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ALMOST CR STRUCTURES, f-STRUCTURES,
ALMOST PRODUCT STRUCTURES
AND ASSOCIATED CONNECTIONS

ROBERT I. MIZNER

ABSTRACT. A nondegenerate annihilating frame for a par-
tially integrable almost CR structure determines an affine con-
nection; a single nondegenerate annihilating form determines
a pair of partial connections.

0. Introduction. In [5] and [8], Tanaka and Webster independently
showed that a nondegenerate integrable pseudo-hermitian structure
determines a canonical affine connection. A number of authors have
used this connection to study analytical problems on codimension 1 CR
manifolds. In [6], by considering contact Riemannian structures, Tanno
proved that the integrability condition can be relaxed to that of partial
integrability provided that the pseudo-hermitian structure is strongly
pseudo-convex. It turns out (see the Remark following Proposition 7.1)
that the assumption of strong pseudo-convexity is not necessary for the
relaxation of the integrability condition—nondegeneracy suffices.

In fact, we show that a partially integrable almost CR structure of
arbitrary codimension, together with a nondegenerate, globally defined
frame for the annihilator of the holomorphic tangent bundle, determines
a canonical affine connection (see Theorem 7.1). Moreover, if the
hypothesis of a nondegenerate annihilating frame is weakened to that
of a single, nondegenerate annihilating form, then although we can no
longer define a canonical affine connection, we can define two canonical
partial connections, including a connection on the holomorphic tangent
bundle (see Theorem 7.2). These connections should be useful in
the study of almost CR submanifolds of partially integrable pseudo-
hermitian manifolds.

These results all follow from a more general result on affine connec-
tions that parallelize an almost product structure (see Theorem 6.1).
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The idea of relating almost CR structures to almost product structures
is motivated by the intermediary position occupied by f-structures.
In his recent book [1], Bejancu has developed some of the relations
between f-structures and almost CR structures; as far back as 1961,
Walker [7] observed that f-structures (he did not use this term) con-
stitute a special case of almost product structures. However, it does
not seem to be a matter of common knowledge that these three notions
are interrelated. Therefore, although the primary purpose of this pa-
per is to present the results formulated in Theorems 2.1, 6.1, 7.1, and
7.2, a secondary purpose is to collect in compact form some basic facts
about almost CR structures, f-structures, almost product structures,
and their linkage.

In Section 1 we define the basic objects in the theory of almost CR
structures. In Section 2 we introduce annihilating forms and frames,
use them to define two higher-codimensional analogues of pseudo-
hermitian structures, and give several concrete examples. In Section
3 we consider an auxiliary geometric object, adumbrated in Section 2,
which is equivalent to an f-structure. Because of this equivalence, we
recall the definition of f-structures and briefly discuss their relations
to almost CR structures. In Section 4 we introduce almost product
structures, concentrating on a subclass that includes f-structures as a
special case. In Section 5 we introduce a notion of a partial connection
in a vector bundle. In Section 6 we use partial connections to study
affine connections associated to almost product structures. Finally, in
Section 7 we consider connections related to almost CR. structures.

Throughout this paper, M denotes a fixed C** manifold of dimension
m. All bundles are vector bundles (real or complex) over M. If F is a
bundle, then I'(F') is the module of global C*° sections of F.

The complexification of a real bundle FE is denoted by CFE; at times
F is identified with the real subbundle of CE that comprises all real
(i.e., self-conjugate) vectors. In particular, TM is often considered
as a subbundle of CT'M. Also, a real bundle map is frequently not
distinguished from its complexification.

A bilinear bundle map b : Fy x Fy — FE3 is nondegenerate if
the associated bundle map b : E; — Hom (E3, E3), determined by
the requirement that b(X)(Y) = b(X,Y) for all X € T(E);), and
Y € I'(E,), is an isomorphism. On occasion we shall think of b as
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a section of the bundle Hom (E1, E2; E3).

For simplicity, two standard notational conventions are employed.
The first is summation convention: unless otherwise indicated, repeated
indices, one raised and the other lowered, are summed over. The second
is a conjugation convention: complex conjugation may be carried out
in the indices. For example, the conjugate of a;- may be written as &;- or
a? (or even al or a§ if one of the indices is associated to a real object).
Finally, the symbol I}, denotes the index set {1,2,...,k}; Iy denotes

7
the empty set.

1. Almost CR structures. We begin by recalling some elementary
facts about almost complex structures. An almost complex structure
on M can be given in a number of ways:

(1) a decomposition CTM =T, @ Tp1 with Tp1 = 7170;
(2) a decomposition CT*M = T% ¢ T%1 with T%! = T,
(3) an endomorphism J : TM — TM with J? = —1;

(4) an endomorphism J* : T*M — T*M with (J*)? = —1.

The decompositions in (1) and (2) are related by duality, as are
the endomorphisms in (3) and (4). The endomorphism in (3) extends
by complex linearity to an endomorphism of CT'M that acts on 179
(respectively, Ty 1) as multiplication by i (respectively, —i).

An almost complex structure is integrable if the bundles Ty o, 70,1,
T4% and T%! are involutive, or equivalently, if for all X,Y € I'(TM)

J([X,Y] - [JX,JY]) = [JX,Y] + [X, JY].

A complex structure is an integrable almost complex structure.

Generalizing (1) and (3) leads to the definition of an almost CR
structure as a complex subbundle % € CTM such that X NH = 0,
or equivalently, as a pair (H,J), where H is a subbundle of TM and
J: H — H is an endomorphism with the property that J?> = —1. The
bundle #H and the pair (H, J) are called, respectively, the complex and
real forms of the almost CR structure. They are related as follows:
H @ H = CH, and the complex linear extension of J to CH acts on X

(respectively, H) as multiplication by i (respectively, —i).
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The annihilator of H is the subbundle H* C T* M determined by the
following condition:

e H* < X|0=0 forall X € H.

The dimension (respectively, codimension) of H is the complex (re-
spectively, real) fiber dimension of H (respectively, H?). Clearly, a
codimension 0 almost CR structure is an almost complex structure,
and vice versa.

H is partially integrable if [H,H] C H © H, or equivalently, if for all
X,Y € [(H)
[X,Y] - [JX,JY] € D(H).

H is integrable if [H,H] C H, or equivalently, if it is partially integrable
and for all X,Y € I'(H)

J(X,Y] - [JX,JY]) = [JX,Y] + [X, JY].

A CR structure is an integrable almost CR structure.

The Levi form of ‘H is the map
L:HXH—CITM/CH

determined by the requirement that

L(X,Y) =1ir[X,Y], for all X,Y € T'(H),

where 7 : CI'M — CT'M/CH is the natural projection. It is easy to

verify that £ is hermitian symmetric, i.e., that £L(X,Y) = L(Y, X).

Throughout this paper, (H, J) and H will denote the real and complex
forms of an almost CR structure on M of dimension n and codimension
¢ with annihilator H* and Levi form L.

2. Generalizations of pseudo-hermitian structures. An an-
nthilating form 6 is a nowhere-zero section of H?; it is nondegenerate
(respectively, definite) if §o L), is a nondegenerate (respectively, definite)
hermitian form on H, for each p € M. If ¢ = 1, then the pair (#,0) is
called a pseudo-hermitian structure. It is nondegenerate (respectively,
strongly pseudo-convez) if 6 is nondegenerate (respectively, definite);
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it is partially integrable (respectively, integrable) if H is partially in-
tegrable (respectively, integrable). If ¢ > 1, then the pair (H,0) is
an obvious higher-codimensional analogue of a pseudo-hermitian struc-
ture. However, since if ¢ = 1 an annihilating form is also a frame for
H®, there is an equally obvious analogue, namely a pair (#, ¢) where
@ is an annihilating frame, i.e., a frame for H®. Each nonempty subset
S C I. determines a class of annihilating frames: ¢ = (¢!, p2,..., ¢)
is nondegenerate of type S if the annihilating form ¢ is nondegener-
ate for each a € S. Clearly, there are topological obstructions to the
existence of annihilating forms and frames. However, in general, by
restricting to a sufficiently small generic neighborhood in M, one can
find both kinds of objects.

_Example 1. Let (H,.J) be an almost CR structure on a manifold
N, and let N be a codimension k submanifold of N. Let H =
(TN N H) N J(TN N H), and denote the restriction of J to H by
J. Suppose that H is a subbundle of TN. Then (H,J) is easily seen
to be an almost CR structure on N , and N is called an almost CR
submanifold of N. Clearly, (H,.J) inherits any integrability property
enjoyed by (H,J).

(a) Suppose that § is a definite annihilating form for (H,.J). By
restriction, 6 induces a nondegenerate (indeed definite) annihilating
form 6 for (I:I , j) In particular, an almost CR submanifold of a
strongly pseudo-convex pseudo-hermitian manifold always admits a
nondegenerate annihilating form.

(b) Suppose that the codimension of (H, j) is 0, i.e., that J is
an almost complex structure, and that N is the zero-variety of a
submersion f : N — RF. Let Y = j*df and note that, for any
X € TN|g,

(i) XeTN < X|df =0

and

(i) XeJ(IN)< JXecTN < JX|df =0+ X|p=0.
Therefore,

(iii) XcH+=X|df =0 and X|p=0.
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Since by assumption H is a subbundle and df has rank k, it follows from
(iii) that @, the restriction of ¢ to TN , has locally constant rank. If
this rank is k (the generic case), then (H,.J) is a codimension k almost
CR structure and ¢ is an annihilating frame.

Returning to more general considerations, we show that if # is par-
tially integrable, then a nondegenerate annihilating frame determines
additional canonical objects.

Theorem 1. Let S be a nonempty subset of I., and let n : I, — S
be a map. If H is partially integrable and ¢ is an annihilating frame,
nondegenerate of type S, then there is a canonical subbundle C C TM
such that TM = H @& C. Moreover, there exists a unique frame
e=(e1,e2,...,e.) of C with the following properties:

(a) ea)p? =68 for all o, B € I;

ea]de™™ € T(H?), for all a € I,

(summation convention suspended).

(b)

Proof. Let U be an open subset of M on which there is given a
C™-valued 1-form w, such that

(i) the components of w,& and ¢ frame CT*U, and for all X €
I(CTU)

(i) XeT'(H|y) <= X|w=0and X|p=0.

By duality, there exist unique complex vector fields Wy, Ws,... , W,
and real vector fields Z;, Zs, ... , Z. on U with the following properties:

(i) W = (W1, Wa,...,W,) frames H|y;

(iv) (Wi, Way ... W, Wi, Wa, ... \Wn,Z1, Za, ..., Z) frames CTU;
(v) Wilwi =67 for all i,j € I,;

(vi) Za|¢? =88 and Z,|w? =0 for all o, 8 € I, and j € I,,.

Since H is partially integrable and ¢ = @, there also exist complex
functions h;?‘]—c and ajs and real functions Gy all defined on U, with the

following properties:
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(vil) dp® = ih;?‘,—cwj AwF + a;’-‘ﬁwj AP+ a;—?‘ﬁwi AP+ cl‘gvgaﬁ A @7 for
all a € I
(viii) B?IE = h% for all « € I. and j,k € I,;
(ix) g, = —c5g for all o, 8,7 € Ie.
Note that for all « € I. and j,k € I,
(x) 9% 0 L(W;, Wi) = g™ (W, W) = —idp™(Wj, Wp).
It follows from (vii) and (x) that, for all « € I, and j, k € I,,,

™ 0 L(W;, Wy) = h.

Therefore, since ¢ is nondegenerate of type S, for each o € §, there
exist complex functions h**" defined on U such that, for all k,t € I,,,

(xi) hetT RS = 6L and  h§ AT = 6.

A c-tuple Z = (21, oy ZC) of real vector fields on U corresponds
to a pair of maps

v:U — Hom (C",R°) and B:U — Hom (R R®)
by the formulae
(xii) Zg =W, +viW; + B}Z,  forall f € L.
A routine computation shows that, for all o, 5 € I,

Zglo® =062 and Z,|de"®) e D(H®
(summation convention suspended)

if and only if, for all o, 8 € I, and j € I,

(xiv) Bg =465 and vlé = —ih"(a)’kjag(ﬁa).

Let U be an open cover of M such that on each V' € U there is given

a C"-valued 1-form w" that satisfies (i) and (ii). (It is easy to verify
that such a cover always exists.) It follows from (xiii) and (xiv) that
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for each V' € U there exist unique vector fields ZIV, Z;/, e ,ZCV onV
such that, for all o, 58 € I,

ZY|p* =065 and ZY|de"® e T(H"|y)
(summation convention suspended).

For each 8 € I, let eg be the unique vector field on M that restricts
to ZX on each V € U. It is easy to verify that the definition of
eg is canonical. Finally, let C C TM be the subbundle framed by
e=(e1,ea,...,€). O

Corollary 1. If (#,6) is a nondegenerate partially integrable pseudo-
hermitian structure on M, then there exists a unique vector field e such

that e|0 =1 and e|df = 0.

Proof. By Theorem 1, there exists a canonical subbundle C C TM
such that TM = H @ C and a unique vector field e that frames C' and
that satisfies the following conditions:

(i) e]f =1
(ii) e|df € T(H?).
By (ii), e|df vanishes on H; since C is framed by e and df is skew-

symmetric, e|df vanishes on C. But TM = H @ C, so e|df = 0.
[}

Remark. Clearly, the nondegeneracy of (#,6) implies that 6 is a
contact form. It is well-known that if p is any contact form on M,
then there exists a unique vector field £, called the canonical transverse
vector field of u, such that &|pu = 1 and &|dpu = 0. Therefore, the
hypothesis of partial integrability can be dropped from Corollary 1.

Although Theorem 1 deals with annihilating frames, it can be used
to obtain results about annihilating forms.

Corollary 2. Suppose that H is partially integrable and that 0 is a
nondegenerate annihilating form. There exists a canonical subbundle
C CTM such that TM = H & C.

Proof. Given p € M, let U be a neighborhood of p, and let
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o = (ol 9% ..., 9% and p = (@1, P2,...,¢°) be annihilating frames
on U with ¢! = ¢! = 0|y;. Clearly, ¢ and @ are nondegenerate of type
{1}. There exists a smooth map P : U — GL(c, R) such that

(i) ¢%= Pﬁ"‘go’e for all « € I, and le = (5J1 for all j € I,,.

Let e = (e1,es,...,e.) and é = (&;,€q,...,6.) be the vector fields
associated with ¢ and ¢ by Theorem 1. Since &, |dp' € T'(H®) for all
a€l,

(ii) P§éq|dp' € T(H®)
for all 8 € I.. Moreover, for all 3, € I
(iii) Pgéa]eT = 5%.

By the uniqueness assertion of Theorem 1, it follows from (ii) and (iii)
that Pgé, = eg for all 8 € I.. Hence, e(p) and é(p) frame the same
subspace C}, C T,M. Let C = UpcpCp. Tt is clear that C is a canonical
subbundle of TM and that TM = H & C. O

3. Complemented almost CR structures and f-structures.
Motivated by Theorem 2.1 and Corollary 2.2, we define a complement
for H to be a subbundle C € TM such that TM = H & C, and a
framed complement to be a pair (C,e), where C is a complement and
e is a frame for C.

Theorem 2.1 associates a canonical framed complement to a nonde-
generate annihilating frame. In the other direction, a framed com-
plement (C,e) determines an annihilating frame ¢ by the following
conditions:

X|le=0 for all X € H;

eplp® = 0f for all o, B € I..
Note that ¢ may well be degenerate.

Corollary 2.2 associates a canonical complement to a nondegenerate
annihilating form. Combining this result with Example 2.1, we see that
the almost CR structure on an almost CR submanifold of a strongly
pseudo-convex partially integrable pseudo-hermitian manifold has a
canonical complement. Other examples are easily obtained.
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Example 1. Let g be a metric on M. Then H*, the orthogonal
complement of H with respect to g, is a complement for #.

_Example 2. Let J be an almost complex structure on a manifold
N, let N C N be a codimension k almost CR submanifold with a
codimension k almost CR structure (H,J), and let g be a metric on
N.

(a) If, as in (b) of Example 2.1, N is given by a global defining map,
then the associated annihilating frame ¢ determines a frame € for the
complement H' as follows: for all « € I, and X € TN

9(X, ) = X |5%.

Note that unlike the situation in Theorem 2.1, here the frame ¢ may
be degenerate.

(b) Suppose that § is the restriction of a hermitian metric § on N.
It is easy to verify that J induces an isomorphism of H+ with the
normal bundle of N. Also, it can be shown (see [1] or [12]) that if J is
integrable and § is Kaehler then H is involutive. The geometry of CR
submanifolds of hermitian and Kaehler manifolds has been investigated
recently in a number of papers and at least two books (see [1] and [12]
for references).

It should be noted that some of the objects defined in this section
have been studied since the early 1960’s under different names.

For instance, an f-structure on M is an endomorphism f : TM —
TM that satisfies the identity f2 + f = 0. Stong [4] proved that the
rank of such an endomorphism is locally constant. For convenience,
suppose that M is connected and that f has rank r. Then the kernel
of f is a subbundle K C T'M of fiber dimension m — r, and the image
of f is a subbundle R C T'M of fiber dimension r. By restriction, f
determines an endomorphism B : R — R, which satisfies the identity
B? = —1. Indeed, if X € R then X = fY for some Y € TM,
so B’X = f3% = —fY = —X. Hence (R,B) is a codimension
(m — r) almost CR structure with complement K. Conversely, if C
is a complement for (H,J), then there exists a unique endomorphism
g:TM — TM such that gX = JX for all X € H and gX = 0 for all
X € C; clearly, g is an f-structure.
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Thus, a complemented almost CR structure is equivalent to an f-
structure. Similarly, an almost CR structure with framed complement
is equivalent to an f-structure with complemented frames; see [1] for
the appropriate definition and a discussion of this equivalence.

4. Almost product structures. Let r be a positive integer. An r-
fold almost product structure on M is an r-tuple & = (Ey, Es, ..., E,)
of subbundles of CTM such that CI'M = ®;¢s, E;. Each pair of
nonnegative integers (d,d') with 2d + d’ = r determines a class of
almost product structures. Namely, € is of type (d,d’), if it satisfies the
following conditions:

Ei = Ed+i for all i € Ig;
E_‘gd+i = E2d+i for all i € Iy.

If £ is of type (d,d’), then for each i € Iy let C; C TM be the
real part of Eaqq,. It is easy to verify that @;cr, E; is an almost CR
structure with complement ®;¢z,, C;. Conversely, if C' is a complement
for the almost CR structure #, then & = (#,H,C) is an almost
product structure of type (1,1); given a frame e for C, one can produce
almost product structures of type (1,d’) for each d' € I.. Another
example occurs in [3], where it is shown how to associate an almost
product structure of type (n,2) to a CR structure of dimension n and
codimension 2 whose Levi form satisfies certain generic conditions.

An r-fold almost product structure £ determines r projection maps
m; : CTM — E;, which in turn determine a skew-symmetric bilinear
map 7 : CTM xCT'M — CT M, called the torsion of £, by the formula

(1) T:%Zm[m,m],

el

where [m;, m;] is the Nijenhuis torsion of m; (see [7]). We shall need two
simple propositions.

Proposition 1. (a) For all X, Y € T'(CT'M)

T(X,Y) =) ([mX,mY]; + [X,Y]; — [mX,Y]; — [X,mY])
i€l
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where [, |; stands for m;o[ , .
(b) For all (not necessarily distinct) i,j5 € I,,Z; € T'(E;) and
Z; € T(E))
T(Ziazj) = Z [Zi,Z]']k'
kel —{i.j}

Proof. (a) follows immediately from the definition of 7; (b) is a special
case of (a). O

Proposition 2. If £ is of type (d,d'), then T = 7.

Proof. 1t follows from (1) that 7 = (1/2)> ,c, m[mi, 7. But
i = Ta4 for all @ € I, and Toqy; = o444 for all ¢ € Iy, Therefore,
T=T. 0

Henceforth, any almost product structure that we consider will be of
some type (d,d’). Following the convention, mentioned in Section 0, of
not distinguishing between a real bundle map and its complexification,
we shall occasionally view 7 as a skew-symmetric map from T'M x T'M
to TM. Also, we shall adopt the following notation: if £ is an r-fold
almost product structure and A : CTM x CTM — CTM is a map,
then for all 4,5,k € I,

Aij B x E] — CTM and A”k B x EJ — Ej

are the maps obtained, respectively, by restricting A, and by composing
Aij with 7.

Starting at least as far back as the 1950’s, a number of people
have discussed various affine connections related to an almost product
structure (see, e.g., [7] and references therein). We shall consider
such connections in Section 6, but first, in Section 5, we formulate
a generalization of the notion of a connection on a vector bundle which
helps to simplify the subsequent exposition.

We close this section by observing that our use of the term “almost
product structure” is not universal. Yano and Kon [13] define an almost
product structure to be a direct sum decomposition of T'M into two
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factors; Kobayashi and Nomizu [2] allow any number of factors. Walker
[7] seems to use the term as we do; at any rate, he does include in his
examples a structure of the sort that we are calling type (1, 1).

5. Partial connections. Throughout this section, K, and also K,
denotes either R or C, subject to the restriction that in any argument
involving both K and K’, if K’ = R then K = R as well. Mg denotes
the ring of C*° K-valued functions on M. Recall our convention of
considering TM to be a real subbundle of CT M.

Let E be a K-subbundle of CT'M, and let F' be a K'-bundle over M.
An E-partial connection in F is a map V : I'(E) x I'(F) — I'(F) that
satisfies the following conditions for all X, X' € T'(E), Y,Y' € T'(F),
f € Myg,and g € Mg:

Vxix'Y =VxY +Vx/Y;
VixY = fVxY;
Vx(Y +Y')=VxY +VxY’;
Vx(g9Y) = (Xg)Y +gVxY.
Clearly, if E = TM then an E-partial connection in F' is equivalent to

an ordinary connection in F'.

If F is a subbundle of TM and F is a complex bundle over M on
which there is given a conjugation, then a CFE-partial connection V
in F is real if V =V, ie., if VxY = VY for all X € I'(CE) and
Y € I'(F). For future reference, we list some basic facts about partial
connections in the following propositions. The proofs of all but the last
of them are completely elementary and are therefore omitted.

Proposition 1. Let E be a K-subbundle of CTM and F be a K'-
bundle over M, and suppose that V is an E-partial connection in F. If
E' C E is a K-subbundle, then by restriction V induces an E'-partial
connection in F.

By a slight abuse of notation, we denote the induced partial connec-
tion by V.

Proposition 2. Let r and v’ be positive integers. For each i € I,
let E; be a K-subbundle of CTM, for each j € I+ let F; be a K'-
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bundle over M, and for each (i,j) € I, X I+ let V%I be an E;-partial
connection in Fj. There exists a unique (B;cr, E;)-partial connection V
in ®jer, Fj such that VxY = VY'Y for all X € T(E;) andY € T'(F}).

We shall denote V by ©VH7.

Proposition 3. Let E be a real subbundle of CT M.

(a) Let F be a real bundle over M. An E-partial connection in F
extends by complex linearity to a unique real CE-partial connection in
CF, and each real CE-partial connection in CF' is the extension of a
unique E-partial connection in F.

(b) Let F be a complex bundle over M. An E-partial connection in
F extends by complex linearity to a unique CE-partial connection in
F, and each CE-partial connection in F' is the extension of a unique
E-partial connection in F.

In practice, we shall not distinguish between partial connections
related in the manner of (a) or (b).

Proposition 4. Let E be a K-subbundle of CI'M, and let F be
a trivial K'-bundle over M with frame (Y1,Ys,...,Ys). There exists
a unique E-partial connection V in F such that VxY; = 0 for all
X eT(E) and j € I.

Proposition 5. Let E be a K-subbundle of CTM, let F',F?, and
F? be K'-bundles over M, and let V? and V3 be E-partial connections
in F? and F3, respectively.

(a) If V! is an E-partial connection in F', then there exists a

unique E-partial connection V in Hom (F, F?; F3) such that for all
X eT(E), Y e(FY), Z €e'(F?) and b € I'(Hom (F*, F?; F?3))

(1) (Vxb)(Y,2) = VX (b(Y, 2)) — b(VkY, Z) — b(Y, V% Z).
(b) Suppose that b € T'(Hom (F*, F?; F?)) is nondegenerate. There

exists a unique E-partial connection V' in F! such that if V is defined
as in (a), then Vxb =0 for all X € I'(E).
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Proof. (a) Simply verify that if (Vxb)(Y,Z) is defined by (1), then
V is indeed a partial connection.

(b) Note that if Vxb =0, then by (1)
(i) b(VxY, 2) = Vi (b(Y, 2)) — b(Y, VX Z).

Since b is nondegenerate, (i) determines V1Y uniquely. To prove
existence, define Vi by (i), and verify that V! is a partial connection.
]

6. Parallelizing connections. Let £ = (Fy,Es,... ,E;) be an
almost product structure of type (d,d’) with torsion 7. A parallelizing
connection for £ is an affine connection V with respect to which each
of the distributions E; is parallel, i.e., VxY € I'(E;) for all i € I,
X € I(T'M) and Y € I(E;).

Proposition 1. An affine connection V is parallelizing if and only
if for each i € I, there exists a CT M -partial connection V* in E; with
the following properties:

(a) V=aV,
(b) VE'Y = VLY for alli€ I, X € [(CTM) and Y € I'(E;);

(c) V24+3 s real for all j € Iy.
Proof. Routine verification. a
Corollary 1. There exists a parallelizing connection for £.

Proof. Recall the well-known fact that if F' is any real or complex
bundle over M then there exists a connection in F'. For each ¢ € I; let
V' be the extension to CTM of a connection in E; (see Proposition
5.3) and define a CT M -partial connection in E4.; as follows:

VIY = ViyY,  foralli€ Ig, X € [(CTM) and Y € I'(E).

For each i € Iy, let C; be the real part of Eoq s, let V24t be a
connection in Cj, and consider V241¢ as a real CT M-partial connection
in Fy44; (see Proposition 5.3). Finally, let V = @V"*. O
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This corollary has been proved repeatedly in the literature, in many
different ways (see [7, 9, 10, 11]). The chief reason for considering
the present proof is that it shows that, in order to specify a canonical
parallelizing connection, it suffices to specify a canonical CT M -partial
connection in F; for each j in the index set

R={1,2,...,d}U{2d+1,2d+2,... ,r}.

Proposition 2. Let V be a parallelizing connection, with torsion T,
and let i, j € I, be distinct.

(a) Tijx = —Tiji for allk € I, — {i,5}.

(b) T;; = —mij if and only if VxY = [X,Y]; for all X € T'(E;) and
Y € T(E).

Proof. Let X € I'(E;) and Y € I'(E;). By definition, T(X,Y) =
VxY - VyX - [X,Y], so

(i) T(X,Y) = (VxY = [X,Y];) = (Vy X = [V, X];) = > [X, Y]
kel.—{i,5}

Since V is parallelizing, (i) implies the following equations:
(i) T;;(X,Y)=—(VyX =Y, X];);
(ili) Ti;(X,Y) =VxY — [X,Y]};
(iv) Tijn(X,Y)=—[X,Y]; for all k € I, — {3, 5}.

Proposition 4.1 implies that 7;; equals 0 if k € {4, j} and equals [X, Y]
otherwise. Therefore, (a) follows from (iv), and (b) follows from (a),
(ii) and (if)). O

For each j € R let V/ be a CT M-partial connection in E;, and for
each i € I, let V¥ be the restriction of V7 to F;. By the preceding
results, these partial connections determine a parallelizing connection
with Tpg = —74p for all distinct «, 5 € I, if and only if for each j € R
and i € I, — {j} the partial connection V*7 is defined as follows:

VYWY =[X,Y]; forall X e T(E;) and Y € I(Ej).
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Thus, the problem of specifying a canonical parallelizing connection
reduces to that of specifying a canonical Ej-partial connection in E;
for each j € R. One might hope to solve this problem by requiring that
T = —7. Unfortunately, it is known (see [7]) that there exist many
parallelizing connections with this property. The following theorem
shows how to solve the problem if certain auxiliary data are available.
Despite its appearance of artificiality, this theorem yields results on
almost CR structures, which are presented in Section 7.

Theorem 1. Let {Q1,Q2} be a partition of R, and let p and o be
maps from Q2 to I.. Suppose that for each i € @QQ; the bundle F; is
framed by (e;1,€i2,. .. ,€is;), where, if i > 2d, each vector field e;; is
real, and that for each i € Qo the numbers i, p(i) and o (i) are mutually
distinct and the bilinear map T;p;)o(;) 1S nondegenerate. Then there
exists a unique parallelizing connection V, with torsion T, that satisfies
the following conditions:

(a) Ti; = —mij for all distinct i,j € I;

(b) Ve, eip =0 forallie @ and o, B € I,;

(€) VxTipiyo(iy =0 for all i € Q2 and X € T'(E;).
Moreover, V has the following properties:

(d) VxY = [X,Y]; for all distinct i,j € I,, X € T'(E;) and
Y € I'(E;);

©) Tipi)oi)(VxY,2) = [X,[Y, Zlo@)lo) — Y5 [X, Z] (i) loqay for all
i€ Qo, X,Y € T(E;) and Z € T'(E,;);

(f) Tij = —7isj for all distinct i,j € I;

(g) T’uz(ezaaezﬂ) [ezaaez,@] fOT all i € Ql and «, ﬂ € Is 3

(h) Tipyow(Tui(X,Y), 2) = [X, Y, Z]oq)y + Y, Z]o@)low +
[K [Za ]0‘ (@) + [Z X]p(z)]a(z) + [Za [Xa Y]Z]U(z) fOT all i € QZ) X7Y €
F(El) and Z € ( p(z)).

Proof. For each pair (z j) with j € R and ¢ € I, — {j} define an
E;-partial connection V%7 in E; by requiring that Vy Wy = [X,Y]; for
all X e T(E;) and Y € I'(E;). For each j € Q1, let VJ J be the unique
Ej-partial connection in E; with the property that V{a]?a ejg = 0 for all

a, 3 € I, (see Proposition 5.4). For each j € Q2, let V73 be the unique
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E;-partial connection in E; with the property that for all X,Y € I'(E;)
a.nd Z € F(Ep(j))

0 »
Tio)o() (VR Y, Z) = VX (Tjo(i)o (1) (V> 2)) = Tip(ie () (Vs VX 2),

(see Proposition 5.5) or, equivalently,

() TG)e() (VY 2) = [X, 1Y, Zlo))o () + V3 12, X))o () -
Finally, for each j € R let V/ = ®;c1, V¥, for each j € I4 define
a CTM-partial connection V4*7 in E4;; by requiring that V%‘ Y =

V%Y for all X € [(CTM) and Y € T'(E;), and let V = ®;cr, V7.

It is easy to verify that V is the unique parallelizing connection that
satisfies (a)—(c). Moreover, (d) is obvious, and (e) follows from (ii).
Since V is parallelizing, for all ¢ € I, and X,Y € I'(E;)

(i) Tii(X,Y) = VxY — Vy X — [X,Y];
and for all j € I, — {i}
(iv) T (X,Y) = —[X,Y];.

Clearly, (iv) implies (f), and (b) and (iii) together imply (g).

Finally, it follows from (iii) that for all i € @2, X,Y € I'(E;) and
Z € F(Ep(i))

() Tip(i)o(i) (T (X, Y), Z) = Tipiyo i) (VxY = Vy X — [X,Y];, Z).

Together, (ii) and (v) imply (h). o

7. Applications to almost CR geometry. Suppose that the
almost CR structure H is partially integrable and that ¢ is an anni-
hilating frame, nondegenerate of some type S; choose jo € S. Let
a = (a1,az,...,a.) be the canonical frame for the canonical comple-
ment of H (see Theorem 2.1), and for each j € I. let Ey; be the
complex subbundle of CT'M framed by a;. Define an almost product
structure & = (Fy, Es,...,FE2..) by setting E; = H and Ey = H;
denote the torsion of £ by 7. Let Q2 = {1}, and define maps p and
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o from Qs to Iy;. by setting p(1) = 2 and o(1) = 2 + jo. Note that
T1p(1)o(1) is nondegenerate since % is nondegenerate; this follows from
the observation that for all X,Y € I'(H)

Te) (X Y) = [X, Yoy = ¢ (X, Y])aj, = —dp™(X,Y)ay,.

Finally, let Q1 = {3,4,...,c+ 2}, and for each i € Q; let e;1 = a;—o.
An invocation of Theorem 6.1 establishes the following theorem.

Theorem 1. A nondegenerate annihilating frame for a partially in-
tegrable almost CR structure determines a canonical affine connection.

Now, in addition, suppose that ¢ = jo = 1 and that H is integrable.
Let @ = ¢! and f = a;. Then (#,0) is a nondegenerate integrable
pseudo-hermitian structure and f is its canonical transverse vector field.
Define a hermitian metric g on H by requiring that for all X, Y € I'(H)

g(X, Y) = i@([X, ?])a

and let V be the canonical affine connection given by Theorem 1. We
shall examine this special case in some detail.

Lemma 1. [V, f]3 =0 for all V € T(H © H).

Proof. [V, fls = 6(IV,f)f = —d6(V, f)f. Since f|d§ = 0 by defin-
ition, [V, f]s =0. @O

Lemma 2. VT123 =0.

Proof. Let X,Y,Z € T'(H). By Theorem 6.1, Vx7ia3 = 0. By
definition,

(i) (Vr2s)(Y, Z) = Vg(r123(Y, Z)) —1123(V5Y, Z) —1123(Y, V5 Z).
Recall that V is a parallelizing connection for £, that V = V, and

that 7 = 7. These facts, together with the definition of 723, imply the
following extended equations:
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(ii) Vx(nas(Y, 2)=Vx(r(Y,2)=Vx(7(Y,Z2)=-Vx(n2(Z,Y));
(iii) 7123(VY, Z) = T(VXTY, Z)=1(VxY,Z)= —T1123(Z,VxY);
(iv) m23(Y,V52) =7(Y,V%Z)=7(Y,VxZ) = —1123(Vx Z,Y).
Together, (i)—(iv) imply
(v) (Vgres)(Y,2) = —Vx(n2s(2,Y)) + nas(Z,VxY) +
T123(Vx Z,Y).

The right hand side of (v) equals —(Vx7i23)(Z,Y), which is equal to
0. Therefore, V57123 = 0.

Thus, it suffices to show that V7123 = 0. By definition,
(vi) (Vsm23)(Y, Z) = V(1123(Y, Z)) ~7123(V Y, Z) =723 (Y, V£ Z).
The following extended equations are easily verified:

(vi)) Vy(ras(Y,2)) = V([Y,Z]3) = [f,[Y,Z]s]s =
[ [Y, Z] = [Y, Z]1 — [Y, Z]2]s;

(viil) 7123(VfY, Z) = mos([f, Y11, 2) = [[f, Y], 2]z =
vaY] - [vK]Z - [fv Y]372]3;

(ix) m23(Y,V;Z) = maa(V,[f, Z]2) = [V, [f, Z]a]s =
D/’ [fa Z] - [fa Z]l - [fa Z]3]3-
Since H is integrable,
(x) [[f,Y]2,Z]3 = 0 and [Y,[f, Zh]3 = 0.
By Lemma 1,
(xi) [f,[Y;ZNh]s = [f,[Y, Z]2]s = [£,Y]s = [f, Z]s = 0.
Taken together, (vi)—(xi) imply that
(xil) (Vymas)(Y,2) = [, [V, 25 — [[f. Y], Z1s - [V, [f, 2]l

An application of Jacobi’s identity to (xii) shows that V23 = 0.
O

Proposition 1. For all X e I'(TM) and Y, Z,W € I'(H),
(a) VxY € F(’H),
(b) fo = 0;
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Proof. Since V is a parallelizing connection for &, (a) is obvious.
Counsider the following direct consequences of Theorem 6.1:

(i) Vif=0;

(i) Vyf=1[V,f]s forall Ve T(H o H);

(iii) Ti2 = —712 and Ti3 = —7i3;

(iv) Th12 = —712 and Th13 = —7113;

(v) 223(T111(§Z)7W) = [QZW]:& + [Z,W]a]s —
(Z,[Y, Wl + [Y, Wla]s — [[Y, Z], Ws.

(b) follows from (i), (ii), and Lemma 1; (d) follows from (a), (b), and
the fact that for all A € T'(CTM)

(Vx0)(A) = Vx(6(A4)) — 6(Vx A);

(g) follows from (iii). Observe that

(vi) 9V, 2)f =ib([Y, Z))f = ilY, Z]s = im23(Y, Z).
(f) follows from (iii) and (vi). As a consequence of (b),
(vii) (Vxg)(Y,2)f =Vx(9(Y,2)f) —9(VxY,2)f —g(Y,VxZ)f.

Together, (vi) and (vii) imply that
(viii) B B .
(Vxg)(Y, Z2)f = iVx(1123(Y, Z)) — iT123(VxY, Z) — im123(Y, Vx Z).
Since VxZ = VxZ = VxZ, (c) follows from (viii) and Lemma 2.
Finally, note the following consequences of the integrability of #:
(IX) T112 — 0 and T113 — 0,
(x) [Y,[Z,W]1]s =0 and [Z,]Y, W];]3 = 0.
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Together, (v) and (x) imply that
(xi) me3(Tina (Y, 2), W) = [V, [Z,W]]5 = [Z,[Y, W]]5 — [[Y, Z], Ws.

Since 723 is nondegenerate, an application of Jacobi’s identity to (xi)
shows that 7717 = 0. Moreover, Tj12 = 0 and 7113 = 0 by (iv) and (ix);
hence, (e) is true. o

Remark. The conditions in Proposition 1 include all of those needed
to characterize the Webster connection for (7, 6) (see [8] or [5]). Thus,
as promised in Section 0, we have rederived this connection from a
more general point of view and have relaxed the usual integrability
assumption in the process.

We conclude with an analogue of Theorem 1 in which the annihilating
frame is replaced by a single annihilating form.

Theorem 2. Suppose that H is partially integrable and that 6 is a
nondegenerate annihilating form, and let C be the canonical comple-
ment of H (see Corollary 2.2). There ezxists a canonical connection
V™ in the bundle H, and a canonical H-partial connection V€ in
the bundle CC.

Proof. Define an almost product structure £ = (Ey, Eq, E3) by setting

E; =M, E; =H, and E3 = CC. For all X,Y € I'(H)
90£(X,Y) :zﬁ([X,Y]) :’LQOTlg(X,?)

Therefore, the nondegeneracy of 6 implies the nondegeneracy of the
bilinear form b = 6 o 712, which we view as a bundle map from E; x Ey
to M x C.

For all distinct 7,5 € I3, define an FEj;-partial connection V4 in
E; by setting VY = [X,Y]; for all X € I'(E;) and Y € I'(Ej).
Define a connection V in M x C by requiring V1 = 0, where 1 is
the map = — 1, viewed as a trivializing section of M x C. Since b
is nondegenerate, Proposition 5.5 shows that b, V12, and V together
determine a canonical F;-partial connection V! in E;. Let V¥ =
Vitev2lgv3l: by Proposition 5.2, V* is a connection in . Finally,
let V#:C = yb3, |
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In light of Example 2.1, this theorem should prove useful in the
study of almost CR submanifolds of strongly pseudo-convex partially
integrable pseudo-hermitian manifolds.
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