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HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS
AND REPRESENTATIONS OF SL(2,q)

JOHN GREENE

ABSTRACT. It is well known that the matrix elements in
the principal representations of SL (2, R) with respect to the
appropriate basis are essentially hypergeometric functions. A
parallel theory is presented here for the principal representa-
tions of SL (2, F') where F is a finite field.

1. Introduction. There has been much work recently on special
functions over finite fields. Evans [4] derived analogues for various
extensions of beta integrals over finite fields. Helversen-Pasotto [10]
derived Barnes integral analogues. Koblitz [11] introduced analogues
of hypergeometric functions. An extensive study of many finite field
analogues of orthogonal polynomials was conducted by Evans [6], and a
similar study of hypergeometric functions was conducted by the author
(8, 9].

That this work might be related to representation theory is indicated
by the papers of Helversen-Pasotto [10] and Li and Soto-Andrade [12]
where results follow from properties of representations of GL (2, ¢) and

GL (3,9).

In this paper we demonstrate that, as in the classical case (see, for
example, [16, Chapter VII]), hypergeometric functions over finite fields
arise as matrix elements of certain representations of SL (2).

The organization of this paper is as follows. The construction
of the principal series representations for SL (2,q) as representation
operators is given in Section 2. In Section 3, matrix elements of
these representations are given with respect to a canonical basis.
These matrix elements are described in terms of hypergeometric func-
tions in Section 4 which also contains a description of how prop-
erties of hypergeometric functions are derived from this framework.
Finally, comments, questions and related representations are given in
Section 5.
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Throughout this paper we will use the following notation. Capital
letters A, B,C and Greek letters X,?,... will denote multiplicative
characters of GF (¢). The quadratic character will be denoted by ¢
and the trivial character by €. All multiplicative characters are defined
to be 0 at the 0 element of GF (q).

We define a function ¢ on elements of GF (g) by

1 ifz=0
‘5(”“")_{0 if ¢ 40,

and on multiplicative characters by

1 ifA=c¢
5(’4)_{0 if A+#£e.

Write } to denote the sum over all z € GF (¢) and ), to denote
the sum over all multiplicative characters of GF (¢q). Let ¢ = e2milp,
where ¢ = p™, and let Tr be the trace map from GF (¢) to GF (p).

The Gauss sum of a multiplicative character A is defined by
G(A) = A(z)(™ @,
and the Jacobi sum of A and B is defined by

J(A,B)=> A(z)B(1 - z).

2. The principal representations of SL (2, ¢). For completeness,
we give the construction of the principal representations of SL (2, q).
This material is well known; see, for example, [3, Chapter 38| for
the construction of the character table of SL(2,q) and [14] for an
elementary construction of the irreducible representations of SL (2, q)
from another point of view.

Classically, the principal representations of G = SL(2) are the
irreducible components of the representation given by the action of
linear transformations on functions of two variables. The spaces of
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homogeneous functions are all invariant subspaces, and in most cases
(see [16, Chapter VII]) the restriction of the representation to these
spaces is irreducible. A similar approach works over local fields and
finite fields [7, Section 3.6].

Specifically, let T' be the representation operator on functions of two
variables over a finite field defined by

T(g)f(z,y) = f((z,y)9)
= f(az + cy, bz + dy),

-2

Call a function f(z,y) homogeneous of weight A where A is a multi-
plicative character of GF (q) if

where

flaz,ay) = Aa) f(z,y)  for all a,z,y € GF (g),

and let V4 be the space of all homogeneous functions of weight A. It is
not hard to show [14] that this representation (I" acting on Vy4) is the
representation induced by the one-dimensional representation

s [3 l’/’a] — A(a)

of the subgroup of upper triangular matrices in SL(2,q). An easy
calculation (using Frobenius reciprocity) now shows that if X\ is the
character of T" on V4, then

(M A =14 5(4%).

Thus, T is irreducible so long as A # ¢ or A # ¢. If A = ¢, then the
function 1—6(z)d(y) is invariant and so, in this case, T = 1@ T}, where
1 is the trivial representation and 77 is irreducible. If A = ¢, it can be
shown that V, decomposes into two (¢ + 1)/2-dimensional subspaces,
each invariant under T so, in this case, T' = T5 & T35 where T3 and T3
are irreducible of degree (¢+1)/2. The irreducibility of 7" will not play
a major role in what follows.
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3. Matrix elements of T'. Let V = V4 be the set of homogeneous
functions of weight A. A basis for V is given by

(3.1) B={Vqg—1A(2)d(y), Va— 1A(y)d(z)} U{A(y)X(y/x)}x.

An inner product on V' is

1 -
(f.9) = PR wzyj f(z,y)g(z,y)

(32) = 1 £(1,0g(1,0) + —£(0,1)g(0,1)
1 -
+ ﬁ wz#o f(xa l)g(m, ]-)

The basis B is orthonormal with respect to this inner product. More-
over, T is unitary with respect to this inner product:

(3-3) (T(9)f1,T(9)f2) = (f1, f2)

for any g € SL(2,q) and f1, fo € V.

If we write B = {v1,v2} U {vx}x, then the matrix representation M
of T with respect to B can be written in block diagonal form

v=[ets]

where A is 2 x 2, Bis 2x (g —1), Cis (¢ —1) x2 and D is
(g—1) x (g—1). We are interested primarily in D. With D indexed by
the multiplicative characters, D = (dx,y), then since the vectors {vy}
of B are orthonormal

(3.4) ds,c = (T(9)vc,vB)
(3.5) ds.c

o= ﬁ Z AC(bz + dy)C(ax + cy)AB(y)B(z),
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where g = [‘CL Z] Define K 4(g|B,C) by

(3.6) Ka(g|B,C) =dp,c.

If we replace z by zy in (3.5), the y-sum can be evaluated to give

(3.7)  Ka(g|B,C)= —— ZB YAC(bx + d)C(az + c).

These matrix elements may also be obtained in a manner more
analogous to the classical presentation given in [16, Chapter VII| as
follows. Define the Mellin transform of a function f : GF (¢) — C with
respect to the multiplicative character B via

(39) M= 23 Y B

An inversion formula exists for this transform:

(3.9) f(z) = f(0)5(z) + Y (Mxf)X(x)
If f(z,y) € Va4, define Mpf by
(3.10) Mpf = ﬁZB(m)f(m,l).
Then
(3.11)
f(z,y) = £(0,1)A(y)3(x) + £(1,0)A(=) (v) Y (Mxf)X(2/y)
1 1

F(1,0)vr + = (0, L)va + g(fo)vx

qg—1

Thus, the inversion formula (3.11) expressed f € V in terms of the basis
B. We now factor the Mellin transform through the representation:

MgT(9)f = Mpf(az + cy,bx + dy)

:Ll B(z)f(az + ¢, bz + d).
q_ x
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Applying (3.11) to this gives

MyT(g)f = ——B@AB(=b)1(1,0) + — B~ AB(@)f(0.1)

+ ﬁ > (Myf)> B(x)AX(bz + d)X(az + c),

(3.12)
MpT(g)f = q_%f(l,O)B(d)E(—b) + q%lf(o, 1)B(—c)4B(a)
+ ) (Mxf)Ka(g|B,X).

This formula may be compared to [16, p. 361, 7, p. 161].

ab
cd

be evaluated in terms of Jacobi sums or § functions. These evaluations
are given in Table 1.

If any of the entries of g = [ } are 0, these matrix elements can

TABLE 1.
g KA(g|B,C)
1[5l b#0 A1 ABC(a)BC(-b)J(AC, BC)
2 [ 54 AC”(a)3(BO)
3 [01).] c#0 AL ABC(a)BC(c)B(~1)J(B,C)
4 [_{pel, a#0  LABC(a)BO(-b)C(-1)J(ABC,C)
5 [ 1ol AC2(b)e(~1)8(ABOC)

(=]
|
2o
1
h
&
Q
&
Sy
Q
=
=
®
b
Q
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4. Matrix elements and hypergeometric functions. When
F is the field of real numbers, the matrix elements in the analogous
representations of SL (2, F') are integrals rather than sums, and these
integrals can be written in terms of hypergeometric series [16, Chapter
7]. When F is a locally compact topological field, Gelfand et al. [7,
p. 161] define hypergeometric functions over F' as being the matrix el-
ements in the corresponding representation. Hypergeometric functions
over finite fields were introduced in [11, 8]. In view of the above, it is
not surprising that these functions are related to the matrix elements
given in (3.7).

The hypergeometric function was defined in [9] as
A, B BC(-1 — _
1) o [P 2| = e Y BwBCn - a6 - o)
a4 y

which is to be compared with the integral representation for hyperge-
ometric series [13, p. 47]. When none of a,b,c or d is 0,

ad

be |’

(4.2)
q J— J—

dp,c =Kal(g|B,C) = ﬁABC(—d)B(b)C(C)zFl {

which arises after the change of variable z — —dz/b in (3.7). Prop-
erties of hypergeometric functions can consequently be deduced from
properties of the representation 7' or, more directly, from the matrix
elements K. We now derive several such properties from this point of
view.

¢, B
ABC

As a first example, let

and let vg = AB(y)B(z) € B. The action of gy on vp is given by
T'(go)ve = AB(—1)v4g. As a result,

Ka(ggo | B,C) = (T'(990)vc,vB)
— AC(-1)(T(g)vzv5)
— AC(~1)K (g | B, A0).
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Also, T(gy " )vg = B(—1)v4p. Since T is unitary, we have

9og)vc, vB)
9)ve, T(go ' )vn)

(4.3)

(-1)(T'(g9)ve, vap)

(—1)Ka(g[AB, C).

Composing these results gives an additional relation

Ka(9/B,C) = BO(=1)Kal(gy '990 | AB, AC).

In terms of hypergeometric functions, we now have

B, C |ad] _ be B, AC|bc
2 [ ABC %] _A(l)B<@>2F1 [ BC E}

be AB, C |bc
—A<‘1)C(m>2ﬂ[ oﬁm]

be AB, AC |ad

_ABC<E>2F1[ A E].
Setting ad/bc = = and relabeling gives

A, B — A, AC |1
BC, B |1
(4.4) = ABC(-1)B(z)2F1 [ B ;]
— BC, AC
Clwun [P0 0]

Another set of transformations can be arrived at by the somewhat
artificial method of reordering the terms in T'(g)ve - Up. In particular,
T(g)vc -vp = AC(bx +dy)C(az +cy)AB(y) B(z) is the product of four
functions and these functions can be ordered in 24 ways. Upon sum-
ming over all z and y, these identities give 24 transformations for the
kernels and, hence, for the hypergeometric function. These 24 transfor-
mations correspond to Kummer’s 24 solutions to the hypergeometric
differential equation. The 24 permutations break up naturally into 6
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groups of 4 permutations, and, in fact, (4.3) is the resulting list of
transformations from the ordering

(AC,C, 4B, B}, {AC, T, B, AB}, {C, AC, 4B, B}, {C, AC, B, AB).

The entire list of 24 transformations can be obtained by composing the
transformations in (4.3) with those that arise from the list

(AC,C,AB,B}, {4B,B,AC,C)
(4.5) (AC,AB,C,B}, {C,B,AC, 4B}
(AC,B,C, 4B}, {0, 4B, AC,B).

We now derive one such identity in depth. We have

KA(g‘Ba C) =

S
3
S

&
&

1 _
q z7y
1 _

- > AC(bz + dy)AB(y)C(ax + cy) B(x)

= AB(—l)AC(b)U(c)ﬁ Y AC(z + %y)

: E(—yﬁ(%m + y> B(a).

The functions AC(y)AB(z) and C(y)B(z) both live in the space of

homogeneous functions of weight C'B. In fact, these are the basis
functions v4p and vp in that space. With

| 0 1 |1 a/e
gl - |:l d/b:| a'nd 92 - |:0 l :| Y

Ka(g|B,C) = (T(9)vc,vB)
= a(T(g1)van, T(g2)vp) in Vg
= a(T(95 ' g1)van,vE) inV g
= aK5(95'91 | B, AB),

we have

where « = AB(—1)AC(b)C(c). Table 2 gives the list of transformations
obtained from (4.5) by this method.
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TABLE 2.
Order of
Terms Kernel a g1 g2
1 AC,C,AB,B Ka(gy 91 |B,C) 1 [ 221 1 oY ]
2 AB,B,AC,C K-—(g,'g1|C,B) 1 [ 2O 7 [ @b
y Dy ) 2a\9gz 91 ) 01 cd
- _ =1 0o 1 la/c
3 AC,AB,C,B K_g(9; 01| B,AB) AB(-1)AC)C(e) [1),),] 1]
- - _ - = la/c 0o 1
4 T,B,AC,AB Kgu(s, 91| AB,B) AB(-1ACKHC(e) [ /7] [°) )]
P 1 =5 = 1b/d 0 1
5 AC,B,C,AB Kapc(g;'9r | AB,B) AB(-DACC(a) [ ""1 [,
= = =5 — Vi 0o 1 1b/d
6 C,AB,AC,B Kzpglg; o1 | B,AB) AB(-)AC(C(@) [ ] [1""]

Identities: a; K; = o K

There is an obvious pairing 1 — 2, 3 — 4, 5 — 6 in Table 2. These
correspond to the transformation

(4.6) QFI{A’ gx]

= C(~z)CAB(1 — z)2F1 [B’ %‘w} .
When composed with the third transformation of (4.4), this transfor-
mation becomes

A,B}

(4.7) oFy [ ol = C(-1)CAB(1 — z)Fy [CZ’ CB m] ,

c

a good analogue for Euler’s transformation [13, p. 60]. The transfor-
mations (1) — (3) — (5) are

(148) -
B [* L] = Ba-ann [ 215
= B(~1)CA(1 — z)C(x)2F1 [E’ g ﬁ}

In all these formulas, we are assuming that none of a,b,c and d are 0
and ad — bc = 1, so these transformation hold provided = # 0 or 1.
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Since T is a representation operator,

(4-9) M(gl)M(gz) = M(glgz)-

Calculating the ¢j'th entry on both sides or, equivalently, applying
formula (3.12) to Mp(T(g1)T(g2)f(x,y)) gives

KA(glg2 | B,C) = ZKA(gl ‘ BaX)KA(g2 | X,C)

1 —— _
+ ﬁAB(al)AC(dz)B(fcl)C(Cz),
where
e b1 _ | a2 b2
e AR

This result, in conjunction with the special cases listed in Table 1, will
give additional identities for hypergeometric functions.

For example, suppose a # 0 and consider the LU factorization

a b |1 Of|a b

c d| |cf/a 1|0 1/a|’
Applying formula (4.10) to the appropriate special cases in Table 1
gives

K4(g| B,C) = B(—c)C(~b)ABC(a)

(4.11) . ; B ——
CEE ZXIJ(B,X)J(AC, XC)X(~be),

provided be # 0. In terms of the hypergeometric series,

C, B |ad
2 1[ ABC E}

= BC(—bc)ABC(—ad) > J(B,X)J(AC, XC)X(~be),
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or

c, B
(4.12) 2F1[ ABCx]

— ABO(2) A(1L — 1) ——— 3" J(B,X)J(AC, XC)X(1 — ).

Composing the second identity in (4.8) with the first in (4.4), when
applied to the left hand side of (4.12) gives

AC(-1)A(1 — 2)ABC(z): F [F’ c ‘1 - :v]

= A(1-x)ABC(x q—l ZJ J(AC,XC)x(1 - 2),
(4.13) 2F1[A o ] q—l J(A,%)J(BC, BX)X(x),

provided z # 0 or 1. Thus, all kernels and, hence, hypergeometric
functions, may be written in terms of Jacobi sums. This formulation
of hypergeometric series is most analogous to the series definition [13,
p. 45].

In [13] the identity

an [ a] o ][
SR IR AT

was used to derive the Barnes integral analogue

(4.15) —ZG (AX)G(BX)G(CX)G(DX)

_ G(AB)G(AD)G(BC)G(CD)
B G(ABCD)

+q(q—1)AC(-1)6(ABCD).
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When (4.14) is combined with Table 1 and formula (4.10), the result is
1

(4.16) =

> J(Ax, BX)J(AC, ACX)Xx(-1) = A(-1)J(C, BC).

This formula, which is equivalent to (4.15) is an analogue of Gauss’s
evaluation [13, p. 49] and can be written
A, B 1] C(-1)

= J(B, AC).
. ( )

(4.17) By [

We close this section with two examples of orthogonality relations
arising from the representations of SL (2, q). First, since T is unitary
and B is an orthonormal basis,

(4.18) M(g)M(g) =L

Equating entries in region D of M gives
(419) ZKA(Q‘Bax)KA(mCaX)
X

— 5(BC) — #BU(—d/b) - rllBé(—c/a).

In terms of hypergeometric series,

(4.20) ZX:?Fl[M Ang 2F1 [X’ Agx‘w]

2
q—1 — q—1 qg—-1—
=|——) (BC) - — BC(x),

< q > (BO) g q? (@)

where z # 0 or 1.

Another result arises from the following orthogonality property [16,
p. 45]. If S and T are nonequivalent irreducible unitary representations
of a compact group G of dimensions d; and d; with matrix elements
sij(g) and t;;(g), then

/ 553(9)tmn (9) dg = 0,

/ 513(9)5mm(9) dg = di

0i,m0jmn.
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In our case, T acting on Vj is irreducible provided A? #¢and T on
V4 is inequivalent to 7" on Vg provided A # B. Consequently,

1

(4.21) 4|SL( 1

> Kal(g|B,C)Kp(g|E, F)
g€ESL (2,9)

provided A% # ¢, D? # ¢ and AD # ¢. A hypergeometric series result is
obtained from (4.21) by separating the summation into cases depending
on whether an entry in g is 0. After a lengthy calculation, we have

(4. 22)

C, B F, BCF

q—
_ 1 _
= Eé(CF) — q—26(ABC) — q—ZCF(—l)é(BC)
1
B RS
-[J(B, AC)J(BCF, Ac’ F)+ J(AC,BC)J (AC F,BC)
+ J(B,C)J(BCF,F)+ J(ABC,C)J(ABC, F)).
In the case where C' = F, this becomes, after relabeling parameters,
(4.23)
1 A, B ]I —4 1
1 oFy [ c ] m q—2[25(A)+6(C)+6(B)
+36(CA)+25(CB)+6(AB)
= (q—1)5(A)6(B)—(q—1)6(A)5(C)
~ (¢=1)8(B)é(C)~(g—-1)3(AB)5(CB)),

provided C' # AB and C # ¢AB.

A hypergeometric series can be simplified if any of A, B,AC or
BC is trivial. If we ignore these cases,

(4.24) q%lz gx] - + —(5(C) + 8(AB)),

qlg—1) ¢

q—4 1
2

A
2 [
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provided A, B, AC, BC,CAB and ¥C AB are all nontrivial.

5. Remarks. As indicated in Table 1, K 4(g|B,C) reduces to a
Jacobi sum or a delta function if any of a,b,c or d is 0. If none of
a,b,c or d is 0, the kernel will still reduce for the right values of the
parameters A, B and C. In particular, from

(5.1) Ka(g|B,C) = ﬁ ZAC(I):E + dy)C(az + cy)AB(y)B(z)

it follows easily that K reduces to a Jacobi sum if any of AC,C, AB or
B is the trivial character. This implies that

A, B
Al 24

reduces in case A =¢, B =¢, A= C or B = (. These formulas are
given in [9, 3, 16].

Quadratic transformations for hypergeometric functions are given in
[8, 9]. The conditions for the existence of a quadratic transformation
translate into the conditions AC = C, AC = AB, AC = B, C = AB
or C = B for Ka(g|B,C). In each of these cases, two terms in the
sum in (5.1) can be combined to obtain a character evaluated at a
quadratic form. Completing the square now gives rise to the quadratic
transformation. It would be interesting to see a more representation-
theoretic treatment of these transformations.

The orthogonality relations given in (4.20) and (4.22) are analogous
to orthogonalities for certain orthogonal polynomials. In the case of
(4.20), the analogy is with Krawtchouk polynomials. The Krawtchouk
polynomials may be defined by [2, p. 161]

n

(5.2) Kn(z) = (-p)" [N]2F1 [_w’ N %]

and satisfy the orthogonality relation [2, p. 161]

(5.3) Y Kn(x)Kn(z)

N [N
z=0
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In our case, the normalization of hypergeometric series differs from the
classical case. An appropriate analogue for Krawtchouk polynomials in

our normalization is

H

ol
It can be shown [9, Corollary 3.21] that
J(L,N) {N, X 1}
4,21'71 -1 .
J(L,X) Lip

The two sides of (5.5) are equal provided X, L and N do not take on
certain values; we will not worry about such details here but concentrate

on the general form of the resulting calculations. Analogous to the right
hand side of (5.3) is

X,

==

(5.4) Kn(X) = N(—p)2F1 [

(5.5) Kn(X) = N(-p)

ZM p)2f1 [ u 1] N(—p)J(L’N)

By transformations (4.6), (4.8) and (4.4), this sum can be written

e (e e [ 5]

p
[N ond]

So by (4.20), we have

ZKM X)J (L, X)X(~p)LX(1 - p)

— <%> J(L,N)N(—p)N(l — p)5(MN) + extra terms
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which we contrast with (5.3).

For (4.22), the analogy is with Jacobi polynomials. Analogous to
[13, p. 254],

(a,B) = n+o _l—i—x " -B-n, -—n ‘xfl

is

(A,B), \ 1+ BN, Njz—1

The orthogonality relation for Jacobi polynomials is [13, p. 260]

(5.9) / "1 = 2)*(1 4 2)f P (2) P () d

-1
20+A+1 Fl+a+n)T(1+8+n)
l+a+B+2n) nll'l+a+pB+n)

Omn-
On the other hand,

341 - 2)B(1 + )PP (2) PP (2)

BN, N w—l]

= MN(2)) A(l—2)BMN(1+ )2 Fy [ Alz+1

g | BM, Mz —1
2471 Ax—l—l

= A(-1)AB(2) > A(y)ABMN(1 — y)2 Fy [
b

[P 4] - S, [ 7

BN, N
Ay]

[BM,

N

'2F1

Using
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(which again holds provided A, B and N do not take on certain values)
and (4.6), we have

(510) > AQ - 2)B(1 + )P ()PP (x)

- A(—l)AB(2)w22F1 [N’ W‘y]

G(N)G(ABN) A
M, BM
-2k [ A ‘y}
q-—1 G(AN)G(BN) _, . —
= TA(—l)AB(2)W6(MN) + extra terms,

which we contrast with (5.9).

It is not surprising that the classical orthogonalities (5.3) and (5.9)
can also be derived from a representation-theoretic approach [15, 16,
p. 162].

Another natural basis for V4 is given by
(5.11) B' = {A(y)5(z)} U {A(z)¢™ /).

If we change the inner product in (3.2) to

1 -
5.12 f7g = 7 fxaygm7y7
(5.12) ( >q(q71)§( )9(@,y)

then the basis B’ is orthogonal and orthonormal except for the vector
A(y)d(z). With respect to this basis, we have

l —
) Z A(am + cy)CTr (u(bw+dy)/(az+cy))A(m)chr (vy/z)
wa

duU:—
q(g—1

)

taking y to xy and replacing a + cy by x if ¢ # 0 we have

%CTr((udJrva)/c) S, Alz)¢Tr @/ w/atvn) if ¢ o£

. Ay =
(5 13) ) { A(a)(Tt (Ub/a)é(’l) _ ud/a) if c=0.

Thus, in this basis the matrix elements of the principal series repre-
sentations are essentially generalized Kloosterman sums and represent
analogues of Bessel functions (see [6] and compare with [7, p. 160]).
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The irreducible representations of SL (2,¢) divide up into two cate-
gories: the principal representations discussed in this paper and the
discrete representations. Gelfand et al. [7, p. 185] give an operator
formulation for the discrete representations:

(5.14) Ta(9)f(z) = Ka(glu,v)f(x),
z#0
where
(5.15)
—(Tr (dutav)/c) ZZE:v/u ¢~ Tr((/b)(uzt0/2)) A ()
ifb#0
Ku(glu,v) = !
alghv) A(d)CTE (edu) 5y — d2y)
if b= 0.

In this expression A is a multiplicative character of GF (¢?), z €
GF (¢%), 2 = 29 and the sum is over all z € GF (¢?) for which
2Z = v/u. To show that (5.14) and (5.15) define a representation is
itself a rather involved calculation. A study of this representation would
be interesting. Possibly, it would tie in with quadratic transformations.

There are two obvious representations defined on the subgroup of
upper triangular matrices in SL (2, q):

Ti(9)f(z) = f(z +b),  To(g)f(z) = ™) f(a).

These may be combined to give a representation for the Heisenberg
group

1 a b

(516) G= g = 0 1 ¢ a, ba ceGF (q)
0 0 1

via

(5.17) T(g)f(x) = ™ H0 f(z + a).

A simple calculation shows that 1" is an irreducible representation of
G.
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The matrix elements for the classical analogue of (5.17) are related
to confluent hypergeometric functions (see [16, Chapter VIII]). If we
define a basis B for the set of all functions from GF (g) to C by

(5.18) B = {d(z)} U {X(2)}x,

then the matrix elements of d4 g of T' with respect to B are

(5.19) K(g|A,B) = ﬁZZ(m)B(w—i—a)g‘Tt(“%)_

Confluent hypergeometric functions over finite fields were introduced
in [8, 7.35]. They may be defined by

620 1| ple] = @B T AwABQ - e,

Thus, the change of variables z — —az in (5.19) and gives

AB(—a)

(5.21) K(g|A, B) = 1“

A
¢ Oy [ZB ‘GC} )

provided ac # 0.
From A(z)B(z + a) = B(x + a)A(z), we obtain

(5.22) K(glA, B) = K(¢'| B, 4),
where
1 —a b—ac
g=10 1 c
0 0 1

In terms of hypergeometric series,

(5.23) 1Fy [g ac] = B(-1)¢" @, py [AB _x] |

| B

an analogue for Kummer’s ; Fy-transformation [13, p. 125].
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From
1
K(g192|A, B) = W(’I‘r (b1+b2—a101)A(_a1)B(a2)
(5.24)
+ZK(91\A7X)K(92\X,B)
X
and
1 a O 1 0 1 a ac
0 1 0 01 ¢|=[01 c|=g9
0 01 0 01 0 0 1

it follows that
1 _

WA(_G)E(C) zX: J(Z, X)G(B)_()X(ac),

Changing X to BX and converting to hypergeometric series, gives

(5.25) K(g|A,B) =

(5.26) 1F) [g ‘x] — B(_1)g—“<w># S J(A, ABX)G (V)X (2).

The idea of using group theoretic or representation theoretic methods
in relation to special functions is highly developed (see [16, 1] for
extensive bibliographies in these areas). Given the strength of the
analogy between the calculations in this section and the previous one
to the classical case (F = R or C), it is to be expected that much of
this theory will carry over to special functions over finite fields.
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