SELF-SIMILARITY

GARY B. LEWELLEN

ABSTRACT. A self-similar set is defined as a compact set which is the union of its images under the members of a collection of contractions, the contractions being indexed by a compact set. Self-similarity is characterized by the consideration of points in the self-similar set as limits associated with certain sequences of contractions. Conditions are given for the occurrence of self-similarity. A self-similar set is also treated as a fixed point in hyperspace, and the continuous variation of self-similar sets is shown.

Introduction. Self-similarity has received much attention in recent years in connection with the study of fractals. The small-scale geometry of a self-similar set reproduces after a fashion the large-scale geometry of the set, such as seen in the Cantor space. The self-similar set is made up of arbitrarily small copies, or contracted images, of itself. Historically, Mandelbrot [6, p. 18] stated that many of his fractals were self-similar, and, in 1981, Hutchinson [4] put on a formal footing the matter of self-similarity in fractals. In 1985, the contribution of Hata [3] appeared. Also in 1985, Barnsley and Demko [2] formalized an approach to self-similar fractals. Barnsley [1] further expanded this approach in a text on fractals in 1988. In the present study the work of Hutchinson and Barnsley related to self-similarity is elaborated upon and expanded. Most studies of self-similarity have dealt with just finitely many contractions acting at once on a set, although Hata [3] does consider a sequence of contractions. In the present study the collection of contractions acting on a set may be uncountable.

In Section 1 "self-similar" is defined, and in Section 2 self-similarity is characterized by "addressing," or the consideration of points in the self-similar set as limits associated with certain sequences of contractions. The existence of a self-similar set determined by a certain type of collection of contractions is shown in Section 3. In Section 4 the

Received by the editors on December 10, 1990.

AMS Subject Classification. 58F12, 54B20.

Key words. Address function, Banach fixed point theorem, contraction system, fixed point, fractal, hyperspace, self-similar.

approach to the self-similar set as a fixed point in hyperspace is considered. Finally, in Section 5 the continuous variation of self-similar sets is treated.

1. Self-similarity. In this section self-similar is defined. The context for self-similarity in this study is always to include a complete metric space (X,d) on which there is defined the contraction w_{λ} for every λ in a compact topological space Λ , assumed to have the discrete topology if finite. It is assumed that not all of the contractions indexed by Λ are constant and that all the contractions have a common contractivity factor s. Additionally, $w: \Lambda \times X \to X$ is defined by $w(\lambda, x) = w_{\lambda}(x)$, Ω is the ordered triple $((X, d), w, \Lambda)$, F_{Ω} is $\{w_{\lambda}: \lambda \in \Lambda\}$, and \mathbf{N} is the set of positive integers.

Definition 1.1. i) A contraction system is an Ω ,

- ii) a set A self-similar under F_{Ω} is a nonempty compact subset of X for which $A = \bigcup \{w_{\lambda}(A) : \lambda \in \Lambda\}$, and
- iii) a self-similar set A is a set for which there is an Ω such that A is self-similar under F_{Ω} .

The essence, then, of self-similarity is representation by a collection of contracted images. To make for uniqueness and determination of distances between sets, the self-similar set is required to be compact. (Other definitions of "self-similar" are used: see [3, p. 383] and [4, p. 734].)

Example 1.2. The Cantor space $\{\sum_{i=1}^{\infty} n_i/3^i : n_i \in \{0,2\} \text{ for } i \in \mathbb{N}\}$ is self-similar under $\{w_1, w_2\}$, w_1 being defined by $w_1(x) = x/3$ and w_2 by $w_2(x) = x/3 + 2/3$ for all real x.

Example 1.3. Define T to be the triangular region in R^2 whose vertices are (0,0), (1,0), and (0,1), but without the interior of the triangular region whose vertices are the midpoints of the sides of the original triangle. Define T_2 to be the region left when the "middle triangular interior" is removed from each of the three triangular regions of T_1 . Thus, construct $\{T_n\}$. Define $A = \bigcap_{n=1}^{\infty} T_n$. Then A is self-

similar under $\{w_1, w_2, w_3\}$, w_1 being defined by $w_1(x, y) = (x/2, y/2)$, w_2 by $w_2(x, y) = (x/2, y/2+1/2)$, and w_3 by $w_3(x, y) = (x/2+1/2, y/2)$ for all (x, y) in \mathbb{R}^2 . (The set A is the classical "Sierpinski Gasket.")

Example 1.4. If (X,d) is a Banach space, let A be a nonempty, compact, nonsingleton convex subset of X. For every $a \in A$, define $w_a: X \to X$ by $w_a(x) = (x+a)/2$. Then A is self-similar under $\{w_a: a \in A\}$.

Example 1.5. If X is the square region in R^2 with vertices (0,0), (0,1), (1,0), and (1,1), then define $\Lambda \equiv \{0,2\} \cup \{1/n : n \in \mathbf{N}\}$ with the topology inherited from R. Define w_0, w_2 , and $w_{1/n}$ for $n \in \mathbf{N}$ on X by

$$w_0 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

$$w_{1/n} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/2 & \cos \pi/2^{n+1} & -1/2 & \sin(\pi/2^{n+1} - \pi/2) \\ 1/2 & \sin \pi/2^{n+1} & 1/2 & \cos(\pi/2^{n+1} - \pi/2) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix},$$

and

$$w_2 \begin{pmatrix} x \\ y \end{pmatrix} = w_1 \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 - \sqrt{2}/2 \\ 1 - \sqrt{2}/2 \end{pmatrix}.$$

Thus, each w_{λ} collapses X into a radius of the unit circle, w_2 following this action on X by a translation so that $w_1(X) \cup w_2(X)$ is the diagonal of X from (0,0) to (1,1). The diagonal is at an angle of $\pi/4$ radians from the x-axis, and, for every $n \geq 2$, $w_{1/n}(X)$ is the radius at an angle of $\pi/2^{n+1}$ radians, $w_{1/n+1}(X)$ being at one-half the angle of $w_{1/n}(X)$, while $w_0(X)$ is at an angle of 0 radians. Define A to be the union of all these radii and the diagonal. Then a common contractivity factor for all w_{λ} is $\sqrt{2}/2$, and A is self-similar under $\{w_{\lambda} : \lambda \in \Lambda\}$. Further, A is not self-similar under any finite set of contractions, since a connected set self-similar under a finite set of contractions must necessarily be locally connected (see [3, p. 391]).

2. Addressing. In this section the relationship of addressing is used to characterize a self-similar set and is shown to be continuous. A salient feature of self-similarity is that if $A = \bigcup \{w_{\lambda}(A) : \lambda \in \Lambda\}$, then $A = \bigcup \{w_{\lambda}(\bigcup \{w_{\tau}(A) : \tau \in \Lambda\}) : \lambda \in \Lambda\}$, and so forth. This dissection of the set A raises the question of the location of each particular element of

A, a question answered by addressing: each element of A is associated with a certain sequence of indices of contractions in a manner as just suggested.

The product space $\prod_{i=1}^{\infty} \Lambda_i$, Λ_i being Λ , is denoted by Σ and has the standard product topology, and σ_i is the ith coordinate of σ in Σ . If $\sigma \in \Sigma$ and $\lambda \in \Lambda$, then $\lambda \sigma$ is α in Σ for which $\alpha_1 = \lambda$ and $\alpha_i = \sigma_{i-1}$ for i > 1. The ith projection function for Σ , $i \in \mathbb{N}$, is denoted by PROJ_i; N(q) is an open neighborhood of q in the topological space indicated by context, and $N(q, \delta)$ is $\{p \in Q : d_Q(q, p) < \delta\}$, (Q, d_Q) being a metric space indicated by context and $\delta > 0$.

In this section it is assumed that A is self-similar under F_{Ω} .

The following is immediate.

Proposition 2.1. i) For every $n \in \mathbb{N}$,

$$A = \bigcup \{ w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(A) : \sigma \in \Sigma \},$$

and

ii) if B is a bounded subset of X and if, for every $n \in \mathbb{N}$, $g_n : \Sigma \to R$ is defined by $g_n(\sigma) = \operatorname{diam}(w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(B))$, then $\{g_n\}$ converges uniformly to 0.

So Proposition 2.1 states that A is made up of arbitrarily small copies, or contracted images, of itself. If $x \in A$, then $x \in w_{\lambda_1}(A)$ for some $\lambda_1 \in \Lambda$, $x \in w_{\lambda_1}(w_{\lambda_2}(A))$ for some $\lambda_2 \in \Lambda$, and so forth to ever finer levels. Such trailing of individual elements of A gives rise to "addressing," a term originated by Barnsley [1, p. 118]. The "address" of x is the σ in Σ specified by $(\lambda_1, \lambda_2, \ldots)$. Since x is in all the ever shrinking pieces $w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(A)$ as n increases, then x is the limit as n increases of the $w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(y)$ for every y in A.

Lemma 2.2. If B is a nonempty bounded subset of X, and $\cup \{w_{\lambda}(B) : \lambda \in \Lambda\} \subset B$, then

- i) $\lim_{n\to\infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$ exists for every $b \in B$ and every $\sigma \in \Sigma$ and is independent of b, and
 - ii) if $g_n: \Sigma \times B \to X$ is defined by $g_n(\sigma, b) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$

for every $n \in \mathbf{N}$, and $g : \Sigma \times B \to X$ is defined by $g(\sigma, b) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$, then $\{g_n\}$ converges uniformly to g.

Proof. i) Since $w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_{n+1}}(B) \subset w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(B)$ for every $\sigma \in \Sigma$, and since X is complete, the result follows from Proposition 2.1 (ii).

ii) The result follows from Proposition 2.1 (ii).

Theorem 2.3. i) $\lim_{n\to\infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a)$ exists in A for every $a \in A$ and every $\sigma \in \Sigma$ and is independent of a,

- ii) if $g_n: \Sigma \times A \to A$ is defined by $g_n(\sigma, a) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a)$ for every $n \in \mathbf{N}$, and $g: \Sigma \times A \to A$ is defined by $g(\sigma, a) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a)$, then $\{g_n\}$ converges uniformly to g, and
 - iii) $A = \{\lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a) : \sigma \in \Sigma \} \text{ for every } a \in A.$

Proof. i) The result follows from Lemma 2.2 (i), since A is compact.

- ii) The result follows from Lemma 2.2 (ii).
- iii) Let $a \in A$. By Proposition 2.1 (i), a sequence $\{\lambda_n\}$ can be chosen inductively so that $a \in w_{\lambda_1} \circ w_{\lambda_2} \circ \cdots \circ w_{\lambda_n}(A)$ for every $n \in \mathbb{N}$. The result then follows from (i) and Proposition 2.1 (ii). \square

In a different manner, Barnsley [1, p. 127] arrives at Theorem 2.3 (i) and (iii) in the case of finite Λ .

The following definition is well-formed according to Theorem 2.3.

Definition 2.4. i) The Ω -address function is $\Phi_{\Omega}: \Sigma \to A$ defined by $\Phi_{\Omega}(\sigma) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a)$ for every $a \in A$, and

ii) an Ω -address of a in A is any $\sigma \in \Sigma$ for which $\Phi_{\Omega}(\sigma) = a$.

The address function is introduced by Williams [8, p. 56] and in a form different from that here; Hutchinson [4, p. 725] makes use of the function in showing that its image of Σ for finite Λ is compact. Hata [3, p. 384] draws more attention to the address function, but it is left

to Barnsley [1, p. 118], who introduces the term "address," to define the address function as it is here and to give addressing a significant role in his pursuit of fractals. In the present study addressing has even more of a role.

It is now seen that there is some freedom in finding the values of the address function.

Lemma 2.5. If $B \subset X$, and $B \cup \{w_{\lambda}(b) : \lambda \in \Lambda, b \in B\}$ is bounded, then $\{w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b) : \sigma \in \Sigma, n \in \mathbf{N}, b \in B\}$ is bounded.

Proof. It may be assumed that B is nonempty. Let $\alpha \in \Sigma$, $m \in \mathbb{N}$, $c \in B$ and $x \in X$. Define $D \equiv \operatorname{diam}(\{x\} \cup B \cup \{w_{\lambda}(b) : \lambda \in \Lambda, b \in B\})$. Then

$$\begin{split} d(w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_m}(c), x) \\ &\leq d(w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_m}(c), w_{\alpha_1}(c)) + d(w_{\alpha_1}(c), x) \\ &\leq sd(w_{\alpha_2} \circ w_{\alpha_3} \circ \cdots \circ w_{\alpha_m}(c), c) + D \\ &\leq s[d(w_{\alpha_2} \circ w_{\alpha_3} \circ \cdots \circ w_{\alpha_m}(c), w_{\alpha_2}(c)) + d(w_{\alpha_2}(c), c)] + D \\ &\leq s^2 d(w_{\alpha_3} \circ w_{\alpha_4} \circ \cdots \circ w_{\alpha_m}(c), c) + sD + D \\ &\cdot \\ &\cdot \\ &\cdot \\ &\leq s^{m-1}D + s^{m-2}D + \cdots + sD + D \\ &\leq D\bigg(\sum_{i=0}^{\infty} s^i\bigg) = D/(1-s). \end{split}$$

Hence, $\{w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b) : \sigma \in \Sigma, n \in \mathbb{N}, b \in B\}$ is bounded.

Proposition 2.6. If $y \in X$ and $\{w_{\lambda}(y) : \lambda \in \Lambda\}$ is bounded, then

- i) $\Phi_{\Omega}(\sigma) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(y)$ for every $\sigma \in \Sigma$, and
- ii) if $g_n : \Sigma \to X$ is defined by $g_n(\sigma) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(y)$ for every $n \in \mathbb{N}$, then $\{g_n\}$ converges uniformly to Φ_{Ω} .

- Proof. i) Define $B \equiv \{w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(y) : \sigma \in \Sigma, n \in \mathbb{N}\} \cup \{y\}$. Since $\{y\} \cup \{w_{\lambda}(y) : \lambda \in \Lambda\}$ is bounded, $\{w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(y) : \sigma \in \Sigma, n \in \mathbb{N}\}$ is bounded by Lemma 2.5, and so $A \cup B$ is bounded. Also, $\cup \{w_{\lambda}(A \cup B) : \lambda \in \Lambda\} \subset A \cup B$. Let $\alpha \in \Sigma$, $a \in A$. By Lemma 2.2 (i), then, $\lim_{n \to \infty} w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_n}(y)$ exists and equals $\lim_{n \to \infty} w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_n}(y)$.
- ii) Define B as in (i). Define $f_n: \Sigma \times (A \cup B) \to X$ by $f_n(\sigma, x) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$ for every $n \in \mathbb{N}$. Define $f: \Sigma \times (A \cup B) \to X$ by $f(\sigma, x) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$, which exists by Lemma 2.2 (i). By Lemma 2.2 (ii), $\{f_n\}$ converges uniformly to f. Therefore, $\{f_n \mid (\Sigma \times \{y\})\}$ converges uniformly to $f \mid (\Sigma \times \{y\})$, and $\{g_n\}$ converges uniformly to Φ_{Ω} by (i). \square

Proposition 2.7. If w is continuous, then

- i) $\Phi_{\Omega}(\sigma) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$ for every $\sigma \in \Sigma$ and every $x \in X$, and
- ii) if K is a compact subset of X, $g_n : \Sigma \times K \to X$ is defined by $g_n(\sigma, x) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$ for every $n \in \mathbb{N}$, and $g : \Sigma \times K \to X$ is defined by $g(\sigma, x) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$, then $\{g_n\}$ converges uniformly to g.
- *Proof.* i) Let $y \in X$. Since $w(\Lambda \times \{y\})$ is compact, the result follows from Proposition 2.6 (i).
- ii) Since $w(\Lambda \times K)$ is compact, $K \cup \{w_{\lambda}(x) : \lambda \in \Lambda, x \in K\}$ is bounded, and by Lemma 2.5, if

$$B \equiv \{ w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x) : \sigma \in \Sigma, n \in \mathbf{N}, x \in K \},$$

then B is bounded. Further, $B \cup K$ is bounded, and $\bigcup \{w_{\lambda}(B \cup K) : \lambda \in \Lambda\} \subset B \cup K$. Define $f_n : \Sigma \times (B \cup K) \to X$ by $f_n(\sigma, x) = w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$ for every $n \in \mathbb{N}$. Define $f : \Sigma \times (B \cup K) \to X$ by $f(\sigma, x) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x)$, which exists by Lemma 2.2 (i). By Lemma 2.2 (ii), $\{f_n\}$ converges uniformly to f. Hence, $\{f_n \mid (\Sigma \times K)\}$ converges uniformly to $f \mid (\Sigma \times K)$, or $\{g_n\}$ converges uniformly to g. \square

Corollary 2.8. If w is continuous, K is a compact subset of X, and $\varepsilon > 0$, then there is an $m \in \mathbb{N}$ such that for every $a \in A$ there is a

 $\sigma \in \Sigma$ such that $d(w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(x), a) < \varepsilon$ for every $x \in K$ and for every $n \geq m$, and for every $\alpha \in \Sigma$ there is a $b \in A$ such that $d(w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_n}(x), b) < \varepsilon$ for every $x \in K$ and for every $n \geq m$.

Proof. The result follows from Theorem 2.3 (iii) and Proposition 2.7. \Box

The previous result indicates that travel along the many address trails is uniform, so that in some sense convergence is to the set A itself rather than just its points individually. This collective approach to A as a limit in hyperspace will be explored in Section 4 as an alternate development of self-similarity.

The conclusions of Proposition 2.7 and Corollary 2.8 certainly hold for a contraction system with finite Λ , and Barnsley [1, p. 127] arrives at the conclusion of Proposition 2.7 (i) for such a system.

Next, the continuity of the address function is seen to be equivalent to a restricted continuity of w.

Lemma 2.9. If B is a nonempty bounded subset of X, $\{w_{\lambda}(B) : \lambda \in \Lambda\} \subset B$, and $\Gamma : \Sigma \to X$ is defined by $\Gamma(\sigma) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$ for every $b \in B$, then Γ is continuous if and only if $w \mid (\Lambda \times \{x\})$ is continuous for every $x \in \Gamma(\Sigma)$.

Proof. By Lemma 2.2 (i), Γ is well defined. If $w \mid (\Lambda \times \{x\})$ is continuous for every $x \in \Gamma(\Sigma)$, then let $\alpha \in \Sigma$, $b \in B$. Let $\varepsilon > 0$. There is a $k \in \mathbb{N}$ such that $s^k(\operatorname{diam} B) < \varepsilon/4$. Define $\delta \equiv \varepsilon(1-s)/4$. If $i \in \{1, 2, \ldots, k\}$, then $x_i \equiv \lim_{n \to \infty} w_{\alpha_{i+1}} \circ w_{\alpha_{i+2}} \circ \cdots \circ w_{\alpha_n}(b)$ exists by Lemma 2.2 (i), and so, by continuity of $w \mid (\Lambda \times \{x_i\})$, there is an open neighborhood $N(\alpha_i)$ such that if $\lambda \in N(\alpha_i)$, then $d(w_{\alpha_i}(x_i), w_{\lambda}(x_i)) < \delta/2$.

Now if $\sigma \in \cap_{i=1}^k \operatorname{PROJ}_i^{-1}(N(\alpha_i))$, a neighborhood of α , then $d(w_{\alpha_i}(x_i), w_{\sigma_i}(x_i)) < \delta/2$ for every $i \in \{1, 2, \dots, k\}$. Also for every $i \in \{1, 2, \dots, k\}$, continuity of w_{α_i} and w_{σ_i} ensures that there is an $m_i \in \mathbb{N}$ such that, for every $m \geq m_i$,

$$d(w_{\alpha_i}(x_i), w_{\alpha_i} \circ w_{\alpha_{i+1}} \circ \cdots \circ w_{\alpha_m}(b)) < \delta/4$$

and

$$d(w_{\sigma_i}(x_i), w_{\sigma_i} \circ w_{\alpha_{i+1}} \circ w_{\alpha_{i+2}} \circ \cdots \circ w_{\alpha_m}(b)) < \delta/4.$$

So for every $i \in \{1, 2, ..., k\}$ and for every $m \geq m_i$,

$$d(w_{\alpha_{i}} \circ w_{\alpha_{i+1}} \circ \cdots \circ w_{\alpha_{m}}(b), w_{\sigma_{i}} \circ w_{\alpha_{i+1}} \circ w_{\alpha_{i+2}} \circ \cdots \circ w_{\alpha_{m}}(b))$$

$$\leq d(w_{\alpha_{i}} \circ w_{\alpha_{i+1}} \circ \cdots \circ w_{\alpha_{m}}(b), w_{\alpha_{i}}(x_{i}))$$

$$+ d(w_{\alpha_{i}}(x_{i}), w_{\sigma_{i}}(x_{i}))$$

$$+ d(w_{\sigma_{i}}(x_{i}), w_{\sigma_{i}} \circ w_{\alpha_{i+1}} \circ w_{\alpha_{i+2}} \circ \cdots \circ w_{\alpha_{m}}(b))$$

$$< \delta/4 + \delta/2 + \delta/4 = \delta.$$

Then, for every $m > \max\{k, m_1, m_2, \dots, m_k\}$,

Furthermore, there is a $p > \max\{k, m_1, m_2, \dots, m_k\}$ such that

$$d(\lim_{n\to\infty} w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_n}(b), w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_p}(b)) < \varepsilon/4$$

and

$$d(\lim_{n\to\infty}w_{\sigma_1}\circ w_{\sigma_2}\circ\cdots\circ w_{\sigma_n}(b),w_{\sigma_1}\circ w_{\sigma_2}\circ\cdots\circ w_{\sigma_p}(b))<\varepsilon/4.$$

Thus

$$\begin{split} d(\Gamma(\alpha),\Gamma(\sigma)) &= d(\lim_{n\to\infty} w_{\alpha_1}\circ w_{\alpha_2}\circ \cdots \circ w_{\alpha_n}(b),\\ &\qquad \qquad \lim_{n\to\infty} w_{\sigma_1}\circ w_{\sigma_2}\circ \cdots \circ w_{\sigma_n}(b))\\ &\leq d(\lim_{n\to\infty} w_{\alpha_1}\circ w_{\alpha_2}\circ \cdots \circ w_{\alpha_n}(b),\\ &\qquad \qquad w_{\alpha_1}\circ w_{\alpha_2}\circ \cdots \circ w_{\alpha_p}(b),\\ &\qquad \qquad + d(w_{\alpha_1}\circ w_{\alpha_2}\circ \cdots \circ w_{\alpha_p}(b),w_{\sigma_1}\circ w_{\sigma_2}\circ \cdots \circ w_{\sigma_p}(b))\\ &\qquad \qquad + d(w_{\sigma_1}\circ w_{\sigma_2}\circ \cdots \circ w_{\sigma_p}(b),\\ &\qquad \qquad \lim_{n\to\infty} w_{\sigma_1}\circ w_{\sigma_2}\circ \cdots \circ w_{\sigma_n}(b))\\ &< \varepsilon/4 + \varepsilon/2 + \varepsilon/4 = \varepsilon, \end{split}$$

and Γ is continuous at α .

Conversely, if Γ is continuous, then let $\alpha \in \Sigma$, $b \in B$. Let $\tau \in \Lambda$; let $\varepsilon > 0$. Since Γ is continuous, there is an open neighborhood $N(\tau \alpha)$ such that if $\sigma \in N(\tau \alpha)$, then $d(\Gamma(\tau \alpha), \Gamma(\sigma)) < \varepsilon$. Now, if $\lambda \in \text{PROJ}_1(N(\tau \alpha))$, a neighborhood of τ , then $\lambda \alpha \in N(\tau \alpha)$, and

$$\begin{split} d(w_{\tau}(\Gamma(\alpha)),w_{\lambda}(\Gamma(\alpha))) &= d(w_{\tau}(\lim_{n \to \infty} w_{\alpha_{1}} \circ w_{\alpha_{2}} \circ \cdots \circ w_{\alpha_{n}}(b)), \\ & w_{\lambda}(\lim_{n \to \infty} w_{\alpha_{1}} \circ w_{\alpha_{2}} \circ \cdots \circ w_{\alpha_{n}}(b))) \\ &= d(\lim_{n \to \infty} w_{\tau} \circ w_{\alpha_{1}} \circ w_{\alpha_{2}} \circ \cdots \circ w_{\alpha_{n}}(b), \\ & \lim_{n \to \infty} w_{\lambda} \circ w_{\alpha_{1}} \circ w_{\alpha_{1}} \circ \cdots \circ w_{\alpha_{n}}(b)) \\ &= d(\Gamma(\tau\alpha), \Gamma(\lambda\alpha) < \varepsilon, \end{split}$$

because w_{τ} and w_{λ} are continuous. Hence $w \mid (\Lambda \times \{\Gamma(\alpha)\})$ is continuous. \square

Theorem 2.10. The address function Φ_{Ω} is continuous if and only if $w \mid (\Lambda \times \{a\})$ is continuous for every $a \in A$.

Proof. By Theorem 2.3 (iii), $\Phi_{\Omega}(\Sigma) = A$. Now the result follows from Lemma 2.9. \square

It can be shown that the following two are equivalent: (i) $w \mid (\Lambda \times \{x\})$ is continuous for every $x \in X$, and (ii) w is continuous. If X is

compact, then it can be shown that each of (i) and (ii) is equivalent to: (iii) $\{w \mid (\Lambda \times \{x\}) : x \in X\}$ is equicontinuous. So, with respect to A, these different forms of continuity for the collection of contractions w_{λ} are identical, and the continuity of Φ_{Ω} is equivalent to the continuity of $w \mid (\Lambda \times A)$.

According to Theorem 2.10, Φ_{Ω} is certainly continuous if Λ is finite. Each of Williams [8, p. 56], Hutchinson [4, p. 725], Hata [3, p. 384], and Barnsley [1, p. 127] concludes the continuity of his version of the address function in the case of finite Λ .

If Φ_{Ω} is continuous and one-to-one, then A is homeomorphic to Σ , since Σ is compact and A Is Hausdorff. If, in addition, Λ is finite, then A is homeomorphic to the Cantor space. One-to-oneness, however, is not readily achieved, as the following shows.

Proposition 2.11. The address function Φ_{Ω} is one-to-one if and only if for every λ , $\tau \in \Lambda$, with $\lambda \neq \tau$, $w_{\lambda} \mid A$ is one-to-one and $w_{\lambda}(A) \cap w_{\tau}(A) = \phi$.

Proof. If Φ_{Ω} is one-to-one, and $w_{\tau}(a) = w_{\delta}(b)$ for some $\tau, \delta \in \Lambda$ and some $a, b \in A$, then, since Φ_{Ω} is onto A, there are $\alpha, \beta \in \Sigma$ such that $\Phi_{\Omega}(\alpha) = a$ and $\Phi_{\Omega}(\beta) = b$. It follows from the continuity of w_{τ} and w_{δ} that $\Phi_{\Omega}(\tau \alpha) = w_{\tau}(a)$ and $\Phi_{\Omega}(\delta \beta) = w_{\delta}(b)$. Since Φ_{Ω} is one-to-one, $\tau \alpha = \delta \beta$, and thus $\tau = \delta$ and $\alpha = \beta$. Then a = b, and hence $w_{\lambda} \mid A$ is one-to-one for every $\lambda \in \Lambda$, and any two different elements of $\{w_{\lambda}(A) : \lambda \in \Lambda\}$ do not meet.

Conversely, if $w_{\lambda} \mid A$ is one-to-one for every $\lambda \in \Lambda$, and $w_{\lambda}(A) \cap w_{\tau}(A) = \phi$ for every $\lambda, \tau \in \Lambda$, with $\lambda \neq \tau$, then let $\alpha, \beta \in \Sigma$, $\alpha \in A$. If $\Phi_{\Omega}(\alpha) = \Phi_{\Omega}(\beta)$, then

$$\lim_{n\to\infty} w_{\alpha_1} \circ w_{\alpha_2} \circ \cdots \circ w_{\alpha_n}(a) = \lim_{n\to\infty} w_{\beta_1} \circ w_{\beta_2} \circ \cdots \circ w_{\beta_n}(a),$$

and

$$w_{\alpha_1}(\lim_{n\to\infty}w_{\alpha_2}\circ w_{\alpha_3}\circ\cdots\circ w_{\alpha_n}(a))=w_{\beta_1}(\lim_{n\to\infty}w_{\beta_2}\circ w_{\beta_3}\circ\cdots\circ w_{\beta_n}(a)),$$

since w_{α_1} and w_{β_1} are continuous. Thus, $\alpha_1=\beta_1$ and

$$\lim_{n\to\infty} w_{\alpha_2} \circ w_{\alpha_3} \circ \cdots \circ w_{\alpha_n}(a) = \lim_{n\to\infty} w_{\beta_2} \circ w_{\beta_3} \circ \cdots \circ w_{\beta_n}(a).$$

Induction being used, if $k \in \mathbb{N}$ and $\alpha_k = \beta_k$, and

$$\lim_{n\to\infty} w_{\alpha_{k+1}} \circ w_{\alpha_{k+2}} \circ \cdots \circ w_{\alpha_n}(a) = \lim_{n\to\infty} w_{\beta_{k+1}} \circ w_{\beta_{k+2}} \circ \cdots \circ w_{\beta_n}(a),$$

then by an argument similar to that just used, $\alpha_{k+1} = \beta_{k+1}$ and the proper equation for limits follows. So $\alpha_i = \beta_i$ for every $i \in \mathbf{N}$. Thus $\alpha = \beta$ and Φ_{Ω} is one-to-one. \square

3. Existence of self-similar sets. It has been seen that a self-similar set is composed of the limits of certain sequences. In this section it is shown that if w is continuous, then, conversely, the limits of these sequences exist and comprise a self-similar set. The following development is suggested by Lemma 2.2 (i).

For every $\lambda \in \Lambda$, the fixed point of w_{λ} is denoted by z_{λ} .

Theorem 3.1. If A is self-similar under F_{Ω} , then A is the unique such set.

Proof. If B is self-similar under F_{Ω} , then let $a \in A$, $b \in B$. By Theorem 2.3 (iii), $B = \{\lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b) : \sigma \in \Sigma\}$ and $A = \{\lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a) : \sigma \in \Sigma\}$. By Proposition 2.6 (i), $\lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(a) = \lim_{n \to \infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$ for every $\sigma \in \Sigma$. Hence, A = B. \square

Theorem 3.2. If w is continuous, then there exists a unique set self-similar under F_{Ω} .

Proof. Define $z: \Lambda \to X$ by $z(\lambda) = z_{\lambda}$. Let $\tau \in \Lambda$. Let $\varepsilon > 0$. Since w is continuous, there is an open neighborhood $N(\tau)$ such that if $\lambda \in N(\tau)$, then $d(w_{\tau}(z_{\tau}), w_{\lambda}(z_{\tau})) < \varepsilon(1-s)$. So if $\lambda \in N(\tau)$, then

$$d(z_{\tau}, z_{\lambda}) = d(w_{\tau}(z_{\tau}), w_{\lambda}(z_{\lambda}))$$

$$\leq d(w_{\tau}(z_{\tau}), w_{\lambda}(z_{\tau})) + d(w_{\lambda}(z_{\tau}), w_{\lambda}(z_{\lambda}))$$

$$< \varepsilon(1 - s) + sd(z_{\tau}, z_{\lambda}),$$

 $(1-s)d(z_{\tau},z_{\lambda})<\varepsilon(1-s)$, and $d(z_{\tau},z_{\lambda})<\varepsilon$. Hence z is continuous, and so $\{z_{\lambda}:\lambda\in\Lambda\}$ is bounded, being a continuous image of the compact Λ .

Define $D \equiv \text{diam} \{z_{\lambda} : \lambda \in \Lambda\}$. Define $B \equiv \bigcap \{N(z_{\lambda}, D(1+s)/(1-s)) : \lambda \in \Lambda\}$. Because $\{z_{\lambda} : \lambda \in \Lambda\} \subset B$, B is nonempty, and certainly B is bounded. Let $\tau, \delta \in \Lambda$, $b \in B$. Then

$$d(w_{\tau}(b), z_{\delta}) \leq d(w_{\tau}(b), w_{\tau}(z_{\delta})) + d(w_{\tau}(z_{\delta}), w_{\tau}(z_{\tau}))$$

$$+ d(w_{\tau}(z_{\tau}), z_{\delta})$$

$$\leq sd(b, z_{\delta}) + sd(z_{\delta}, z_{\tau}) + d(z_{\tau}, z_{\delta})$$

$$< sD(1+s)/(1-s) + sD + D$$

$$= D(1+s)/(1-s),$$

and thus $w_{\tau}(B) \subset B$.

Now, according to Lemma 2.2 (i), $\lim_{n\to\infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$ exists for every $\sigma \in \Sigma$. Define $A \equiv \{\lim_{n\to\infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b) : \sigma \in \Sigma\}$. Define $\Gamma : \Sigma \to A$ by $\Gamma(\sigma) = \lim_{n\to\infty} w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(b)$. By Lemma 2.9, Γ is continuous. Since Σ is compact due to the compactness of Λ , it follows that A, being $\Gamma(\Sigma)$, is compact.

Also,

$$\begin{split} & \cup \{w_{\lambda}(A) : \lambda \in \Lambda\} \\ & = \cup \{w_{\lambda}(\{\lim_{n \to \infty} w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \cdots \circ w_{\sigma_{n}}(b) : \sigma \in \Sigma\}) : \lambda \in \Lambda\} \\ & = \cup \{\{w_{\lambda}(\lim_{n \to \infty} w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \cdots \circ w_{\sigma_{n}}(b)) : \sigma \in \Sigma\} : \lambda \in \Lambda\} \\ & = \cup \{\{\lim_{n \to \infty} w_{\lambda} \circ w_{\sigma_{1}} \circ w_{\sigma_{2}} \circ \cdots \circ w_{\sigma_{n}}(b) : \sigma \in \Sigma\} : \lambda \in \Lambda\} \\ & = \cup \{\Gamma(\{\lambda \sigma : \sigma \in \Sigma\}) : \lambda \in \Lambda\} \\ & = \Gamma(\cup \{\{\lambda \sigma : \sigma \in \Sigma\} : \lambda \in \Lambda\}) = \Gamma(\Sigma) = A. \end{split}$$

Thus, A is self-similar under F_{Ω} , and, by Theorem 3.1, A is unique. \square

So, in some sense, in the presence of the continuity of w, addressability is equivalent to self-similarity.

If Λ is finite, then w is trivially continuous, and so Ω is a stage for self-similarity by Theorem 3.2. Hutchinson [4, p. 724], Hata [3, p. 384], and Barnsley [1, p. 82] all have this finite case result.

4. Self-similar sets and hyperspace. In this section an approach to self-similarity other than addressing is taken. The self-similar set

is viewed as a point in the hyperspace of compact subsets of X and is achieved as the fixed point of a suitable contraction on hyperspace. For finite Λ , this approach is indicated by Hutchinson [4, p. 728] and used extensively by Barnsley [1, p. 82]. Here the hyperspace approach is suggested by Corollary 2.8.

The set of all nonempty compact subsets of X is denoted by H(X), and h is the Hausdorff metric on H(X). Also, for $K \in H(X)$ and $\varepsilon > 0$, $M(K, \varepsilon)$ is $\cup \{N(x, \varepsilon) : x \in K\}$, and the function W is defined on H(X) by $W(K) = \cup \{w_{\lambda}(K) : \lambda \in \Lambda\}$.

Theorem 4.1. If w is continuous, then there exists a unique set A self-similar under F_{Ω} , and $W^n(K) \to A$ in (H(X), h) for every $K \in H(X)$.

Proof. By Theorem 3.2, there exists a unique set A self-similar under F_{Ω} . Let $K \in H(X)$. Since w is continuous, W(K), which is $w(\Lambda \times K)$, is compact, and by induction it follows that $W^n(K) \in H(X)$ for every $n \in \mathbb{N}$ and $W^n(K) = \bigcup \{w_{\sigma_1} \circ w_{\sigma_2} \circ \cdots \circ w_{\sigma_n}(K) : \sigma \in \Sigma\}$. Now let $\varepsilon > 0$. By Corollary 2.8, there is an $m \in \mathbb{N}$ such that, for every $k \geq m$, $W^k(K) \subset M(A, \varepsilon)$ and $A \subset M(W^k(K), \varepsilon)$. It follows that $h(A, W^k(K)) < \varepsilon$ and hence that $W^n(K) \to A$ in H(X), $H(X) \to B$.

The above result may be achieved differently. If A is self-similar under F_{Ω} , then W(A) = A and A is a fixed point of W; also, in the previous result the iterates of W converge to A. Thus, the Banach fixed point theorem is brought to mind. The details follow.

Proposition 4.2. If $W(\{x\}) \in H(x)$ for every $x \in X$, then W is a contraction on H(X) with contractivity factor s.

Proof. Let $K \in H(X)$. Let $\{x_n\}$ be a sequence in W(K); so there is a sequence $\{y_n\}$ in K and a sequence $\{\lambda_n\}$ in Λ such that $w_{\lambda_n}(y_n) = x_n$. Since K is compact, there is a subsequence $\{y_{n_k}\}$ and there is a $y \in K$ such that $y_{n_k} \to y$. Since $\{w(\lambda_{n_k}, y)\}$ is a sequence in the compact

 $\{w_{\lambda}(y): \lambda \in \Lambda\}$, it has a subsequence $\{w(\lambda_{t_n}, y)\}$ for which there is a $\tau \in \Lambda$ such that $w(\lambda_{t_n}, y) \to w_{\tau}(y)$. Also, $y_{t_n} \to y$.

Let $\varepsilon > 0$. There is a $p \in \mathbf{N}$ such that, for every $m \geq p$, $d(y_{t_m}, y) < \varepsilon/2s$. There is a $q \in \mathbf{N}$ such that, for every $m \geq q$, $d(w(\lambda_{t_m}, y), w_{\tau}(y)) < \varepsilon/2$. So, for every $m \geq \max\{p, q\}$,

$$d(w(\lambda_{t_m}, y_{t_m}), w_{\tau}(y)) \leq d(w(\lambda_{t_m}, y_{t_m}), w(\lambda_{t_m}, y)) + d(w(\lambda_{t_m}, y), w_{\tau}(y))$$

$$< sd(y_{t_m}, y) + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Hence, $w(\lambda_{t_n}, y_{t_n}) \to w_{\tau}(y)$, and W(K) is compact. Thus, W is a self-map on H(X).

Let $K, L \in H(X)$. Let $\varepsilon > 0$. Let $\lambda \in \Lambda$, $x \in K$. There is a $y \in L$ such that $d(x,y) < h(K,L) + \varepsilon$. Then

$$d(w_{\lambda}(x), w_{\lambda}(y)) \leq sd(x, y) < sh(K, L) + s\varepsilon,$$

and $W(K) \subset M(W(L), sh(K, L) + s\varepsilon)$. Similarly, $W(L) \subset M(W(K), sh(K, L) + s\varepsilon)$. So $h(W(K), W(L)) < sh(K, L) + s\varepsilon$, and thus $h(W(K), W(L)) \le sh(K, L)$. Therefore, W is a contraction on H(X) with contractivity factor s.

Theorem 4.3. If $W(\{x\}) \in H(X)$ for every $x \in X$, then there exists a unique set A self-similar under F_{Ω} , and $W^n(K) \to A$ in (H(X), h) for every $K \in H(X)$.

Proof. The nonempty compact set A is self-similar under F_{Ω} if and only if W(A) = A. Since (H(X), h) is complete (see [5, p. 45]) and W is a contraction on H(X) by Proposition 4.2, the Banach fixed point theorem now applies. \square

Although Theorem 4.3 has a weaker hypothesis than that of Theorem 4.1, it is to be seen that the two theorems are equivalent.

Proposition 4.4. The following are all equivalent:

- i) Theorem 4.1,
- ii) Theorem 4.3, and

iii) the Banach fixed point theorem.

Proof. The proof of Theorem 4.3 shows that (iii) implies (ii). If w is continuous, then $W(\{x\}) \in H(X)$, and so (ii) implies (i).

Now assume (i). If (Q, d_Q) is a complete metric space, and f is a nonconstant contradiction on Q, then $\Lambda \equiv \{1\}$, and $w: \Lambda \times Q \to Q$ is defined by w(1,q) = f(q). Then $((Q,d_Q),w,\Lambda)$ is a contraction system, w is continuous, and, by (i), there exists a unique set A self-similar under $\{w_1\}$. Let $q \in Q$. Again, by (i), $W^n(\{q\}) \to A$ and so $\{f^n(q)\} \to A$. It must be then that A consists of a single point p and $f^n(q) \to p$.

Since W(A) = A, f(p) = p. This fixed point is unique, because if r is a fixed point of f, then f(r) = r, $f(\{p, r\}) = \{p, r\}$, $A = \{p, r\}$, and thus p = r. Therefore, (i) implies (iii). \square

5. Continuous variation of self-similar sets. In this section it is shown that self-similar sets determined by compact subsets of Λ vary continuously as the index space varies. It is also shown that a self-similar set is the limit of self-similar sets with finite index spaces.

It is assumed in this section that Λ is metrizable by the metric d_{Λ} , in which case Σ is metrizable by the metric d_{Σ} defined by $d_{\Sigma}(\sigma,\alpha) = \sum_{i=1}^{\infty} (1/2^i)(d_{\Lambda}(\sigma_i,\alpha_i))$. If $\Psi \in H(\Lambda)$, then \sum_{Ψ} is $\prod_{i=1}^{\infty} \Psi_i$ with the standard product topology, Ψ_i being Ψ for every $i \in \mathbb{N}$, and A_{Ψ} is the set self-similar under $F_{\Omega_{\Psi}}$, Ω_{Ψ} being $((X,d),w \mid (\Psi \times X),\Psi)$. If Q is a metric space, then the Hausdorff metric for H(Q) is denoted by h_Q .

In this section it is assumed that Λ is metrizable, w is continuous, and the set A is self-similar under F_{Ω} .

Theorem 5.1. If $T:(H(\Lambda),h_{\Lambda})\to (H(A),h)$ is defined by $T(\Psi)=A_{\Psi}$, then T is uniformly continuous.

Proof. By Theorem 3.2, A_{Ψ} exists for every $\Psi \in H(\Lambda)$; by Theorem 2.3 (iii), since $\Phi_{\Omega_{\Psi}} = \Phi_{\Omega} \mid \Sigma_{\Psi}$, it follows that $A_{\Psi} \in H(A)$; so T is well-defined.

Let $\varepsilon > 0$. According to Theorem 2.10, Φ_{Ω} is uniformly continuous; so there is a $\delta > 0$ such that, for every $\sigma, \alpha \in \Sigma$, if $d_{\Sigma}(\sigma, \alpha) < \delta$,

then $d(\Phi_{\Omega}(\sigma), \Phi_{\Omega}(\alpha)) < \varepsilon$. Now, if $\Upsilon, \Psi \in H(\Lambda)$ and $h_{\Lambda}(\Upsilon, \Psi) < \delta$, then $\Upsilon \subset M(\Psi, \delta)$. Let $\alpha \in \Sigma_{\Upsilon}$. So $\alpha_i \in \Upsilon$ for every $i \in \mathbb{N}$, and hence there is a $\beta_i \subset \Psi$ for which $d_{\Lambda}(\alpha_i, \beta_i) < \delta$. Then $\beta \in \Sigma_{\Psi}$, $d_{\Sigma}(\alpha, \beta) = \sum_{i=1}^{\infty} (1/2^i)(d_{\Lambda}(\alpha_i, \beta_i)) < \delta$, and thus $d(\Phi_{\Omega}(\alpha), \Phi_{\Omega}(\beta)) < \varepsilon$ and $\Phi_{\Omega}(\Sigma_{\Upsilon}) \subset M(\Phi_{\Omega}(\Sigma_{\Psi}), \varepsilon)$. Similarly, $\Phi_{\Omega}(\Sigma_{\Psi}) \subset M(\Phi_{\Omega}(\Sigma_{\Upsilon}), \varepsilon)$. Consequently, $h(\Phi_{\Omega}(\Sigma_{\Upsilon}), \Phi_{\Omega}(\Sigma_{\Psi})) < \varepsilon$, $h(A_{\Upsilon}, A_{\Psi}) < \varepsilon$ by Theorem 2.3 (iii), and T is uniformly continuous. \square

The next result shows that, for any self-similar set, there is an arbitrarily close set in hyperspace which is self-similar under a finite set of contractions.

Theorem 5.2. There exists an increasing sequence $\{\Lambda_n\}$ of finite sets in $H(\Lambda)$ for which $\{A_{\Lambda_n}\}$ is increasing and $A_{\Lambda_n} \to A$ in (H(A), h).

Proof. Since Λ is a compact metric space, for every $n \in \mathbf{N}$ there is a 1/n-net Ψ_n in Λ . Define $\Lambda_n \equiv \bigcup_{i=1}^n \Psi_i$ for every $n \in \mathbf{N}$. Then, for every $n \in \mathbf{N}$, Λ_n is a 1/n-net in Λ and $\Lambda_n \subset \Lambda_{n+1}$. By Theorem 3.2 and Theorem 2.3 (iii), the sequence $\{A_{\Lambda_n}\}$ exists and is increasing. Because for every $n \in \mathbf{N}$, $\Lambda_n \subset \Lambda$ and $\Lambda \subset M(\Lambda_n, 1/n)$, it follows that $h_{\Lambda}(\Lambda, \Lambda_n) < 1/n$. Then $\Lambda_n \to \Lambda$ in $(H(\Lambda), h_{\Lambda})$, and by Theorem 5.1, $A_{\Lambda_n} \to A$ in (H(A), h).

REFERENCES

- 1. M.F. Barnsley, Fractals everywhere, Academic Press, New York, 1988.
- 2. M.F. Barnsly and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243–275.
- 3. M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), 381–414.
- J.E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), 713–747.
- 5. E. Klein and A.C. Thompson, *Theory of correspondences*, John Wiley & Sons, New York, 1984.
- 6. B.B. Mandelbrot, *The fractal geometry of nature*, W.H. Freeman and Company, New York, 1983.

 ${\bf 7.}$ R.F. Williams, $Composition\ of\ contractions,$ Bol. Soc. Brasil. Mat. ${\bf 2}$ (1971), 55–59.

Department of Mathematical Sciences, Appalachian State University, Boone, NC $\,28608$