z) be the value of its nth tail; i.e.,

., n=0,12,...,

(2.2) wy(2) = Z

and assume that all w,(z) are holomorphic in D. Assume further that
all w, () can be continued analytically to functions W,,(z) in a larger
domain D* containing D. This is now the reference continued fraction
(playing the role of K((z/4)/1) in Theorem A and K(z/(1 — z)) in
Theorem B), and it has modified approximants

G (Wa(2), ) = 1) Wa:—(z):WO(z) in D*.

Now, let K (an(2)/bn(2)) be near to K (dn(z)/bn(2)) in the sense that

(an(z) — an(z)) = 0, (bn(2) —bp(2)) = 0 fast enough.

For simplicity, we assume that a,,, Bn, an and b, are holomorphic in our
universe, that is, in the domain D*. This is no severe restriction since
the elements of continued fractions are normally entire functions, in
fact, they are usually polynomials. If D* is a Riemann surface with
more than one sheet (such as in our examples), then this means that
we redefine ELn,Bn,an and b, to be functions in D*: For z € D* we
let for instance a,(z) be the value of the original a,, evaluated at the
projection of z in C.

Under such conditions, the modified approximants S, (W,(z),z) of
K (an(2)/bn(2)) converge locally C-uniformly in a domain Df C D*,
[1]. Let F(z) denote this limit function. If K(a,(z)/b,(z)) converges
to a function f(z) on an infinite set E C D§ N D, then f(z) = F(z)
on E, [3]. Hence, F(z) is a meromorphic extension of f(z) to D§. We
refer to [4] for an illustration of how this turns out for limit k-periodic
continued fractions.

To state this more precisely, we define some convenient concepts:

Definition 1. The reference continued fraction K (a,(z)/bn(2)) is
said to belong to the class Ref (D*,{M,(z)}) for a given domain D*
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and a given sequence { M, (z)} of real-valued, nonnegative functions on
D* (M, (z) = oo is also allowed) if

(i) all @,(z) and b, (z) are holomorphic in D* with all @, (z) # 0 in
D*;

(ii) K (@n(2)/bn(z)) converges in a nonempty domain D C D*, and
all its tail values wy,(z) as given by (2.2) are holomorphic in D,

(iii) all wy,(z) have analytic continuations W, (z) to D*, and

(iv)
k+n

23) ]

j=k+1

W;(z)

—— 1 < M,(2) for all z € D*, k,n € Nj.
by(2) + Wy (2)

Remarks. 1. D* is the universe in which we operate. N denotes the
set of all nonnegative integers, i.e., No = N U {0}.

2. In the rest of this paper, we shall always let w,(z) and W, (z) be
as defined here.

3. There is no problem if we relax the requirements in (i) and (iii)

to be an, b, and W,, holomorphic in the interior of D* and continuous
in D*. So also in the following definition.

Definition 2. The continued fraction K(a,(z)/b,(2)) is said to
belong to the class Near (K (an(2)/bn(2)), {Cn(2)}, D) for a given
domain D, a given continued fraction K (a,(z)/bn(2)), and a given
sequence {C,(2)} of real-valued, nonnegative functions on Df if

(i) all ay,(2) and b, (z) are holomorphic in D§ with all a,(z) # 0 in
Dg§; and

(i)

an+1(2) = Gn41(2) i (s .
(2-4) I;n+1(l)+Wn+1(l) < Cn(z), ‘bn(z) bn( )‘ < Cn( )

for all z € Dj and n € N.

Definition 3. A sequence {f,(2)} of functions is said to belong to
the class Uniconv (D) for a given set D if
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(i) all f,,(z) are defined on the set D(f,(z) = co is allowed), and
(ii) {fn(2)} converges locally C-uniformly in D.

A slightly stronger result than the one in [1] can now be formulated
with the notation introduced above:

Theorem C [1]. Let M(z),7(z),C(z) and r1(z) be continuous, real-
valued, nonnegative functions in the domain D* with r(z) # 0. Further,
let K(an(2)/bn(2)) € Ref (D*,{M(2)r(2)~"}) and K(an(2)/bn(2)) €
Near (K (an(2)/bn(2)), {C(2)r1(2)"}, D), and assume that lim inf|b, (z)
+W,(2)| has positive lower bounds on compact subsets of D*. Then
{Sn(Wy(2), 2)} € Uniconv (D§) where

(2.5) Dj :={z € D*;7r1(z) < min{r(z),1}}.

Remarks. 1. The result in [1] also depended on some conditions
relating M (z) and C(z). These can now be disposed of. Theorem C is
a simple corollary of Theorem 3 to follow.

2. For information on how to treat possible poles of W,,(z) or zeros
of a,(z) we refer to [1].

3. If K(an(2)/bn(z)) converges to some meromorphic function f(z)
in some nonempty domain Dy C D, F(z) = lmS,(W,(2),2) is
meromorphic in D§ and f(z) = F(z) in Dy, then F(z) is a meromorphic
extension of f(z) to D§.

A natural question in connection with Remark 3 above is the fol-
lowing. When/where will K (a,,(z)/b,(2)) converge to a function f(z)
which satisfies f(z) = F(z) in Dy? The next theorem can give an
answer to this question. But instead of basing this on classical conver-
gence, we shall use the more general concept of general convergence.
This concept was introduced in [2], and it is defined as follows: We say
that a continued fraction K (o, /8,) converges generally to the value 9
if its modified approximants

a1 (5] Qp

(2.6) Tn(qn)::E_’_E_i_..._i_ﬁn_’_qn

forn=1,2,3,...
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are such that there exist two sequences {p,} and {g,} from C such
that

(2.7)  limT,(p,) =1imT,(g,) =v and liminfd(p,,q,) > 0.

Here d(... ,...) denotes the chordal metric on the Riemann sphere C.
It is also a result from [2] that if K(«,/B,) converges generally to 9,
then lim 7}, (un) = 1 for every sequence {u,} from C which satisfies
lim inf d(u,, T, (p)) > 0 for some p # 1. Hence, general convergence
is a very natural concept. We also see that if we choose p, = 0 and
gn, = oo for all n, then T}, 11(gn+1) = Tn(prn) = Tn(0), so that classical
convergence to 1 implies general convergence to .

We shall also use the notion of tail sequences for continued fractions:
A sequence {t,}52, of numbers from C is a tail sequence for the
continued fraction K(ay,/By) with all a,, # 0, if

(2.8) tno1=an/(Bn+tn) forn=1,2,3,....

(The interpretation of (2.8) is the obvious one if ¢,_; = 0 or oo, or if
t, = 00.) Clearly then to = T, (t,) for all n. In particular, {W,(z)}
and {wy(2)} are tail sequences for K (a,(z)/b,(2)).

Theorem 2. Let {i,,} be a tail sequence for K (Gn/Bn); all &, #0,
such that liminf |3, + t,| > 0, limsup |t,| < co and

tj

n+m

29 ]I

j=n+1

it

< M, for all m € Ny, where ZMm < 00,

for all n from some n on. Then every continued fraction K(on/Br)
with lim(a,, — &) = 0 and lim(8,, — B,) = 0 converges generally to
some value ¢ := Um T, (t,,), where T, is given by (2.6).

Remarks. 1. In particular, K(&p,/ Bn) converges generally to the
value #; under the conditions of Theorem 2. Comparing (2.9) and (2.3),
we see that this means that K (&, (z)/b,(z)) in Theorem C converges
generally to Wy(z) in

(2.10) Do :={z € D§;r(z) > 1 and limsup |W,(z)| < oo}.
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2. Also, K(an(2)/bn(z)) in Theorem C converges generally in Dy to
the value f(z) := lim S, (W, (2),2) by Theorem 2. If Dy # &, then
F(z) :=1lim S,,(W,(2), 2) in D§ is a meromorphic continuation of f(z)
by Theorem C.

3. The conclusion of Theorem 2 still holds if (o, — &) and/or
(Bn — Bn) no longer converge to 0, as long as limsup|a — &,| and
lim sup |8, — Bn| are small enough.

We are now ready to state the main theorem of this paper.

Theorem 3. Let K (,(2)/bn(2)) €Ref (D*, {M,(2)}) and K (a,(2)/
bn(2)) € Near (K (an(2)/bn(2)),{Cn(2)}, D*) for a given domain D*
and given sequences {M,(z)} and {Cy,(z)} of real-valued, nonnegative
functions on D*. Then {S, (W, (z),z)} € Uniconv (D§), where D§ C
D* is such that

(2.11) Y Cul(2) M5y (2)[ba(2) + Wa(2)| ! < o0,

converges locally uniformly in D, where

k

(2.12) M (2) ==Y Mq(2).

n=0

For the situation in Theorem C this means in particular that we can
reach points where r;(z) = min{1, r(z)} under additional conditions:

Corollary 4. Let M(z), r(z) and Cyn(z) be real-valued, nonney-
ative functions in a domain D* with r(z) # 0, and assume that
M(z) and r(z) are continuous in D*. Further, let K(an(2)/bn(2)) €
Ref (D*, {M(2)r(2)™"}) and K (a,(2)/bn(2)) € Near (K (an(2)/bn(2)),
{Cr(2)r1(2)"}, D*), where r1(z) := min{l,r(z)} for all z € D*.
Then {S,(Wy(z),2)} € Uniconv (Df), where D§ C D* is such that
lim inf |b,, (2) + W, (2)| has positive lower bounds in compact subsets of
D;.

ZCn(z) converges locally uniformly in {z € D§;r(z) # 1},
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and

ZnCn(z) converges locally uniformly in {z € D§;r(z) = 1}.

3. Sharpness. The conditions in Theorem 3 are sufficient condi-
tions. In what way are they necessary for the existence of an analytic
continuation of f(z) beyond D? This is naturally a question of which
reference continued fraction K (ay,(z)/bn(2)) we choose to use. If we
insist on using a certain reference continued fraction, the conditions
are in no way necessary. One has for instance

2 2 2 2 2
log(1+2) = z 11_22 ZITJ’Z %Z 4% 3_6
1+ 1 4+ 1 + 1 + 1 4+ 1 +
for z € D := {z € C;|arg(1+ z) < w}. That is, log(1 + z) = K(a,z/1)
where a, — a :=1/4; i.e., K(a,z/1) is close to K((z/4)/1), and

1 1
12n—1) T T en 1)

a2y, — a4 =

We see that K (anz/1) does not satisfy the conditions for closeness to
K((2/4)/1) in Theorem 3. Still, log(1+2) can be continued analytically
to a Riemann surface with a logarithmic branch point at z = —1.

On the other hand, we could, as an extreme choice, let the refer-
ence continued fraction be the continued fraction K (a,(z)/bn(z)) itself.
Then K(an(z)/bn(z)) inherits all its properties. However, the condi-
tions are necessary in the sense that if we let a,, := 1/4+r™ for some 7,
0 < r < 1, then the modified approximants S, (W (z), z) of K(a,z/1)
diverge for a z € D; (the closure of D} in D*), where W(z) and D;
are given by (1.7):

Theorem 5. Let 0 < r <1 be fized. Then the sequence

(z+r)z  (3+r%)2 (3 +7)2

S (W (2),2) := D SR il

(W(z),2) I+ 1+ +1+W()
formn=1,2,3,...,

diverges for z := 4r/(1 — r)?, where W(2) := —(v/1+ 2z + 1)/2 with
Ryv1+2>0.
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Observe that z = 4r/(1 —7)% € D} in the sheet D*\D since for this
value of z we have

W<z>=—§<¢1+—z+1>:_1<1+’“+1) -

2\1—r 1—r
so that
W) || —ya-r) | _1
1+ W(z) 1-1/1-=7r)| r

4. Proofs. We shall first prove Theorem 2 and Theorem 3.

Proof of Theorem 2. Because of (2.8), we have under our conditions
that £, # oo, t, # 0 and Bn +f, # 0 from some n on. Without
loss of generality, we assume that this and (2.9) hold for all n € Nj.
(Otherwise, we could have first proved convergence for a tail (2.2) of
K (Gn/Br).) We can therefore define

1 n—1 n-—1
(4.1) dn.:mz 11

m=0j=n—m

Bj +1;

forn=0,1,2,....

(We follow the standard convention that an empty sum has the value
0 and an empty product has the value 1.) Then

(4'2) dn|Bn + 2‘En| - dn71|£n71‘ =1

Let 1/2 < r < 2/3. According to [3, Theorem 4.1B| (with D = 1,
p=1-—r<1/2and ¢, = (2 —r)/4), we have that if
(4.3)

Cn 2— = 2—r
n*‘“n < = and n—n S —
o —anl< o0 e T By 0 BB s
from some n on, then the limit
- 1-—
(4.4) lim T(wn)  where Jwy —fa| < 2dnu - i

exists if [[° | @, = 0, where

_ (dn—1|£n—1| +T/2)2
dn|Bn + £n|dn,1|fn,1| +r(2-r)/8

Qn
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This limit (4.4) is independent of the actual choice of {w,}. In our
case it follows by (4.2) that

(1-7)G, +7/4—3r%/8 -
:1_ h frd _ —1]-
@n (4 GCa)Gntr@—ryjs  "here On = duaftn]

We have by (4.1) and (2.9) that

n—1 n ~ n—1
- s
Gn+1:dn|tn|zz H — SZMm+1§Ma
m=0j=n—m 6-7 + tj m=0
where
(4.5) M= M, <o.

m=0

Further, 1 —r > 0 and r/4 — 3r?/8 > 0. This means that [[Q, =0
under our conditions. Further, by (4.2),

1+G,
lim sup d,, = lim sup ~+—~ = A<

|Bn + tn]

since liminf |3, + #,| > 0. This again means that (4.3) holds, at least
from some n on, and the limit (4.4) exists. Moreover, we can choose
two sequences {u,} and {v,} such that

|vn—t~n|<L and |un—vn|>L>0

[tn = tn| < 2%, i

2d,,’
from some n on. By (4.4), it follows that lim T}, (u,,) = im T}, (v,) = ¢
for some ¢ € C. Hence, the continued fraction K (&, /B,) converges
generally to 1. o

To prove Theorem 3, we shall use the notions of canonical numerators
A,, and canonical denominators B, of a continued fraction K (a,/53,).
That is, {A,,} and {B,} are solutions of the recurrence relation

(4.6) X, =0BnXn_1+anXn_2 forn=1,2,3,...
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with initial values A_; =1, Ag =0, B_; =0, By = 1, so that
ar a a, A+ A w

(4.7) S (w) ::E+E+ " 4 Botw  Bp+ Baw

Similarly, we shall use A and B to denote the canonical numerators
and denominators of the kth tail

Xk+1 X2 X+3
(48) 3§(an+k/ﬁn+k) Br+1 + Brtz + Br+s +
of K(an/Br). For later reference, we state the following standard re-
sults which can be proved by straightforward induction using the rela-
tions (4.6) and (4.7). Here {t,,} denotes a tail sequence for K (o, /8B,)-

n

(49 Bu+Buoate = [[(Be+tx)  ifall ty # oo, [6]

k=1
(4.10)
< H Br + tk H (—tk)> if all ¢ # oo, [6]
m=0 k=1 k=m+1
(4.11)
A, =t Z <H Be+tr) [ (—tk)) if all t;, # oo, [6]
= k=1 k=m+1
(4.12) Br(H-l Bry1 BEHD 4 ap s B( 2 ) (induction on n),
(4.13) A = akHB,(Lk“).

In the following, we let An,Bn,ASLk),Br(Lk) and S,, refer to the con-
tinued fraction K (an(2)/bn(2)) and A, B, AP B and S, refer to
K(@n(2)/bn(2))-

Lemma 1. Let K(an(2)/bn(2)) € Ref (D*,{M,(2)}) for a given
domain D* and a given sequence {M,(z)} of real-valued, nonnegative
functions on D*. Then




ANALYTIC CONTINUATION OF FUNCTIONS 697

for all n € Ny and z € D*.

Proof. {Wi(2)} is a tail sequence for K(a,(z)/bn(z)) with all
Wi(z) # oo in D*. Hence, the result follows from (4.10), (4.11) and
(2.3) u]

The next lemma is well known. See, for instance, [12]. We include
the proof for completeness.

Lemma 2. Let A >0, ¢, > 0 and d, > 0 satisfy

n—1

cngA—l—deck forn=0,1,2,....
k=0

Then

n—1

cngAexp(de> forn=0,1,2,....

k=0

Proof. The result is trivially true for n = 0. Assume that it holds for
all n-values up to and including n — 1. Then

n—1 k—1
Cn §A+de<AeXp<Zdj>>
k=0 j=0
n—1

A+ A ((exp(dy) — 1) exp <kzldi>>

=0 =0

k
n—1
Aexp<2dj). i

=0

IN

Lemma 3. Let K(an(z)/gn(z)) € Ref (D*,{M,(2)}) and K(a,(z)
/bn(2)) € Near (K (an(2)/bn(2)), {Cn(2)}, D*) for a given domain D*
and given sequences {M,(z)} and {Cy(z)} of real-valued, nonnegative
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functions on D*. Then

(4.15) — 140 (2)]
ITzy bk (2) + Wi(2)]

a1(2) oxp (25~ CrR)Mi (=)
< o) " ‘ n-1(7) p<2k=2|5k(z)+wk(z)|>

and
|Bn(2)] . — Ci(2)M;_,(2)
4.16 = M*(z)exp | 2 _—
(416 [T, or(=) + Wie(a)] A p< k_lbk(z)+Wk(z)>

for all z € D* and for all n € N, where M} (z) = >}, Mi(2).

Proof. We first prove (4.16). Let k and m be nonnegative integers
with £ < m. Then it follows from (4.12) (suppressing the variable z)
that

(4.17) B = b BT +an BT
Further, { By} satisfies the recurrence relation

(4.18) Byi1 = bry1Br + ary1Br_1.

Multiplying (4.17) by By and (4.18) by B(’H;) 1» and then subtracting
the two equations give

(4.19) BW B, — By BYTD
= (bra1—brs1) Be Bty Fin 2 B TY  Bi—ara B B

Summing equation (4.19) for k = 0,1,... ,m — 1 then gives

m—1
By(,?)Bo — BmBL()m) = Z (bry1 — bk+1)Br(n+k) 1Bt
k=0
m—1 _
+ Z Gkt — ars1)BETY By

k=0
+ dm BB, —aB_1BY .
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Finally, solving for B,, and using the initial values for the B, -sequences,
give the following basic formula:
(4.20)

m—1
Bn =B+ ((bk+1 by 1) BT + (argn — ak+2)3(k+z)_z)3k-
k=0

Dividing (4.20) by Hm+1(b + W;) and using the notation
k)
‘Hf*;’fll bj + W;)

1'[’”+1 b +w;)l

give the inequality
(4.21)
m—1
- ~ Qpy2 — @
Am <AD+Y (|bk+1—bk+1Am+§,) j+ | AL 2) Bk
o Drtz + Wio

Since Lemma 1 also applies to the kth tail of K (&, /by,) (tail as in (4.8)),
we get from (4.14) that

(4.22) kg1 + Wigrp1]A®) < M* for all n, k € Ny.

Further, we have assumed (2.4). Inserting (2.4) and (4.22) into (4.21)

gives
m—1

bmt1 + Wangt | Ap < My, + Z 2Ck41 My, 1Ak
k=0

since A(I'I'H) =0< M and M} , o, <M} , ,, thatis,

Cm <1+ b QCkHM;*k*lc My
m > ¥ k=
k=0 Mz, b1 + Wi

where _
_ orga + Wi | Ak
My '
Observe that M}, _, | < M}, so that M} , /My <1, and we can
use Lemma 2 on the mequahty

m—1

2Ck 1 M}

Cm <1+ -
=0 1061 + Wi
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to obtain
m—1 %
S b1 + Wm+1|A < eXp( 2Ck+1 My, >
Mz, B =0 bk + Wi
and thus,
m—1
B,, ~ . 20,11 M}

m‘.,—| = |bm+1 +Wm+1‘Am < M, exp ( Z #)
[Tz s [br+ Wi o 1Ok1+ Wi

which gives (4.16).

To prove (4.15), we observe that applying (4.16) to the first tails of
the two continued fractions involved gives

B " CpM;
(4.23) _ Bl e <22 M)
[Ti—2 1be + Wi i b+ Wi

where BT(LI) denotes the nth canonical denominator of the first tail of
K(an/b,). Hence, (4.15) follows from (4.13) and (4.23) since a; =
Wo(bl + Wl) by (28) O

These new estimates in Lemma 3 improve the ones in [1, 2, 11].
They are the basis for the proof of Theorem 3:

Proof of Theorem 3. We want to prove locally uniform convergence
of

Suppressing the variable z we have that a solution {X,} of the recur-
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rence relation (4.18) (such as {A,} and {B,}) satisfies
(4.24)
Xn + anlwn = (bn + Wn)anl + aan72

= (b + W) (Xne1 + Wie1 Xnma) + (bn — by) Xes
+ (an - afn))(n 2

= (Xo + WoX_1) [ [ (b + Wi)
k=1

N mz_:l <(bm —B) X1 H (B +Wk))

k=m+1
+ Z <(am - &m)Xm—Z H (I;k + Wk))a
m=1 k=m+1

since @, = m,l(i)m +W,,). For X, = A, wehave A_; =1, A; =0,
so that

An + An—IWn = WO H(Ek + Wk)

k=1
(4.25) 0y <(bm —bm)Am—1 ﬁ (br. + Wk)>
m=2 k=m+1
+ Z <(am - afrn,)félm—2 H (Ek + Wk)> .
m=1 k=m+1

Similarly, for X,, = B,, we have B_; = 0, By = 1, which gives

B, + B, 1W, = H(Ek + Wk)
k=1

(4.26) + zi: ( By f[ (b +Wk)>

k=m+1

+i( B2 ﬁ (Ek-l-Wk))-

m=2 k=m+1
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Hence,
(4.27)  Sn(Wn)

n 7 Am n ~ A
W°+Zm=2(bmfbm) (bkjrwk) 2 (@) L" (reti72)
j— 1

- 1431 (b —b )Hm +Wk +Zm o (Om = am) T sy -, Bt

(b tWi)

This formula was also used in [1].

We shall first see that the four sums in (4.27) converge absolutely in
D§ as n — co. We have by (2.11) that

> CpM;
(4.28) oL A <oo forz e Dy
bk + W]
(where A depends on z), and so, since M}’ , < M}, that
Cr My
Z ETR2 oA forz e Dy,
b2 |bk + Wk|

so that, by (2.4), (4.15) and (4.16),

*

Z‘b M<§:Cm$ O‘M#EXP(QA)
Hk 1 [0k + W] a1 b+ Wi |
a1 2 Co M,
= |—=Wpy|exp(2A ==
‘al | 2
< gWO exp(2A)A < oo for z € Dy,

|Am 2|
Zlam—am\

Hk: 1‘bk+Wk|
_ lar—a1] = |G — | \Am 2]
by + Wil 2 b+ Wl | TTsy' b+ Wil
M*
Py| =2 exp(24)
m—1+Wm—1|

1
- Cm—1 M5,y
exp(ZA)Z |Bm—1+Wm—1|

m=3

<O+ ) Cua
m=3

a
=C1+‘~—1W0
a

< C’ﬁ— WO exp(2A)A < oo for ze Dy,
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7 |Bm 1| m mm—1
b — b | =————— < exp(2A)
2 [Ty [bx + W] Z + Wl

= Aexp(ZA) for z € Dj

and
B, M,
Z |a/m - am‘ | 2| >~ Z m—1>= 2 exp(2A)
Hk 1“’ + Wil ‘bm 1+ W]

< Aexp(2A) for z € Dyg.

Note also that M} is nondecreasing as k increases. Hence, by (2.11),

Z < o0 for z € Dyg.
= +W|

Let E C Dg be compact, and let ¢ > 0 be arbitrarily chosen. Then the
series
e’} CnM*_ 0o Cn
yonMis gy O
n=1 |bn+Wn| n=1 ‘bn+Wn|
converge uniformly in Dj, and there exists an N e N such that
> C

2

This in turn means that to a given ¢, 0 < ¢ < 1, there exists an N € N
such that

- MF
%<6 for all z € E.
N+n N+n

> : Byl
|bN+m - bN+m| N+m
Hk:JrN.H |bk + Wk|

m=1

N
BN,

<g<l1

+ Z |aN+m*aN+m| Nt >
Hk:]\rln+1 ‘bk + Wk|

m=2

for all z € E. Hence, S,(IN)(WN+n) (with the obvious interpreta-
tion) converges uniformly to a holomorphic function in E. Since
SNin(WNtn) = SN(S,(TN)(WN+H)) where Sy is a linear fractional
transformation; this proves the convergence of S, (W,,). O



704 L. LORENTZEN

Proof of Theorem C. Again we suppress the variable z in the compu-
tation. The result follows from Theorem 3 if we can prove that

s CriM;_,
4.29 — " <>
(4.29) Z |br, + Wi

n=1
locally uniformly in Df, where

n—1

1—r— "
(4.30) My =3 Mrt = {M ifr#1,
k=0 nM if r =1.

Clearly (4.29) holds since Y (r1/r)" < oo if r < 1, Y nri < oo if
r=1>r;and > r} < oo if r > 1, and since M (z), r(z), C(z) and
r1(2) are continuous in D*. o

Proof of Theorem 1. With the notation from Theorem 3, we have
bn(2) + Wi (2)| = |1 4+ W(2)|, so that liminf |b,(z) + Wy(2)| > 0 for
all z except at z = 0 in the sheet D*\D. Further, as in the proof of
Theorem C, (4.29) holds if > C,r"M}_; < co where M _, is as given
in (4.30). O

The sufficiency of the conditions (1.11) follows similarly.

Proof of Corollary 4. Again we suppress the variable z in the
computation. The result follows (as in the proof of Theorem C) if
we can prove that

- Cnrt M, 4
(4.31) Z by, + Wiy

n=1

converges locally uniformly in D§, where M} is given by (4.30). We
see immediately that (4.31) holds under our conditions. O

To prove Theorem 5, we shall use the Bauer-Muir transformation: Let
{wn}22, be a sequence of complex numbers (w,, # c0). A Bauer-Muir
transform of a continued fraction K(a,/8,) with respect to {w,} is
then a continued fraction dyg + K (7, /d,) whose classical approximants

71 Y2 Tn
S.(0) =6+ 2= 2 .. ™ forn=01,2,...
O=dot+35 5 445, orm
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are exactly the modified approximants Tj,(w,) of K(an/Bn) (Tn as
given by (2.6)) and Sp(0) = dp = wp. Such a continued fraction exists
if and only if

(4.32) An =y — Wn_1(Bn +wy) #0 forn=1,2,3,....

It can then be written

Az
)\1 aq A1

B1 + wr +52+w2—§—fw0

(4.33) o + K(vn/0n) = wo +

A
agﬁ

+— ...
53+w3—§—2w1 +

(Information on the Bauer-Muir transformation can be found in [7,
p- 25].)

Proof of Theorem 5. The Bauer-Muir transformation with respect to
W, (2) = W(z) = (1 +2)*/? —1)/2 applied to K((1/4+r™)z/1) gives

rz (3 +7)rz (5 +7r?)rz
438 W) Ty + T (= W) + T+ A=W ()
(3 +7r%)rz

S THE- W+

This is a limit periodic continued fraction which converges in D} as
given in (1.7). Its classical approximants are = T,(W(2),2). For
2z =4r/(1 —7)? (in the sheet D*\D), it gets the form

1 4r2 /(1 —r)2 (1 +4r)r2/(1 —r)?
T—r " =) + 0
(1+4r%)r?/(1 —r)?
+ 0 +

(4.35) —

which diverges. This proves the result. O

Acknowledgment. Many thanks to the referee for valuable com-
ments.
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