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FACTORIZABLE SEMIGROUP OF PARTIAL
SYMMETRIES OF A REGULAR POLYGON

JANET E. MILLS

ABSTRACT. The semigroup of partial symmetries of a con-
vex polygon P is the inverse semigroup of all isometries of
subpolygons of P, under composition. This semigroup is a
natural generalization of the group of symmetries of a poly-
gon, as well as a particular instance of an inverse semigroup
formed by taking all isomorphisms between substructures of a
given mathematical structure. The general properties of the
semigroup of partial symmetries of any convex polygon were
explored in [5]; in this paper we restrict consideration to reg-
ular polygons where, as in the situation with groups, much
more structural information can be obtained. We show that
every isometry between subpolygons of P can be extended to
an isometry of P and use this to factorize these semigroups
into a product of a semilattice and a group. If the number of
vertices of the polygon is odd, a complete characterization is
given in terms of the group of symmetries of P.

1. Preliminaries. In [5] we explored the inverse semigroup of
partial symmetries of a convex polygon. We now restate the precise
definition of these semigroups.

Let P be a convex polygon with a set of vertices V = {vy,va,... ,v,},
n > 3, where v; is adjacent to v;4q1 for ¢ = 1,... ,n — 1, and v, is
adjacent to v;. A polygon A is a subpolygon of P if A has as its
set of vertices V(A) = {v;1),vi(2),- -+ »Vi(m)} contained in V' with
i(1) < i(2) < --- < i(m), and the edges of A are between v;(;) and
Vik+1), K =1,... ,m—1, and between v;(,,) and v;(;). The subpolygon
A'is the region of the plane enclosed by the edges of A. Note that, under
our definition, subpolygons may have two vertices (line segment), one
vertex (point), or no vertex (empty polygon, denoted by ¢).

For two subpolygons A and B of P, an isometry of A onto B is any
bijection a from V(A) onto V(B) which is distance-preserving under
the usual Euclidean metric. The domain and range of a will be denoted
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as dom «, rng «, respectively; the rank of « is the cardinality of dom a.
We will say that dom o = rnga even though it is more precisely the
subpolygons with these sets of vertices that are congruent. For the
empty polygon ¢, the isometry from ¢ to ¢ is the empty mapping
which will be denoted by .

For the convex polygon P with set of vertices V, we define S(P)
to be the set of all isometries between subpolygons of P. Under
composition, S(P) is an inverse semigroup, called the semigroup of
partial symmetries of P. S(P) is an inverse subsemigroup of the
symmetric inverse semigroup of V, I(V'), and its group of units is the
group of symmetries of P. An idempotent of S(P) is just the identity
on a subset A of V, denoted by ¢4, so that Es = Ep(v).

As was discussed in [3] and [7], for a given mathematical structure,
the collection of isomorphisms between its substructures forms an
inverse semigroup under composition. Our semigroup S(P) is one such
example. In [5] we explored the ideals and congruences of S(P) for any
convex polygon P. In this paper we will restrict ourselves to regular
polygons in order to obtain stronger results concerning the structure of
S(P).

2. Extending isometries of subpolygons to isometries of P.
For the rest of the paper, P will be a regular polygon with n vertices,
n > 3, forming the set V, S = S(P) will be the semigroup of partial
symmetries of P, and G will be the group of symmetries of P, that is,
the dihedral group of order 2n.

The following result is central to the rest of the paper. We say that an
isometry 6 from subpolygon A onto B can be extended to an isometry
of P if there is a 8’ in G such that 8'|qgomg = 6.

Theorem 2.1. If A and B are subpolygons of P and 0 : A — B s
an isometry, then there is an isometry of P which extends 0.

We will divide this theorem into the following lemmas since we also
wish to count the number of isometries of P which extend 6.

Lemma 2.2. The empty mapping can be extended to 2n isometries
of P.



FACTORIZABLE SEMIGROUP OF PARTIAL SYMMETRIES 1083

Proof. This is obvious since G has 2n elements. ]

Lemma 2.3. FEvery singleton mapping can be extended to exactly
two isometries of P: a rotation and a reflection.

Proof. Let a and b be vertices. Then there is a reflection which takes
a onto b. This can be found by letting & be the minimum number of
vertices between a and b. If k is odd, we pick the middle vertex between
a and b and reflect about the line through it and the center. If k is
even, we pick the midpoint of the edge between the middle two vertices
and reflect about the line through this point and the center. Let v be
this reflection. Let p be the rotation counterclockwise by 27 /n radians.
Then the dihedral group G can be written as

{PyF1<j<n0<k<1}

Clearly there is exactly one rotation p™ which takes a onto b. If
(a)p’y = b, then ap’ = a since ay = b. Hence, j = n and piy = 7.
Thus, v and p™ are the only elements of G which take a onto b. o

For vertices a and a’, the line segment joining them is written aa’.
We will say that a’ is the vertex opposite a if aa’ passes through the
center of P. When we write 6 : aa’ — El, it is understood that a — b,
a —b.

Lemma 2.4. Let 0 :aa — bb be an isometry.

1. If a’ is the vertex opposite a, then there are exactly two isometries
of P which extend 6.

2. If a’ is not a vertex opposite a, then there is exactly one isometry
of P which extends 6.

Proof. Assume first that a’ is opposite a. From Lemma 2.3 there is
a reflection which takes a onto b. But since a’ is opposite a, then b’
must be opposite b and this reflection must take a’ onto b'. Also, let 7
be the rotation which sends a onto b. Then, since a is opposite a’, ar
must be opposite a’mw. That is, 7 extends . Since there are exactly two
elements of G which take a onto b, then these are the only two which
extend 6.
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Now assume that a is not opposite a’. Let k be the number of vertices
from a to a’ in the clockwise direction. Then k is either the number of
vertices from b to b’ in the clockwise direction or the counterclockwise
direction, but not both. If it is in the clockwise direction, then the
rotation of P which takes a onto b will also take a’ onto b'. If k is
the number in the counterclockwise direction, then the reflection which
takes a onto b will take a’ onto b'. Thus, in either case, there is exactly
one element of G which extends 6. a

For the general case, we will extend the isometry 6 first to an isometry
of the plane and show that this new isometry, in turn, induces an
isometry of P.

Lemma 2.5. If0: A — B is an isometry and |A| > 2, then there is
a unique tsometry of P which extends 6.

Proof. Let 6 be an isometry of A onto B. This isometry 6 can be
extended to an isometry of the plane, call it #’. We will show that 6,
when restricted to P, is an isometry of P. Let a,b, ¢ be three adjacent
vertices of A in clockwise order. Let

Then a’,b,c’ must be adjacent vertices in B. Furthermore, since
these sets of points are vertices of a regular polygon, a,b, and c
are noncollinear as are a’,b’,c’. Now from properties of geometry
(see, for example, p. 39 of [8]), we know that every isometry of
the plane is an affine transformation of the plane, so §' is an affine
transformation. Further, the fundamental theorem of affine geometry
states that for these two sets of noncollinear points, there is a unique
affine transformation mapping a onto a’, b onto b, and ¢ onto ¢’. Thus,

0’ is the only such affine transformation.

However, we can easily construct an isometry of the polygon P which
takes a onto a’, b onto ', and c onto ¢’. For, if we take a rotation of
P which maps b onto V', then if ¢ is the adjacent vertex to the right of
b’ in B, then this rotation is such an isometry. If ¢’ is not the adjacent
vertex to the right, then a’ is, so that we follow the rotation by a
reflection which has b’ on the axis of symmetry. In either case, there is
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an isometry of P which takes a onto a’, b onto b’, and c onto ¢/, and,
of course, this isometry can be extended to the plane. But then, this
isometry is an affine transformation and, by uniqueness, it must be 6'.
Thus, ¢, restricted to P, is an isometry of P which extends 6, and it
is the only one. o

The fact that every isometry of P can be extended to one in G now
allows us to classify S(P) as a factorizable semigroup.

Definition. A semigroup is said to be factorizable if there is a group
G and a set of idempotents E such that S = EG.

A factorizable semigroup has been defined more generally as a prod-
uct of two subsemigroups; however, for inverse semigroups the above
definition seems most appropriate. Chen and Hsieh [1] showed that the
symmetric inverse semigroup over a set X is factorizable if and only if
the set X is finite. Tirasupa [9] extended this to the partial and full
transformation semigroups on a set, and D’Alarcao [2] related this to
certain finiteness conditions. In [1] it was shown that it is necessary
that £ be Eg and G be the group of units of §.

It is easy to see that, for a general convex polygon P, the semigroup
of partial symmetries of P need not be factorizable. For example, if
P is a polygon with no two sides of equal length, then the group of
symmetries of P is the trivial group so that FsG = Eg, while S # Ejg.
If P is an isosceles triangle with ab = bc, ab 2 @c, then the group of
symmetries has just two elements, but the isometry which takes the
line segment ab onto bc (with a — b, b — ¢) cannot be extended to an
isometry of P. Thus, a consequence of the next result is the fact that
equilateral triangles are exactly those triangles which will produce a
factorizable semigroup of partial symmetries.

Theorem 2.6. The semigroup of partial symmetries of a reqular
polygon is factorizable.

Proof. Let G be the group of symmetries of P and Eg be the set
of all idempotents of S. Let 6 be an isometry of A onto B. Then,
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by Theorem 2.1, 6 can be extended to an isometry ¢’ of P; that is,
0 = 140" and, therefore, S = EsG. i

Regularity of the polygon is not necessary for the semigroup of
partial symmetries of P to be factorizable. For example, if P is any
parallelogram, it can easily be seen that S is factorizable.

We now use the lemmas to count the elements of S. Clearly, from
Lemma 2.4, we will have to separate even and odd n.

Theorem 2.7. Let S be the semigroup of partial symmetries of a
regular polygon P with n vertices. Then

1. Ifn is odd, S has n(2"*1 —n —2) + 1 elements;
2. ifn is even, S has n(2"T — (3/2)n — 2) + 1 elements.

Proof. Since, by Theorem 2.6, S = EgG, with Eg having 2" elements
and G having 2n elements, then S has 2"(2n) elements minus the
number of repeats in the characterization tga, A C V, a in G. By
Lemma 2.5, every element of rank greater than 2 is uniquely described
in this way.

Let n be odd. Then no two vertices are opposite one another so that
the only elements which do not have a unique representation are those
of rank < 1. From Lemma 2.2, there are exactly 2n representations of
the empty map, so there are 2n — 1 repeats. From Lemma 2.3, each
singleton is represented twice and there are n? singletons so there are
n? repeats. Therefore, if n is odd, the number of elements of S is

2"ty — (24 2n—-1)=n2""™ —n—2)+ 1.

Let n be even. Then, in addition to the repeats of rank < 1, those
mappings of rank 2 which map a line of symmetry onto a line of
symmetry appear twice in the representation, by Lemma 2.4. There
are n?/2 of these mappings, since there are n/2 lines of symmetry and
each line of symmetry can map onto n others when taking into account
where the individual elements go. Therefore, there are

2"ty — (n® +2n — 1 +n?/2) = n(2"T - (3/2)n — 2) + 1

elements in S. O



FACTORIZABLE SEMIGROUP OF PARTIAL SYMMETRIES 1087

Corollary 2.8. If n is odd, S has an even number of elements; if n
is even, S has an odd number of elements.

The inverse semigroup of partial symmetries of the equilateral triangle
has 34 elements. There are 6 of rank 3, 18 of rank 2, 9 of rank 1 and
1 of rank 0. The semigroup of partial symmetries of the square has 97
elements: 8 of rank 4, 32 of rank 3, 40 of rank 2, 16 of rank 1, and 1 of
rank 0.

We now look at the number of elements that are required to generate
S as an inverse semigroup. The rank of an inverse semigroup is
the smallest number of elements needed to generate S as an inverse
semigroup. In [4, Theorem 3.1] it was shown that the symmetric inverse
semigroup on a finite set has rank 3. With a modification of that proof,
we obtain the same result for our semigroup. If S is generated as an
inverse semigroup by z1,... , Ty, we write S = (z1,... ,Zp).

Theorem 2.9. The rank of the semigroup of partial symmetries of
a regular polygon is 3.

Proof. Since P is regular, GG is a dihedral group generated by two
elements, p and 7. Also, for a regular polygon, any two subpolygons
with n — 1 vertices are congruent, so that

J ={a € Sranka =n — 1}

is a J-class [5, Lemma 2.1]. Let a be a fixed element in J’ and 8 be any
element of J’. Then dom o = dom /3 so there is an isometry which takes
dom 8 onto dom . This isometry can be extended to an isometry, o,
of P. Let 1 = a 'o~!f. Thus, domT = rnga, rng T = rng B, so T is
J’" and 7 can be extended to an element 7’ of G. Then o and 7' are in
G and

oar’ = cala o 7B) = otdom a0 B = Ldompoo 1B
= LdomBLPﬁ = B
Therefore, 3 is in the inverse subsemigroup of S generated by p, 7y, and
a; ie., B € (p,7,q).
Now let A C V, |A] < n. Then V — A = {x1,2s,... ,2}, and
let V —{x;} = X(i). Then ta = tx(1)tx(2)---Lx(k), SO that ¢4 is in
(p,7, ) for all A contained in V.
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If 6 is in S, then by Theorem 2.1, § = 146’ for some ¢’ in G, with
A = domd. Thus, since 14 is in (p,~,a) and ¢’ is in {p,7), then § is in
(p,7, ). Hence, rank of S < 3. Moreover, 3 is the minimum since G
requires two generators itself and at least one other is needed to obtain
the rest of the elements of S. O

3. Structure of the semigroup of partial symmetries. In this
section we will use the results of Section 2 to obtain a construction of
S(P) in the case where P has an odd number of vertices. The sets
P,V,S, and G will be as in the last section, and P(V) will be the set
of all subsets of V.

Theorem 3.1. On T = P(V) x G, define x by
(A,0) % (B,B) = (Aan B)a ', aB).

Then (T,x*) is an inverse semigroup with Ep = Eg. Moreover, the
mapping f : T — S defined by f : (A,a) = taa, is a homomorphism
onto S.

Proof. 1t is a very direct element-chasing argument to show that * is
associative. The inverse of (4, ) is (Aa,a1) and the idempotents of
T are (A,tp), where ¢p is the identity of G.

Since, in S, (a@)(tB) = (v np)z2)eB, [ is a homomorphism.
That f maps onto S is a direct result of the fact that S is factorizable
(Theorem 2.6). O

If the number of vertices is odd, no two vertices are opposite one
another, so that Lemmas 2.4 and 2.5 imply that every isometry of rank
greater than 1 has a unique representation of the form given in Theorem
3.1, and those of rank < 1 correspond to (4, «) where |A| < 1. Thus,
we have the following stronger results for regular polygons with an odd
number of vertices.

Corollary 3.2. Let n be odd, with S; = S/{f|rank6d < 1}, and
T =T/{(A,a)||A| <1}. Then S; 2 Ti.

The semigroup 7} an be described on the set (V3 x G) U {0}, where
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Vi ={A CV||A| > 1}, and 0 acts as the zero of T}, with operation x*
defined by

—1 .
(A,a) (B, B) = {((AaﬂB)a ,af) ?f |[Aan B| > 1,
0, if [ AanNB| < 1.

We know from Proposition 2.4 of [5] that {f|rank § < 1} is a Brandt
semigroup over the trivial group, i.e., B = M°(V,1,V;A). Thus S
can be considered an ideal extension of B by the inverse semigroup 5.
Ideal extensions of Brandt semigroups are discussed in Chapter 5 of
[6]. In particular, since B has a trivial group, any ideal extension of B
by S; is completely determined by a partial homomorphism of S;\{0}
into I(V) (see Theorems V.4.6 and V.4.7 of [6]).

We can give the multiplication in S explicitly by using the above
results and [6; Theorem V.4.7], or we can extract the multiplication
directly from the construction as follows. On B =V x V, (v,w) in B
corresponds to the singleton mapping: v — w, and in V4 X G, (4, «a)
corresponds to the mapping tqc. Thus, for multiplication defined
in §$={0}uUuBUW xGqG), (vu)(4,a) = (v,wa) if wisin A
and 0 otherwise. For (A,a), (B,B8) in Vi x G, if [Aa N B| > 1,
then multiplication stays as in Ti; if (Aa N B)a™! = {u}, then
(A,a) x (B,B) = (u,uaf) since (taa))(ipB) is the singleton map:
(u — uaf). That is,

(4,a)* (B,B) = (AanB)a"*,ap) if |[AanB|>1,

(A4,a) % (B, 8) = (u,uaf) if (Aan B)a™! = {u},
(A, ) x (v,w) = (va™t,w) if visin Aa,

(v,w) * (4, a) = (v, wa) if wisin A4,

(v,w) * (z,9) = (v,y) ifw=z,

and all other products are equal to 0.

With this we have given an explicit description of the semigroup of
partial symmetries of an odd sided regular polygon, in terms of sets
and the group of symmetries of the regular polygon.
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