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SELF-SIMILARITY

GARY B. LEWELLEN

ABSTRACT. A self-similar set is defined as a compact set
which is the union of its images under the members of a col-
lection of contractions, the contractions being indexed by a
compact set. Self-similarity is characterized by the consider-
ation of points in the self-similar set as limits associated with
certain sequences of contractions. Conditions are given for the
occurrence of self-similarity. A self-similar set is also treated
as a fixed point in hyperspace, and the continuous variation
of self-similar sets is shown.

Introduction. Self-similarity has received much attention in recent
years in connection with the study of fractals. The small-scale geometry
of a self-similar set reproduces after a fashion the large-scale geometry
of the set, such as seen in the Cantor space. The self-similar set is
made up of arbitrarily small copies, or contracted images, of itself.
Historically, Mandelbrot [6, p. 18] stated that many of his fractals were
self-similar, and, in 1981, Hutchinson [4] put on a formal footing the
matter of self-similarity in fractals. In 1985, the contribution of Hata
[3] appeared. Also in 1985, Barnsley and Demko [2] formalized an
approach to self-similar fractals. Barnsley [1] further expanded this
approach in a text on fractals in 1988. In the present study the work of
Hutchinson and Barnsley related to self-similarity is elaborated upon
and expanded. Most studies of self-similarity have dealt with just
finitely many contractions acting at once on a set, although Hata [3]
does consider a sequence of contractions. In the present study the
collection of contractions acting on a set may be uncountable.

In Section 1 “self-similar” is defined, and in Section 2 self-similarity is
characterized by “addressing,” or the consideration of points in the self-
similar set as limits associated with certain sequences of contractions.
The existence of a self-similar set determined by a certain type of
collection of contractions is shown in Section 3. In Section 4 the
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approach to the self-similar set as a fixed point in hyperspace is
considered. Finally, in Section 5 the continuous variation of self-similar
sets is treated.

1. Self-similarity. In this section self-similar is defined. The
context for self-similarity in this study is always to include a complete
metric space (X,d) on which there is defined the contraction wy for
every A\ in a compact topological space A, assumed to have the discrete
topology if finite. It is assumed that not all of the contractions
indexed by A are constant and that all the contractions have a common
contractivity factor s. Additionally, w : A x X — X is defined
by w(A,z) = wx(z), Q is the ordered triple ((X,d),w,A), Fg is
{wy : X € A}, and N is the set of positive integers.

Definition 1.1. i) A contraction system is an €,

ii) a set A self-similar under Fg is a nonempty compact subset of
X for which A = U{wx(4): X € A}, and

iii) a self-similar set A is a set for which there is an 2 such that A
is self-similar under Fgq.

The essence, then, of self-similarity is representation by a collection
of contracted images. To make for uniqueness and determination of
distances between sets, the self-similar set is required to be compact.
(Other definitions of “self-similar” are used: see [3, p. 383] and [4,
p. 734].)

Example 1.2. The Cantor space {) o, n;/3" : n; € {0,2} for
i € N} is self-similar under {wy, w2}, wy being defined by wy(z) = z/3
and wq by wa(z) = x/3 + 2/3 for all real x.

Example 1.3. Define T to be the triangular region in R? whose
vertices are (0,0), (1,0), and (0,1), but without the interior of the
triangular region whose vertices are the midpoints of the sides of the
original triangle. Define 75 to be the region left when the “middle
triangular interior” is removed from each of the three triangular regions
of Ty. Thus, construct {T},}. Define A = N2, T,,. Then A is self-
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similar under {w;,ws, w3}, wy being defined by wi(z,y) = (z/2,y/2),
w2 by w2(m7 y) = (I/Q, y/2+1/2)7 and w3 by w3(x7 y) = ($/2+]./2, y/2)
for all (z,y) in R?. (The set A is the classical “Sierpinski Gasket.”)

Example 1.4. If (X,d) is a Banach space, let A be a nonempty,
compact, nonsingleton convex subset of X. For every a € A, define
we : X — X by we(x) = (£ + a)/2. Then A is self-similar under
{wy :a € A}.

Example 1.5. If X is the square region in R? with vertices (0,0),
(0,1), (1,0), and (1,1), then define A = {0,2} U {1/n : n € N} with the
topology inherited from R. Define wy, w2, and w;/, for n € N on X

B R CRIO]

w (T (1/2 cosm/2tt —1/2 sin(r/27* —7/2) (@
e (3) = )(5)

1/2 sinm /2" 1/2 cos(m /2" — 7/2) Yy

w () =m(5)+ (12%35)

Thus, each w) collapses X into a radius of the unit circle, ws following
this action on X by a translation so that wy (X )Uws(X) is the diagonal
of X from (0,0) to (1,1). The diagonal is at an angle of 7/4 radians
from the z-axis, and, for every n > 2, wy/,(X) is the radius at an angle
of 7/2"*! radians, wq/n41(X) being at one-half the angle of w; /,(X),
while wo(X) is at an angle of 0 radians. Define A to be the union of all
these radii and the diagonal. Then a common contractivity factor for
all wy is v/2/2, and A is self-similar under {wy : A € A}. Further, A is
not self-similar under any finite set of contractions, since a connected
set self-similar under a finite set of contractions must necessarily be
locally connected (see [3, p. 391]).

and

2. Addressing. In this section the relationship of addressing is
used to characterize a self-similar set and is shown to be continuous. A
salient feature of self-similarity is that if A = U{wx(A) : A € A}, then
A = U{wr(U{w-(A4) : 7 € A}) : X € A}, and so forth. This dissection of
the set A raises the question of the location of each particular element of
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A, a question answered by addressing: each element of A is associated
with a certain sequence of indices of contractions in a manner as just
suggested.

The product space [];2; A;, A; being A, is denoted by ¥ and has the
standard product topology, and o; is the ¢th coordinate of ¢ in X. If
o€ XYand A € A, then Ao is a in X for which a; = A and «; = 01 for
i > 1. The ith projection function for ¥, i € N, is denoted by PROJ;;
N(q) is an open neighborhood of ¢ in the topological space indicated by
context, and N(g,d) is {p € Q : dg(¢,p) < 6}, (Q,dg) being a metric
space indicated by context and § > 0.

In this section it is assumed that A is self-similar under Fg.

The following is immediate.

Proposition 2.1. i) For every n € N,
A=U{wy, oWy, 00w, (A): 0 € X},

and

ii) if B is a bounded subset of X and if, for everyn € N, g, : ¥ — R
is defined by g, (0) = diam (wy, oWy, 0+ - 0w, (B)), then {g,} converges
uniformly to 0.

So Proposition 2.1 states that A is made up of arbitrarily small copies,
or contracted images, of itself. If € A, then z € wy,(A) for some
A € A,z € wy (wr,(A)) for some Az € A, and so forth to ever
finer levels. Such trailing of individual elements of A gives rise to
“addressing,” a term originated by Barnsley [1, p. 118]. The “address”
of z is the o in ¥ specified by (A1, Ag,...). Since  is in all the ever
shrinking pieces w,, © Wy, © -+ 0 w,, (A) as n increases, then z is the
limit as n increases of the w,, o w,, 0 -+ 0w, (y) for every y in A.

Lemma 2.2. If B is a nonempty bounded subset of X, and
U{wx(B) : A € A} C B, then

1) limy, oo Wy OWg, 0+ -+ 0w, (b) exists for every b € B and every
o € X and is independent of b, and

ii) if gn : X x B = X is defined by 9,,(0,b) = Wy, 0Wg, 0+ - 0wy, (b)
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for every n € N, and g : ¥ x B — X is defined by g(o,b) =
lim,, 0o Wy, © Wy, © -+ 0 Wy, (b), then {gn} converges uniformly to g.

Proof. i) Since Wy, © Wg, 0+ 0 We, , (B) C Wy, 0 Wy, 0+ 0 Wy, (B)
for every ¢ € X, and since X is complete, the result follows from
Proposition 2.1 (ii).

ii) The result follows from Proposition 2.1 (ii). o

Theorem 2.3. i) lim, o, Wy, © Wy, © -+ 0 Wy, (a) exists in A for
every a € A and every o € ¥ and is independent of a,

ii) if gn : X x A — A is defined by g, (0,a) = Wy, OWg, 0+ -0 W, (a)
for every n € N, and g : ¥ x A — A is defined by g(o,a) =
lim;, 00 We, © Wy, © + -+ 0 Wy, (a), then {g,} converges uniformly to g,
and

ili) A= {limy, 00 We; © Wy, ©-+-0wW,, (a):c €L} for everya € A.

Proof. i) The result follows from Lemma 2.2 (i), since A is compact.
ii) The result follows from Lemma 2.2 (ii).

iii) Let a € A. By Proposition 2.1 (i), a sequence {\,, } can be chosen
inductively so that a € wy, o wy, o ---owy,(A) for every n € N. The
result then follows from (i) and Proposition 2.1 (ii). u]

In a different manner, Barnsley [1, p. 127] arrives at Theorem 2.3 (i)
and (iii) in the case of finite A.

The following definition is well-formed according to Theorem 2.3.

Definition 2.4. i) The Q-address function is ®q : ¥ — A defined
by P (o) = limy, 00 Wey © Wy, © -+ -0 W, (a) for every a € A, and

ii) an Q-address of a in A is any o € ¥ for which ®q(0) = a.

The address function is introduced by Williams [8, p. 56] and in a
form different from that here; Hutchinson [4, p. 725] makes use of the
function in showing that its image of X for finite A is compact. Hata
[3, p. 384] draws more attention to the address function, but it is left
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to Barunsley [1, p. 118], who introduces the term “address,” to define
the address function as it is here and to give addressing a significant
role in his pursuit of fractals. In the present study addressing has even
more of a role.

It is now seen that there is some freedom in finding the values of the
address function.

Lemma 2.5. If BC X, and BU {w)(b) : A € A,b € B} is bounded,
then {Wy, oWy, 0+~ 0wy, (b) : 0 € X,n € N,b € B} is bounded.

Proof. It may be assumed that B is nonempty. Let o € ¥, m € N,
¢ € Band z € X. Define D = diam ({z} UBU {wx(b) : A € A,b € B}).
Then

d(Wa,y © Way 0+ -+ 0 Wy, (€),x)

< d(Wey © Wey O -+ 0 Wy, (€), Wa, (¢) + d(wy, (), )

< 8d(Wqy © Wag © -+ 0 Wy, (¢),¢) + D

< 8[d(Way © Wag O+ 0 Wy, (€), Wa, (€)) + d(wa, (¢),c)] + D
52d(Way © Wy 0+ 0 W, (¢),¢) +sD + D

IN |

<s™'D4+s™2D+...4+sD+D
§D<Zsi) =D/(1-s).
1=0

Hence, {w,, 0 Wy, 0 -+ 0w, (b) : 0 € ¥,n € N,b € B} is bounded.
]

Proposition 2.6. Ify € X and {wx(y) : A € A} is bounded, then
i) ®q(o) =limy oo Wey © Wy, 0 -+ 0wy, (y) for every o € X, and

i) if gn: X — X is defined by gn(0) = Wy, © Wy, 0+ 0wy, (y) for
every n € N, then {g,} converges uniformly to ®q.
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Proof. 1) Define B = {w,, owg, 0-+-0w, (y): 0 € X,n € N}U{y}.
Since {y} U{wx(y) : A € A} is bounded, {wy, 0wy, 0+ 0wy, (y) : 0 €
Y,n € N} is bounded by Lemma 2.5, and so AU B is bounded. Also,
U{wr(AUB): A€ A} CAUB. Let « € ¥, a € A. By Lemma 2.2 (i),
then, limy, oo Wa, © Wa, O -+ 0 Wy, (y) exists and equals lim,, oo we, ©
Wey O+ 0 Wy, (a). Thus ®q(a) = limy,—y 00 Way © Way © +++ 0 W, (¥)-

ii) Define B as in (i). Define f,, : ¥ x (AU B) = X by f.(0,z) =
Wy, OWgy O+ - -0W,, (x) for every n € N. Define f : ¥ x (AUB) — X by
f(o,x) =limy_ 00 Wy, © Wy © -+ 0 Wy, (z), which exists by Lemma 2.2
(i). By Lemma 2.2 (ii), {f,} converges uniformly to f. Therefore,

{fn | (¥ x {y})} converges uniformly to f | (X x {y}), and {gn}
converges uniformly to ®q by (i). O

Proposition 2.7. If w is continuous, then

i) ®qa(o) = limy_yeo Wey © Wy, © -+ 0w, (x) for every o € ¥ and
every x € X, and

i) if K is a compact subset of X, g, : ¥ x K — X is defined by
9n(0, ) = Wy, CWg, 0+ -0w, (x) for everyn € N, and g: Ex K — X
is defined by g(o,z) = lim, 0o Wy; © Wy, © -++ 0 W, (x), then {gn}
converges uniformly to g.

Proof. i) Let y € X. Since w(A x {y}) is compact, the result follows
from Proposition 2.6 (i).

ii) Since w(A x K) is compact, K U {wx(z) : A\ € A,z € K} is
bounded, and by Lemma 2.5, if

B = {wy, 0Wgy0---0w,, (x):0 €L, neN,z € K},

then B is bounded. Further, B U K is bounded, and U{w)(B U K) :
A € A} C BUK. Define f, : ¥ X (BUK) — X by fu(o,z) =
Wy, O Wy O -+ - 0 Wy, (z) for every n € N. Define f: ¥ x (BUK) - X
by f(o,2) = limy, 00 Wy, © Wy, 0 - -+ 0 Wy, (2), which exists by Lemma
2.2 (i). By Lemma 2.2 (ii), {f,} converges uniformly to f. Hence,
{fn | (£ x K)} converges uniformly to f | (X x K), or {g,} converges
uniformly to g. O

Corollary 2.8. If w is continuous, K is a compact subset of X, and
e > 0, then there is an m € N such that for every a € A there is a
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o € X such that d(wg, © ws, 0+ 0w, (z),a) < € for every z € K
and for every n > m, and for every o € X there is a b € A such that
d(Wqy O Wy, 0+ -0 wWg, (2),b) < € for every x € K and for every n > m.

Proof. The result follows from Theorem 2.3 (iii) and Proposition 2.7.
]

The previous result indicates that travel along the many address trails
is uniform, so that in some sense convergence is to the set A itself rather
than just its points individually. This collective approach to A as a limit
in hyperspace will be explored in Section 4 as an alternate development
of self-similarity.

The conclusions of Proposition 2.7 and Corollary 2.8 certainly hold
for a contraction system with finite A, and Barnsley [1, p. 127] arrives
at the conclusion of Proposition 2.7 (i) for such a system.

Next, the continuity of the address function is seen to be equivalent
to a restricted continuity of w.

Lemma 2.9. If B is a nonempty bounded subset of X, {wx(B): A €
A}YC B, and T : X — X is defined by I'(0) = limy, s 00 Wyy © Wyy O+ ++ O
W, (b) for every b € B, then T is continuous if and only if w | (Ax {z})
is continuous for every x € T'(X).

Proof. By Lemma 2.2 (i), I is well defined. If w | (A x {z}) is
continuous for every z € I'(X), then let « € X, b € B. Let ¢ > 0.
There is a k € N such that s*(diam B) < /4. Define § = (1 — s) /4.
If i € {1,2,...,k}, then z; = lim,_ oo Wa,,, © Wa,,, O - © Wa, (b)
exists by Lemma 2.2 (i), and so, by continuity of w | (A x {z;}),
there is an open neighborhood N(«;) such that if A\ € N(«;), then
d(we, (x;:), wa(x;)) < §/2.

Now if o €N¥_, PROJ; (N (;)), a neighborhood of a, then d(wa, (z;),
Wy, (2;)) < /2 for every i € {1,2,...,k}. Also for every i €
{1,2,...,k}, continuity of w,, and w,, ensures that there is an m; € N
such that, for every m > m;,

d(we, (3), Wa; © Way,, O+ 0 W, (b)) < §/4
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and
d(in(xi)’in O Wa;yq © Wayyp ©°* © Way, (b)) < 5/4
So for every i € {1,2,...,k} and for every m > m;,
d(wai O Waiy, ©° " O Wa,y, (b)v Wo; © Wajpq © Wa;ypy O © Way, (b))
< d(wai O Wa;yq ©° " O Way, (b)7 wai(wi))
+ d(wai (wi)vwdi (xl))
+ d(wai (xl)v Weo; © Wy q © Wayyp Ot O Way, (b))
<O/A+0/2+8/4=0.
Then, for every m > max{k, my, ma,... ,my},

d(Way © Wey 0+ 0 Wy, (), Wy, © Wy, 00w, (b))
< d(Way © Wy 0+ 0 Wa,, (b),Ws, ©Way 0 Wy 0+ 0wy, (b))

+ d(Wy, 0 Way O Way O+ 0Wq,, (b), Wy, © Wy, 0+ 0wy, (b))
<0+ sd(Wyy, 0 Way O+ 0 Wy, (b), Wey © Wey © -+ 0wy, (b))
<0+ 3[04 sd(Wpy 0 Wy O+ 0 Wy, (), Wsy © Wy, 0+ 0w, (b))]

=6+ 80 + 8°d(Wag © Way O+ + 0 Wa,, (b), Wey © Wy, 0+ 0 W, (b))

<(1+s+---+s1
+ Skd(wakJrl O Wqpyy O 0 Way, (b)v Weopqq © Wopyp O 0 Wg,, (b))

<6/(1—s)+s*(diam B) < /4 +e/4=¢/2.
Furthermore, there is a p > max{k, m1, mo,... ,my} such that

d( lim we, © Wa, 0+t 0 Wy, (b), Wa, ©Wa, 0+ 0wg, (b)) < e/4

and

d( lim wg, 0 Wg, © -+ 0 Ws, (b),Ws, © Wo, © -+ 0 Wy, (b)) < /4.
n—oo
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Thus
d(l“(oz),l“(a)) = d( lim Weyy © Way © 0 0 Way, (b)7
n— o0

lim wy, © Wy, © - -+ 0wy, (b))
n—ro0

< d(nli—gio Weay © Way O 0 Wq, (b)’

Wa; © Wa, O"'Owap(b))
+d(wa1 O Wa, o"'owap(b)awm OWg, O+~ Owap(b))
+d(ws, © Wy, 0+ 0wy, (b),

lim w,, 0wy, 0+ 0wy, (b))
n—oo

<el/d+e/2+¢e/d=c¢,
and I' is continuous at a.

Conversely, if T is continuous, then let « € X, b € B. Let 7 € A;
let ¢ > 0. Since I' is continuous, there is an open neighborhood
N(7a) such that if ¢ € N(ra), then d(I'(ra),I'(c)) < e. Now, if
A € PROJ{(N(7a)), a neighborhood of 7, then Aa € N(ra), and

d(w(I'(a)), wA(T(@))) = d(w;( im_wa, 0 wa, © -+ 0 wa, (b)),

n—oo

wi( im wa, 0 wa, 0+ 0 wq, (b))
n—o0

=d( lim w; 0o wa, © Wa, 0+ 0 W, (b),
n—o0

lim wy o wq, ©Wq, 0-+-0 wan(b))
n—r0o0

=d(T'(ra),T'(Aa) < ¢,

because w, and w, are continuous. Hence w | (A x {T'(a)}) is
continuous. |

Theorem 2.10. The address function ®q is continuous if and only
if w| (A x {a}) is continuous for every a € A.

Proof. By Theorem 2.3 (iii), o (X) = A. Now the result follows from
Lemma 2.9. u]

It can be shown that the following two are equivalent: (i) w | (Ax{z})
is continuous for every z € X, and (ii) w is continuous. If X is
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compact, then it can be shown that each of (i) and (ii) is equivalent to:
(iii) {w | (A x {z}) : z € X} is equicontinuous. So, with respect to A,
these different forms of continuity for the collection of contractions wy
are identical, and the continuity of ®¢ is equivalent to the continuity
of w| (A x A).

According to Theorem 2.10, ®q, is certainly continuous if A is finite.
Each of Williams [8, p. 56], Hutchinson [4, p. 725], Hata [3, p. 384],
and Barnsley [1, p. 127] concludes the continuity of his version of the
address function in the case of finite A.

If &g is continuous and one-to-one, then A is homeomorphic to X,
since X is compact and A Is Hausdorff. If, in addition, A is finite, then
A is homeomorphic to the Cantor space. One-to-oneness, however, is
not readily achieved, as the following shows.

Proposition 2.11. The address function ®q is one-to-one if and
only if for every X\, 7 € A, with X # 7, wy | A is one-to-one and
wr(4) Nw,(4) = ¢.

Proof. If ®g, is one-to-one, and w,(a) = ws(b) for some 7,6 € A and
some a,b € A, then, since ®q is onto A, there are o, 8 € X such that
Po(a) = a and Do(B8) = b. It follows from the continuity of w, and
ws that ®o(ra) = w,(a) and Pq(d5) = ws(b). Since g is one-to-
one, T = 63, and thus 7 = § and @ = 8. Then a = b, and hence
wy | A is one-to-one for every A € A, and any two different elements of
{wx(A) : X € A} do not meet.

Conversely, if wy | A is one-to-one for every A € A, and wy(A4) N
wr(A) = ¢ for every A\, 7 € A, with A # 7, then let o, 8 € 3, a € A. If
Dg(a) = Po(B), then

lim wg, ©Wq, 00wy, (a) = lim wg, owg, o---owg_(a
s Weu az an() oo B1 B2 5n( )a

and

Wayy (nlin;o Wy OWag O+ O0Wq, (a)) = wp, (nlggo Wp, OWBg O - r O WG, (a))’

since wq, and wg, are continuous. Thus, o; = §8; and

lim wg, ©We, 00 W, (a) = lim wg, ocwg, o---owg_(a).
Jim wa, © Wag an(a) = lim wg, o wg, 5. (@)
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Induction being used, if £ € N and oy = 8k, and

lim w ow 0--+0wg (a) = lim w ow o---owg (a
s Waketa Qpy2 an( ) nyoo Pt Br+2 ﬂn( )a

then by an argument similar to that just used, ag+1 = Br4+1 and the
proper equation for limits follows. So «a; = (; for every ¢ € N. Thus
a = and P, is one-to-one. i

3. Existence of self-similar sets. It has been seen that a self-
similar set is composed of the limits of certain sequences. In this section
it is shown that if w is continuous, then, conversely, the limits of
these sequences exist and comprise a self-similar set. The following
development is suggested by Lemma 2.2 (i).

For every A\ € A, the fixed point of w) is denoted by z).

Theorem 3.1. If A is self-similar under Fq, then A is the unique
such set.

Proof. If B is self-similar under Fq, then let a € A, b € B. By
Theorem 2.3 (iii), B = {lim;, 00 Wo, © Wy, 0+ 0wy (b) : 0 € £} and
A = {lim, 400 Wy, ©W,, 0 0w, (a): o € X}. By Proposition 2.6 (i),
limy, 00 Wy, © Wey © + -+ 0 W, (@) = limy, 00 Wey © Wy, © -+ - 0 Wy, (b) for
every o € X.. Hence, A = B. o

Theorem 3.2. If w is continuous, then there exists a unique set
self-similar under Fg.

Proof. Define z : A — X by z(A\) = z,. Let 7 € A. Let ¢ > 0.
Since w is continuous, there is an open neighborhood N(7) such that
if X € N(7), then d(w,(zr),wa(27)) < e(l —s). Soif A € N(7), then

d(zr,23) = d(w-(27), wa(z2))
< d(wr(27), wa(zr)) + d(wa(zr), wa(22))
<e(l—s)+ sd(zr,2x),
(1-9)d(2r,2x) < g(1—s), and d(zr, zx) < €. Hence z is continuous, and

so {z) : A € A} is bounded, being a continuous image of the compact
A.
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Define D = diam {z) : A € A}. Define B = N{N(zx, D(1+4s)/(1—s)) :
X € A}. Because {z) : A € A} C B, B is nonempty, and certainly B is
bounded. Let 7,6 € A, b € B. Then

d(wr(b), z5) < d(wr(b), wr(25)) + d(wr(25), wr(zr))
+ d(w-(27), 25)
< sd(b, z5) + sd(zs, 27) + d(zr, 25)
<sD(1+s)/(1—s)+sD+D
=D(1+s)/(1—s),
and thus w,(B) C B.

Now, according to Lemma 2.2 (i), lim,,_, o Wy, 0W4, 0 - 0w, (b) exists
for every o € 3. Define A = {lim,,_, o0 Wy, Wy, 0 --0w,, (b): 0 € T}
DefineI': ¥ — A by I'(0) = limy,—y 00 Wy, ©Wg, 0+ - 0w, (b). By Lemma
2.9, ' is continuous. Since ¥ is compact due to the compactness of A,
it follows that A, being I'(X), is compact.

Also,
U{wx(A) :A € A}

= U{wa({ lim wo, 0wy, 00wy, (b) 1 0 € B}) 1 A € A}
):oeX}: e A}
= U{{ lim_wx 0wy, 0wy, 0+ 0wy, (b) 10 € T} : A€ A}

=U{T{ro:0€X}): A€ A}
=D(U{{dd:0€X}: A€ A})=T(2) =A.

)
)

= U{{wA(nIi_{lgo Wy, © Wy, O+ 0wy, (b

Thus, A is self-similar under Fg, and, by Theorem 3.1, A is unique.
]

So, in some sense, in the presence of the continuity of w, addressability
is equivalent to self-similarity.

If A is finite, then w is trivially continuous, and so (2 is a stage for
self-similarity by Theorem 3.2. Hutchinson [4, p. 724], Hata [3, p. 384],
and Barnsley [1, p. 82] all have this finite case result.

4. Self-similar sets and hyperspace. In this section an approach
to self-similarity other than addressing is taken. The self-similar set
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is viewed as a point in the hyperspace of compact subsets of X and
is achieved as the fixed point of a suitable contraction on hyperspace.
For finite A, this approach is indicated by Hutchinson [4, p. 728] and
used extensively by Barnsley [1, p. 82]. Here the hyperspace approach
is suggested by Corollary 2.8.

The set of all nonempty compact subsets of X is denoted by H(X),
and h is the Hausdorff metric on H(X). Also, for K € H(X) and
e >0, M(K,e) is U{N(z,¢e) : « € K}, and the function W is defined
on H(X) by W(K) = U{wx(K) : A € A}.

Theorem 4.1. If w is continuous, then there exists a unique set
A self-similar under Fq, and W*(K) — A in (H(X),h) for every
K € H(X).

Proof. By Theorem 3.2, there exists a unique set A self-similar under
Fo. Let K € H(X). Since w is continuous, W (K), which is w(A x K),
is compact, and by induction it follows that W™ (K) € H(X) for every
n € N and W*(K) = U{w,, ow,, 0 ---ow, (K) : 0 € £}. Now
let € > 0. By Corollary 2.8, there is an m € N such that, for every
k> m, WE(K) C M(A,e) and A C M(WF(K),e). It follows that
h(A,Wk(K)) < € and hence that W"*(K) — A in (H(X),h). ©

The above result may be achieved differently. If A is self-similar under
Fq, then W(A) = A and A is a fixed point of W; also, in the previous
result the iterates of W converge to A. Thus, the Banach fixed point
theorem is brought to mind. The details follow.

Proposition 4.2. If W({z}) € H(z) for every x € X, then W is a
contraction on H(X) with contractivity factor s.

Proof. Let K € H(X). Let {z,} be a sequence in W(K); so there is a
sequence {y,} in K and a sequence {)\,} in A such that wy, (yn) = Zx.
Since K is compact, there is a subsequence {y,, } and there is a y € K
such that y,, — y. Since {w(A,,,y)} is a sequence in the compact
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{wx(y) : X € A}, it has a subsequence {w(X;,_,y)} for which there is a
7 € A such that w(A;,,y) = w-(y). Also, y;, — ¥.

Let ¢ > 0. There is a p € N such that, for every m
d(yt,.,y) < €/2s. There is a ¢ € N such that, for every m
d(w(,,,y), w,(y)) < /2. So, for every m > max{p, ¢},

b,

2
Z 9

d(w(Ne,,,, Yt,)s wr(y) < d(w(Ne,s e, )y WAt ) Hd(w (N, ), we(y))
< sd(ys,.,y)+e/2<e/2+¢e/2=c¢.

Hence, w(A¢, ,vt,) — wr(y), and W(K) is compact. Thus, W is a
self-map on H(X).

Let K,L € H(X). Let ¢ > 0. Let A\ € A, z € K. Thereisay € L
such that d(z,y) < h(K,L) + €. Then

d(wx(z), wr(y)) < sd(z,y) < sh(K, L) + se,

and W(K) ¢ M(W (L), sh(K, L) + s¢). Similarly, W(L) ¢ M(W (K),
sh(K,L) + se). So h(W(K),W(L)) < sh(K,L) + s, and thus
h(W(K),W (L)) < sh(K, L). Therefore, W is a contraction on H(X)
with contractivity factor s. O

Theorem 4.3. If W({z}) € H(X) for every x € X, then there exists
a unique set A self-similar under Fq, and W"(K) — A in (H(X),h)
for every K € H(X).

Proof. The nonempty compact set A is self-similar under Fy, if and
only if W(A) = A. Since (H(X), h) is complete (see [5, p. 45]) and W
is a contraction on H(X) by Proposition 4.2, the Banach fixed point
theorem now applies. O

Although Theorem 4.3 has a weaker hypothesis than that of Theorem
4.1, it is to be seen that the two theorems are equivalent.

Proposition 4.4. The following are all equivalent:
i) Theorem 4.1,
ii) Theorem 4.3, and
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iii) the Banach fized point theorem.

Proof. The proof of Theorem 4.3 shows that (iii) implies (ii). If w is
continuous, then W({z}) € H(X), and so (ii) implies (i).

Now assume (i). If (Q,dg) is a complete metric space, and f is a
nonconstant contradiction on @, then A = {1}, and w : A x Q — @
is defined by w(l,q) = f(g). Then ((Q,dg),w,A) is a contraction
system, w is continuous, and, by (i), there exists a unique set A self-
similar under {w:}. Let ¢ € Q. Again, by (i), W"({q}) — A and so
{f™*(¢)} — A. It must be then that A consists of a single point p and
f(q) = p.

Since W(A) = A, f(p) = p. This fixed point is unique, because if r
is a fixed point of f, then f(r) =r, f({p,r}) = {p,7}, A= {p,r}, and
thus p = r. Therefore, (i) implies (iii). u]

5. Continuous variation of self-similar sets. In this section
it is shown that self-similar sets determined by compact subsets of A
vary continuously as the index space varies. It is also shown that a
self-similar set is the limit of self-similar sets with finite index spaces.

It is assumed in this section that A is metrizable by the metric dj,
in which case X is metrizable by the metric dx defined by dx(o,a) =
Yoo (1/2%)(da(ois ;). If U € H(A), then Y g is [[;o, ¥; with the
standard product topology, ¥; being W for every i € N, and Ay is the
set self-similar under Fq,, Qg being ((X,d),w | (¥ x X),¥). If Q is a
metric space, then the Hausdorff metric for H(Q) is denoted by hg.

In this section it is assumed that A is metrizable, w is continuous,
and the set A is self-similar under Fgq.

Theorem 5.1. If T : (H(A),hpy) — (H(A),h) is defined by
T(9) = Ag, then T is uniformly continuous.

Proof. By Theorem 3.2, Ay exists for every ¥ € H(A); by Theorem
2.3 (iii), since ®q, = Pq | Xy, it follows that Ay € H(A); so T is
well-defined.

Let € > 0. According to Theorem 2.10, @, is uniformly continuous;
so there is a 6 > 0 such that, for every o,a € %, if dg(0,a) < 6,
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then d(@q(0), Pa(a)) < €. Now, if T, ¥ € H(A) and hy(Y,¥) < 4,
then T C M(¥,8). Let & € Xy. So a; € T for every i € N, and
hence there is a 8; C ¥ for which dj(a;,3;) < §. Then 8 € Xy,
ds(a, B) = 302, (1/2%)(da(eu, Bi)) < 8, and thus d(Pq(a), Pa(8)) < €
and (I)Q(ET) C M((}Q(Z\y),s) Similarly, (I)Q(E\I/) C M(@Q(ZT),S).
Consequently, h(®q(Zv), ®o(Xw)) < €, h(Ay,Ay) < € by Theorem
2.3 (iii), and T is uniformly continuous. O

The next result shows that, for any self-similar set, there is an
arbitrarily close set in hyperspace which is self-similar under a finite
set of contractions.

Theorem 5.2. There exists an increasing sequence {A,} of finite
sets in H(A) for which {An,} is increasing and Ax, — A in (H(A),h).

Proof. Since A is a compact metric space, for every n € N there
is a 1/n-net ¥, in A. Define A, = U T, for every n € N. Then,
for every n € N, A, is a 1/n-net in A and A,, C A,11. By Theorem
3.2 and Theorem 2.3 (iii), the sequence {Ax, } exists and is increasing.
Because for every n € N, A,, C A and A C M(A,,1/n), it follows that
ha(A,A,) < 1/n. Then A, — A in (H(A),ha), and by Theorem 5.1,
Ap, — Ain (H(A),h).
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