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MATRIX TRANSFORMATIONS OF
CLASSES OF GEOMETRIC SEQUENCES

C.R. SELVARAJ AND SUGUNA SELVARAJ

ABSTRACT. For any fixed t satisfying 0 < ¢t < 1, let
G+ denote the set of all sequences which are dominated by
a constant multiple of any sequence {r™} with r < ¢. In this
paper we characterize three kinds of matrix transformations:
(i) those from Gt to the convergent sequences, (ii) those
from G; to the null sequences, and (iii) those from G to
the bounded sequences. Also, the classes of three well-known
summability methods are investigated as mappings on Gy.

1. Introduction. If v is a complex number sequence and A = [ay, k]

is an infinite matrix, then Au is the sequence whose nth term is given
by

(Au), = Z AnkUk-
k=0

The matrix A is called an X —Y matrix if Au is in the set Y whenever
wisin X. In [4] Selvaraj introduced the set G; for any fixed ¢ satisfying
0<t<las

Gy ={u: u, = O(r") for some r € (0,t)}

and gave the characterization as follows:

Theorem 1.1. The sequence u is in Gy if and only if

|1/k:

(1) lim sup |uy, <t.
k

In Section 2 we investigate G; — ¢, Gy — ¢y, and G — [°° matrices.
The characterizations of such matrices are established in terms of their
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rows and columns. Section 3 examines G; — ¢, Gy — ¢y and Gy — [*°
mapping properties of the classical summability methods of Euler-
Knopp, Noérlund, and Borel matrices.

2. Matrix transformations of G; into c, ¢y and [*°. First we will
prove the necessary and sufficient conditions for a matrix to be a Gy —c¢
matrix. In order to characterize such a matrix, we need the following
preliminary result.

Lemma 2.1. Let x be a complex sequence such that, for any u € Gy,
ZZOZO Un Ty converges. Then for each € > 0 there exists a constant

B > 0 such that, for all k, |zi| < B(1/t + ¢)*.

Proof. Suppose the conclusion of the lemma is false. This implies
that there is an € > 0 so that for every B > 0 there exists k = k(B)
satisfying

(2) |xk,>B<%+s>k.

We now choose an increasing sequence {k(i)}°, as follows. Choose
k(0) satisfying |zro)| > 0. After selecting k(p) for all p < i, we
choose k(i) as follows. For N = k(i — 1), there exists a constant
B = maxg<;j<n |z;(t/(1 + €t))?| such that

1 J

Let B’ = B+ 1. Now we can find k(i) such that

k(i)
1
(4) |zk@iy > B (; + 5) )

1 k(s)
(5) |ka(i)| > <Z +8> .
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This k(i) > k(i — 1) because, if not, k(¢) < N and hence, by (3),
|zk(iy| < B'(1/t + £)F() which would contradict (4).

Now consider the sequence u given by

t k(i)|mk(-)\ . . .
uj = <1+6t> -, if j=k() fori=1,2,...,

0, otherwise.

It is obvious that v € G;. But, for each positive integer m,

k(m)
Z U;T; > m,
§=0
using (5). Thus, we have a contradiction to the hypothesis. o

Theorem 2.1. The matriz A is a Gy — ¢ matriz if and only if
(i) each column sequence is in ¢ and

(ii) for each € > 0 there exists a constant B > 0 such that
|ank| < B(1/t +¢€)F for all n and k.

Proof. First assume that A satisfies both the conditions of the
theorem and let u be a sequence in Gy, say |ux| < Ms* for some
s € (0,t). Choose ¢ > 0 such that ¢ < 1/s — 1/¢t. Then we have
|ank| < B(1/t + €)* for all n and k. Since, for each k, lim, a,, = Ly,
we have |Ly,| < B(1/t+¢)* for all k. Also, we can find a positive integer
l satisfying

0o k
1 €
(6) 2B kgil |uk| (E + E) < 5

This is possible because the geometric series Y - s¥(1/t + £)* con-
verges. Also, by condition(i), we can find an N such that for k£ =
0,1,...,0—1,

€

5 for n > N.

(7) @k — Li| Jug| <
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Now, for n > N,

‘ (A’U,)n — Z ukLk
k=0

-1 o0

< Z |ank — Lg| Jug| + Z \ank — L |ug
k=0 k=l

<é€

using (6) and (7). Thus, we have proved that the sequence {(Au),}
converges to Eio:o ug Ly; this series converges. Hence, Au € c.

Conversely, if A is a Gy — ¢ matrix, then the basis sequences {(5&“}210
are mapped into c¢. Thus, condition (i) holds.

Suppose that condition (ii) does not hold. Then there is an £ > 0 so
that for every B > 0 there exist n = n(B) and k = k(B) such that

(8) || >B<%+5>k.

As G, is in the domain of the matrix A, by Lemma 2.1, for each j
there exists B(j) > 0 such that |aji| < B(j)(1/t + €)* for all k.
So, for j = 0,1,...,N, we can find B'(N) > 0 satisfying |a x| <
B'(N)(1/t + ¢)* for all k. Since each column of the matrix A is
bounded, for k =0,1,..., N, there exists a constant M’(N) such that
lajk] < M'(N)(1/t + €)* for all j. Thus, given any N there exists
M = M(N) > 1 such that

(9) laju| < M(1/t +¢)*, for j < Nork<N.

Now we choose increasing sequences {u(n)}>2, and {v(n)}$e, as
follows. Choose u(0) and v(0) such that |a,(g),.(0)| > 0. After selecting
u(p) and v(p) for all p < 4, we choose u(7) and v(i) as follows. For
N = u(i — 1) + v(i — 1), there exists M > 1 such that for j < N or

k <N,
(10) jaji| < M(L/t + )"
using (9). Let H = M + i. Now we can find u(i) and v(i) such that

(11) |y o] > H(1/t +€)*@
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using (8). Thus,
(12) | @iy 0(iy] > i(L/t + ).

This (i) and v(i) each exceed u(i — 1) +v(i — 1) because, if not, either
u(i) < N or v(i) < N and hence, by (10), |ayg)v@)| < M(L/t + )
which would contradict (11).

Now consider the sequence z given by

v(1)
3 el s .
£y = (1+8t> , fk=v()fori=1,2,...,

0, otherwise.

It is obvious that € G;. Define a matrix A’ by a};, = anrzi. For
any u € ¢, we have xu € G;. Since A is a G; — ¢ matrix, it follows
that A’ is a ¢ — ¢ matrix. But for each positive integer m, we have
|a! (myl > m by (12). This contradicts that A" is a ¢ — ¢ matrix.

u(m),v

We state below two theorems on the characterization of G; — ¢o and
G — [*° matrices. The proof of Theorem 2.1 can be easily applied to
these two theorems.

Theorem 2.2. The matriz A is a Gy — co matriz if and only if
(i) each column sequence is in cy and

(ii) for each € > 0 there exists a constant B > 0 such that
|ank| < B(1/t +¢€)* for all n and k.

Theorem 2.3. The matriz A is a Gy — [*° matriz if and only if for
each € > 0 there exists a constant B > 0 such that |ani| < B(1/t +¢)*
for all n and k.

In [2] Jacob derived similar characterizations of the above matrix
transformations using the topological properties of the spaces G;.

3. Well-known summability mappings on G;. In this final
section we shall apply the results of Section 2 to find the necessary and
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sufficient conditions for some well-known matrix methods to be G; — ¢,
G: — ¢p, and Gy — [*° matrices.

The Euler-Knopp means [3, p. 54] are given by

n _ oaAn—k.k
Evln, k] = <k>(1 r)* 7 r, if k< n,
0, if k> n,

where 7 is any complex number. In the following theorem, we shall
consider the Euler matrices F, with only real values of the parameter
.

Theorem 3.1. The following statements are equivalent:
(i) rel0,2/(1+1)];
(ii) E, is a Gy — ¢ matriz;

(i) E, is a Gy — 1°° matriz.

Proof. When r = 0, the matrix E, has all ones in the first column
and zeros elsewhere. So, by Theorem 2.1, E, is a G; — ¢ matrix. If
0 <r <2/(1+t), then a simple calculation shows that |1 —r| < 1—rt.
Thus, for any z € Gy, say |zx| < Mu* where u € (0,t), we have

[(Erz)n| < M1 — 7|+ ru]™.

Now |1 — 7| + rt < 1 implies that E,.z € ¢y and, hence, E, is a G; — ¢
matrix. We have shown that (i) implies (ii).

The fact that (ii) implies (iii) is obvious from the set inclusion ¢ C I*°.
Next, to see that r € [0,2/(1 + t)] whenever E, is a Gy — [*° matrix,
suppose r < 0. Then the first column sequence {(1 — )"}, is
not bounded. Consequently, by Theorem 2.3, E, is not a Gy — [*°
matrix. Now, suppose that » > 2/(1 + t). If we choose u satisfying
2t/[r(1+t)] < u < t, then {z}} = {(~u)*} € G; and

Bl = |13 () (- 0t

k=0
=r—14rul™
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Since 7 — 1 + ru > 1, it follows that E, is not a G; — [*° matrix. o
It is easy to see that the following result is also true.
Corollary 3.1. E, is a Gt —cy matriz if and only if r € (0,2/(1+t)].

The Norlund mean Np is represented by a lower triangular matrix in
which

where P,, = ZZ:O pr and p is a nonnegative sequence such that py > 0.

Theorem 3.2. Let Np be a Norlund matriz.
(i) Np is a Gy — co matriz if and only if lim,, p, /P, = 0;
(i) Np is a Gy — ¢ matriz if and only if each column sequence
converges;

(ili) Np is a Gy — 1> matriz for all p.

Proof. (i) If lim,, p, /P, = 0, then Np is a regular matrix and thereby
maps G; into cy. Conversely, if Np is a Gy —cy matrix, then by Theorem
2.2, the first column is a null sequence.

(ii) Since the absolute row sums of the matrix Np are equal to 1 and
1/t > 1, the second condition of Theorem 2.1 is always true. Hence,
the result follows.

(iii) It is obvious that the condition of Theorem 2.3 is satisfied by
Np matrices. ]

Fricke and Fridy [1] introduced the extended form of Borel matrix by
the following definition. For any real number §,

Bs[n, k] = e ™ (nd)k/k!
for k=0,1,...,and n =0,1,... . When é = 0, the matrix is defined

by
Bo[n, k] = e /!, for all n and k.
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Theorem 3.3. The matriz Bs is a Gy — cg matriz if and only if
d > 0; also, Bs is a Gy — ¢ matriz for all §.

Proof. 1t is known [4, Table 3.2, Theorem 3] that if § > 0 then By is
a Gy — ! matrix, whence Bj is a Gy — ¢ matrix. Conversely, suppose
that § < 0. In the case of § < 0, we have Bs[n,0] = e~"" converging to
1 as n — o0o. Thus, the first column of By is not in ¢y. Therefore, Bs
cannot be a Gy — ¢y matrix. Similarly, if § = 0 then the first column
converges to 1/e so that Bs is not a G; — ¢y matrix.

Now, in order to show that By is a Gy — ¢ matrix for all §, it is enough
to consider the cases 6 < 0. When § < 0, the preceding arugment shows
that the first column of Bj is in ¢. When § = 0, for each k > 1, Bs[n, k]
converges to 1/(kle) as n — oo and, when é < 0, for each k > 1, Bs[n, k]
converges to zero as n — oo. So, in both cases, Bs[n, k] < (1/t + ¢)*
for any € > 0. Thus, both conditions of Theorem 2.1 are true. Hence,
Bs is a Gy — ¢ matrix. a
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