MATRIX TRANSFORMATIONS OF CLASSES OF GEOMETRIC SEQUENCES

C.R. SELVARAJ AND SUGUNA SELVARAJ

ABSTRACT. For any fixed t satisfying 0 < t < 1, let G_t denote the set of all sequences which are dominated by a constant multiple of any sequence $\{r^n\}$ with r < t. In this paper we characterize three kinds of matrix transformations: (i) those from G_t to the convergent sequences, (ii) those from G_t to the null sequences, and (iii) those from G_t to the bounded sequences. Also, the classes of three well-known summability methods are investigated as mappings on G_t .

1. Introduction. If u is a complex number sequence and $A = [a_{n,k}]$ is an infinite matrix, then Au is the sequence whose nth term is given by

$$(Au)_n = \sum_{k=0}^{\infty} a_{nk} u_k.$$

The matrix A is called an X - Y matrix if Au is in the set Y whenever u is in X. In [4] Selvaraj introduced the set G_t for any fixed t satisfying 0 < t < 1 as

$$G_t = \{u : u_n = O(r^n) \text{ for some } r \in (0, t)\}$$

and gave the characterization as follows:

Theorem 1.1. The sequence u is in G_t if and only if

$$(1) \qquad \qquad \limsup_{k} |u_k|^{1/k} < t.$$

In Section 2 we investigate $G_t - c$, $G_t - c_0$, and $G_t - l^{\infty}$ matrices. The characterizations of such matrices are established in terms of their

Copyright ©1993 Rocky Mountain Mathematics Consortium

Received by the editors on October 25, 1991, and in revised form on December 26, 1991.

AMS Subject Classification. 40.

rows and columns. Section 3 examines $G_t - c$, $G_t - c_0$ and $G_t - l^{\infty}$ mapping properties of the classical summability methods of Euler-Knopp, Nörlund, and Borel matrices.

2. Matrix transformations of G_t into c, c_0 and l^{∞} . First we will prove the necessary and sufficient conditions for a matrix to be a $G_t - c$ matrix. In order to characterize such a matrix, we need the following preliminary result.

Lemma 2.1. Let x be a complex sequence such that, for any $u \in G_t$, $\sum_{n=0}^{\infty} u_n x_n$ converges. Then for each $\varepsilon > 0$ there exists a constant B > 0 such that, for all k, $|x_k| \leq B(1/t + \varepsilon)^k$.

Proof. Suppose the conclusion of the lemma is false. This implies that there is an $\varepsilon > 0$ so that for every B > 0 there exists k = k(B) satisfying

$$|x_k| > B\left(\frac{1}{t} + \varepsilon\right)^k.$$

We now choose an increasing sequence $\{k(i)\}_{i=0}^{\infty}$ as follows. Choose k(0) satisfying $|x_{k(0)}| > 0$. After selecting k(p) for all p < i, we choose k(i) as follows. For N = k(i-1), there exists a constant $B = \max_{0 \le j \le N} |x_j(t/(1+\varepsilon t))^j|$ such that

(3)
$$|x_j| \le B \left(\frac{1}{t} + \varepsilon\right)^j, \quad \text{for } j \le N.$$

Let B' = B + 1. Now we can find k(i) such that

(4)
$$|x_{k(i)}| > B' \left(\frac{1}{t} + \varepsilon\right)^{k(i)},$$

using (2). Thus,

(5)
$$|x_{k(i)}| > \left(\frac{1}{t} + \varepsilon\right)^{k(i)}.$$

This k(i) > k(i-1) because, if not, $k(i) \leq N$ and hence, by (3), $|x_{k(i)}| < B'(1/t + \varepsilon)^{k(i)}$ which would contradict (4).

Now consider the sequence u given by

$$u_{j} = \begin{cases} \left(\frac{t}{1+\varepsilon t}\right)^{k(i)} \frac{|x_{k(i)}|}{x_{k(i)}}, & \text{if } j = k(i) \text{ for } i = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

It is obvious that $u \in G_t$. But, for each positive integer m,

$$\sum_{j=0}^{k(m)} u_j x_j > m,$$

using (5). Thus, we have a contradiction to the hypothesis.

Theorem 2.1. The matrix A is a G_t – c matrix if and only if

- (i) each column sequence is in c and
- (ii) for each $\varepsilon > 0$ there exists a constant B > 0 such that $|a_{nk}| \leq B(1/t + \varepsilon)^k$ for all n and k.

Proof. First assume that A satisfies both the conditions of the theorem and let u be a sequence in G_t , say $|u_k| \leq Ms^k$ for some $s \in (0,t)$. Choose $\varepsilon > 0$ such that $\varepsilon < 1/s - 1/t$. Then we have $|a_{nk}| \leq B(1/t+\varepsilon)^k$ for all n and k. Since, for each k, $\lim_n a_{nk} = L_k$, we have $|L_k| \leq B(1/t+\varepsilon)^k$ for all k. Also, we can find a positive integer l satisfying

(6)
$$2B\sum_{k=1}^{\infty}|u_k|\left(\frac{1}{t}+\varepsilon\right)^k<\frac{\varepsilon}{2}.$$

This is possible because the geometric series $\sum_{k=0}^{\infty} s^k (1/t + \varepsilon)^k$ converges. Also, by condition(i), we can find an N such that for $k = 0, 1, \ldots, l-1$,

(7)
$$|a_{nk} - L_k| |u_k| < \frac{\varepsilon}{2l} \quad \text{for } n > N.$$

Now, for n > N,

$$\left| (Au)_n - \sum_{k=0}^{\infty} u_k L_k \right| \le \sum_{k=0}^{l-1} |a_{nk} - L_k| |u_k| + \sum_{k=l}^{\infty} |a_{nk} - L_k| |u_k|$$

$$< \varepsilon$$

using (6) and (7). Thus, we have proved that the sequence $\{(Au)_n\}$ converges to $\sum_{k=0}^{\infty} u_k L_k$; this series converges. Hence, $Au \in c$.

Conversely, if A is a $G_t - c$ matrix, then the basis sequences $\{\delta_n^{(k)}\}_{n=0}^{\infty}$ are mapped into c. Thus, condition (i) holds.

Suppose that condition (ii) does not hold. Then there is an $\varepsilon > 0$ so that for every B > 0 there exist n = n(B) and k = k(B) such that

(8)
$$|a_{nk}| > B\left(\frac{1}{t} + \varepsilon\right)^k.$$

As G_t is in the domain of the matrix A, by Lemma 2.1, for each j there exists B(j) > 0 such that $|a_{jk}| \leq B(j)(1/t + \varepsilon)^k$ for all k. So, for $j = 0, 1, \ldots, N$, we can find B'(N) > 0 satisfying $|a_{jk}| \leq B'(N)(1/t + \varepsilon)^k$ for all k. Since each column of the matrix A is bounded, for $k = 0, 1, \ldots, N$, there exists a constant M'(N) such that $|a_{jk}| \leq M'(N)(1/t + \varepsilon)^k$ for all j. Thus, given any N there exists M = M(N) > 1 such that

(9)
$$|a_{jk}| \le M(1/t + \varepsilon)^k$$
, for $j \le N$ or $k \le N$.

Now we choose increasing sequences $\{u(n)\}_{n=0}^{\infty}$ and $\{v(n)\}_{n=0}^{\infty}$ as follows. Choose u(0) and v(0) such that $|a_{u(0),v(0)}| > 0$. After selecting u(p) and v(p) for all p < i, we choose u(i) and v(i) as follows. For N = u(i-1) + v(i-1), there exists M > 1 such that for $j \leq N$ or $k \leq N$,

$$(10) |a_{ik}| \le M(1/t + \varepsilon)^k$$

using (9). Let H = M + i. Now we can find u(i) and v(i) such that

$$(11) |a_{u(i),v(i)}| > H(1/t + \varepsilon)^{v(i)}$$

using (8). Thus,

(12)
$$|a_{u(i),v(i)}| > i(1/t+\varepsilon)^{v(i)}.$$

This u(i) and v(i) each exceed u(i-1)+v(i-1) because, if not, either $u(i) \leq N$ or $v(i) \leq N$ and hence, by (10), $|a_{u(i),v(i)}| < M(1/t+\varepsilon)^{v(i)}$ which would contradict (11).

Now consider the sequence x given by

$$x_k = \begin{cases} \left(\frac{t}{1+\varepsilon t}\right)^{v(i)}, & \text{if } k = v(i) \text{ for } i = 1, 2, \dots, \\ 0, & \text{otherwise.} \end{cases}$$

It is obvious that $x \in G_t$. Define a matrix A' by $a'_{nk} = a_{nk}x_k$. For any $u \in c$, we have $xu \in G_t$. Since A is a $G_t - c$ matrix, it follows that A' is a c - c matrix. But for each positive integer m, we have $|a'_{u(m),v(m)}| > m$ by (12). This contradicts that A' is a c - c matrix.

We state below two theorems on the characterization of $G_t - c_0$ and $G_t - l^{\infty}$ matrices. The proof of Theorem 2.1 can be easily applied to these two theorems.

Theorem 2.2. The matrix A is a $G_t - c_0$ matrix if and only if

- (i) each column sequence is in c_0 and
- (ii) for each $\varepsilon > 0$ there exists a constant B > 0 such that $|a_{nk}| \leq B(1/t + \varepsilon)^k$ for all n and k.

Theorem 2.3. The matrix A is a $G_t - l^{\infty}$ matrix if and only if for each $\varepsilon > 0$ there exists a constant B > 0 such that $|a_{nk}| \leq B(1/t + \varepsilon)^k$ for all n and k.

In [2] Jacob derived similar characterizations of the above matrix transformations using the topological properties of the spaces G_t .

3. Well-known summability mappings on G_t . In this final section we shall apply the results of Section 2 to find the necessary and

sufficient conditions for some well-known matrix methods to be $G_t - c$, $G_t - c_0$, and $G_t - l^{\infty}$ matrices.

The Euler-Knopp means [3, p. 54] are given by

$$E_r[n,k] = \begin{cases} \binom{n}{k} (1-r)^{n-k} r^k, & \text{if } k \leq n, \\ 0, & \text{if } k > n, \end{cases}$$

where r is any complex number. In the following theorem, we shall consider the Euler matrices E_r with only real values of the parameter r.

Theorem 3.1. The following statements are equivalent:

- (i) $r \in [0, 2/(1+t)];$
- (ii) E_r is a $G_t c$ matrix;
- (iii) E_r is a $G_t l^{\infty}$ matrix.

Proof. When r=0, the matrix E_r has all ones in the first column and zeros elsewhere. So, by Theorem 2.1, E_r is a G_t-c matrix. If $0 < r \le 2/(1+t)$, then a simple calculation shows that $|1-r| \le 1-rt$. Thus, for any $x \in G_t$, say $|x_k| \le Mu^k$ where $u \in (0,t)$, we have

$$|(E_r x)_n| \le M[|1 - r| + ru]^n$$
.

Now $|1 - r| + rt \le 1$ implies that $E_r x \in c_0$ and, hence, E_r is a $G_t - c$ matrix. We have shown that (i) implies (ii).

The fact that (ii) implies (iii) is obvious from the set inclusion $c \subset l^{\infty}$. Next, to see that $r \in [0, 2/(1+t)]$ whenever E_r is a $G_t - l^{\infty}$ matrix, suppose r < 0. Then the first column sequence $\{(1-r)^n\}_{n=0}^{\infty}$ is not bounded. Consequently, by Theorem 2.3, E_r is not a $G_t - l^{\infty}$ matrix. Now, suppose that r > 2/(1+t). If we choose u satisfying 2t/[r(1+t)] < u < t, then $\{x_k\} = \{(-u)^k\} \in G_t$ and

$$|(E_r x)_n| = \left| (-1)^n \sum_{k=0}^n \binom{n}{k} (r-1)^{n-k} (ru)^k \right|$$

= $|r-1+ru|^n$.

Since r-1+ru>1, it follows that E_r is not a G_t-l^{∞} matrix. \square

It is easy to see that the following result is also true.

Corollary 3.1. E_r is a $G_t - c_0$ matrix if and only if $r \in (0, 2/(1+t)]$.

The Nörlund mean Np is represented by a lower triangular matrix in which

$$Np[n,k] = p_{n-k}/P_n$$
 if $k \le n$,

where $P_n = \sum_{k=0}^n p_k$ and p is a nonnegative sequence such that $p_0 > 0$.

Theorem 3.2. Let Np be a Nörlund matrix.

- (i) Np is a $G_t c_0$ matrix if and only if $\lim_n p_n/P_n = 0$;
- (ii) Np is a $G_t c$ matrix if and only if each column sequence converges;
- (iii) Np is a $G_t l^{\infty}$ matrix for all p.
- *Proof.* (i) If $\lim_n p_n/P_n = 0$, then Np is a regular matrix and thereby maps G_t into c_0 . Conversely, if Np is a G_t-c_0 matrix, then by Theorem 2.2, the first column is a null sequence.
- (ii) Since the absolute row sums of the matrix Np are equal to 1 and 1/t > 1, the second condition of Theorem 2.1 is always true. Hence, the result follows.
- (iii) It is obvious that the condition of Theorem 2.3 is satisfied by Np matrices. \Box

Fricke and Fridy [1] introduced the extended form of Borel matrix by the following definition. For any real number δ ,

$$B_{\delta}[n,k] = e^{-n^{\delta}} (n^{\delta})^k / k!$$

for k = 0, 1, ..., and n = 0, 1, ... When $\delta = 0$, the matrix is defined by

$$B_0[n,k] = e^{-1}/k!, \qquad \text{for all } n \text{ and } k.$$

Theorem 3.3. The matrix B_{δ} is a $G_t - c_0$ matrix if and only if $\delta > 0$; also, B_{δ} is a $G_t - c$ matrix for all δ .

Proof. It is known [4, Table 3.2, Theorem 3] that if $\delta > 0$ then B_{δ} is a $G_t - l^1$ matrix, whence B_{δ} is a $G_t - c_0$ matrix. Conversely, suppose that $\delta \leq 0$. In the case of $\delta < 0$, we have $B_{\delta}[n,0] = e^{-n^{\delta}}$ converging to 1 as $n \to \infty$. Thus, the first column of B_{δ} is not in c_0 . Therefore, B_{δ} cannot be a $G_t - c_0$ matrix. Similarly, if $\delta = 0$ then the first column converges to 1/e so that B_{δ} is not a $G_t - c_0$ matrix.

Now, in order to show that B_{δ} is a G_t-c matrix for all δ , it is enough to consider the cases $\delta \leq 0$. When $\delta \leq 0$, the preceding arugment shows that the first column of B_{δ} is in c. When $\delta = 0$, for each $k \geq 1$, $B_{\delta}[n, k]$ converges to 1/(k!e) as $n \to \infty$ and, when $\delta < 0$, for each $k \geq 1$, $B_{\delta}[n, k]$ converges to zero as $n \to \infty$. So, in both cases, $B_{\delta}[n, k] < (1/t + \varepsilon)^k$ for any $\varepsilon > 0$. Thus, both conditions of Theorem 2.1 are true. Hence, B_{δ} is a $G_t - c$ matrix. \square

REFERENCES

- 1. G.H. Fricke and J.A. Fridy, Matrix summability of geometrically dominated series, Canadian J. Math. 39 (1987), 568–582.
- 2. R.T. Jacob, Matrix transformations involving simple sequence spaces, Pacific J. Math. 70 (1977), 179–187.
- 3. P.E. Powell and S.M. Shah, Summability theory and applications, New Delhi, Prentice Hall of India, 1988.
- 4. S. Selvaraj, Matrix summability of classes of geometric sequences, Rocky Mountain J. Math. 22 (1992), 719–732.

Department of Mathematics, Penn State University – Shenango, Sharon, PA 16146

DEPARTMENT OF MATHEMATICS, PENN STATE UNIVERSITY - SHENANGO, SHARON, PA 16146