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COMPATIBILITY EQUATIONS FOR
ISOMETRIC EMBEDDINGS OF
RIEMANNIAN MANIFOLDS

CHUNG-KI CHO AND CHONG-KYU HAN

0. Introduction. Let (M,g) be an n-dimensional Riemannian
manifold with the Riemannian metric g. A C! mapping F of M into a
Euclidean space R"™? is a local isometric embedding if and only if F
satisfies

n—+p
ou® ou®
7 ~ X - — Yij ) 1< '; j < )
0 R s

where (z',...,2") is a local coordinate system of M and g;;(z) =

g(8/0z%,0/0z7). Since g;; = gji, the number of equations in (7) is
n(n+1)/2 and thus the system (7) is underdetermined if p > n(n—1)/2
and overdetermined if p < n(n —1)/2.

In this paper we study a method of prolongation of (7) and conditions
on g;; under which (7) can be prolonged to an elliptic system, and
discuss some of their geometric consequences. We restrict our interest
to the case p < n(n — 1)/2, which is a necessary condition for an
isometric embedding to be elliptic.

A compatibility equation of (7) is an equation obtained by prolonga-
tion, that is, a process of differentiation and algebraic operations on
(7).

In Section 1 of this paper, we construct compatibility equations of (7)
by a method due to A. Finzi [5] and show that the classical equations
of Gauss are compatibility equations of this type. These equations,
which will be called compatibility equations of Finzi type, are the
consequences of the cancellation of the principal parts in the process
of prolongations of the original system. Thus they reveal properties of
the solutions that are not exposed in the principal part.

In Section 2 we prove that a hypersurface H of M is characteristic
for a certain system of compatibility equations if and only if H is an
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asymptotic hypersurface (Corollary 10). A related result by Jacobowitz
[9] states that in the cases p < n(n—1)/2, an analytic submanifold M™
of R"*P admits an isometric deformation leaving a hypersurface H"~!
fixed only if H"~! is asymptotic. On the other hand, Tenenblat [21]
showed that if M™ is an analytic submanifold of R"*?, p = n(n —
1)/2, there exists locally an analytic nontrivial infinitesimal isometric
deformation on a neighborhood of a nonasymptotic hypersurface H™ !
of M™. These results are based on the observation that if a hypersurface
H of M is characteristic for the equations for infinitesimal isometric
deformations then H is asymptotic. Using Corollary 10 we prove an
interesting result (Corollary 11) that if a C? isometric embedding of M
into a Euclidean space is C* except at a hypersurface H of M, then H
must be asymptotic. This means that we can fold a submanifold of a
Euclidean space twice continuously differentially only along asymptotic
manifolds. We do not yet know whether the C? assumption can be
weakened to C! or C°. For the case of codimension 1, this question
gives rise to a problem of determining singular sets of a real Monge-
Ampere equation, which will be discussed elsewhere [4].

In Section 3 we study ellipticity of isometric embeddings. The notion
of ellipticity of embeddings was first introduced by N. Tanaka for the
purpose of studying the rigidity of isometric embeddings. He defined
an embedding to be elliptic if the second fundamental form for each
normal has two nonzero eigenvalues of the same sign. In [19] he showed
that if F' is an elliptic embedding, then a first order linear system
of partial differential equations associated with infinitesimal isometric
deformations of F' is elliptic, and thus there exists a neighborhood U
of F with respect to the C3-topology in the class of embeddings, that
the dimension of infinitesimal isometric deformations of any embedding
in U is less than or equal to that of F. It follows that any two
isometric embeddings contained in a neighborhood of an infinitesimally
rigid elliptic embedding F' are congruent (Theorem 13). The question
remains of whether an elliptic isometric embedding of a compact
Riemannian manifold into an Euclidean space is rigid (cf. [22]).

Tanaka’s ellipticity is a geometric property of an embedding F' ex-
pressed in terms of the second fundamental form of F. We show that
it is equivalent to the ellipticity of a certain system of compatibility
equations of Finzi type (Theorem 15). Then a consequence is that if
M is an analytic Riemannian manifold and F' an isometric embedding
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of M into an Euclidean space which is elliptic in Tanaka’s sense, then
F is analytic provided F' is twice continuously differentiable. This is a
generalization of the result of one of the authors [7]. Finally, we prove
a local rigidity theorem for the class of elliptic isometric embeddings of
real analytic Riemannian manifolds into an Euclidean space.

Our method in this paper is a jet theoretic approach to partial
differential equations. For the general theory, we refer to [12, 16,
17].

Another approach to the isometric embedding problems is E. Cartan’s

method of exterior differential systems, found in various references [1,
2, 3, 6, 20].

All manifolds in this paper are assumed to be smooth(C*°) and all
embeddings are assumed to be C2, unless otherwise stated.

1. Compatibility equations of Finzi type. In this section we
adopt the definitions and notations of Olver [16] : Let X be an open
subset of R? and let R("™) be a Euclidean space whose coordinates
represent all the partial derivatives of a smooth map u = (u!,...,u?)
from X into R? of all orders from 0 to n. A multi-index of order r is
an unordered r-tuple of integers J = (ji,...,Jr), with 1 < js < p. The
order of a multi-index J is denoted by |J|. A typical point in R(™ is
denoted by u(™, so that

n) __ (o7
ul® = (uF)1<a<q, 0<|7|<n-

The product space X x R(™ is called the n*" order jet space of the
underlying space X x R?. For example, in case p = 2 and ¢ = 1,
X xR® =

{($1,$2,U,U17U2,U11,u12,Uzz) |
(1'1,532) € X, (u,uy,uz,u1,urs, uza) € RG}-

A C™ map from X into RY defines a section of X x R(™: Let
F=(f...,f% be a C™ map from X into RY. For each z € X, /1F
denote the n-jet of F' at x, namely F' and all the partial derivatives of
F up to order n at . That is,

Jal = (05 F*(%))1<a<q,0<|1|<n-
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Then the map
J"F: X — X xRM

defined by  + (z, )7 F), is a section of X x R(™). This section j"F is
called the n-graph of F.

Let A denote the set of real valued smooth functions a(z,u(™)
depending on z, u and derivatives of v up to some finite, but unspecified
order n, defined on X x R(™ . An element of A is called a differential
function. The order of a differential function is the order of the highest
derivative that occurs. It is easy to see that A becomes an algebra and
the subset A of A consisting of the differential functions of order less
than or equal to n is a subalgebra. For m > n, we define a projection
map

proj™ : Am — A™
by

a(z,u™), if the order of a < n
0, if the order of a > n.

proj ™ (a(z,u™)) = {

For a finite set {ay(z,u™)}1<p<k of A, we denote by ({a,}) the
ideal in A(™ generated by {a,}. An element of ({a,}) is of the form

k
Z z,u™)a, (z,u™), cy(z,u™) e A™

Let {a,}1<v<kr be a finite subset of A and let {bo}1i<u<r be
a finite subset of A(™ containing {av}1<v<k. Then it is clear
that proj™(({6.})) D ({a,}) and the following example shows that

proj;'(({b,})) # ({av}), in general.
Example 1. For case m =2 and n =1
proj i (({ur, urr, uz —w11})) # ({ur})-

Now consider a system of nt" order differential equations

(1) Ay(z,u™) =0, 1<v<l,
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for unknown functions v = (u!,...,u?) of p variables z = (z,...,zP) €
X. Each A, is assumed to be a differential function of order n, namely,
A(z,u™) is smooth in their arguments. So A = (Ay,...,4;) can be
viewed as a smooth map A : X x R(™ — R! and (1) describes a
subset

Sa = {(z,u™) e X xRM™ | A, (z,u) =0, 1 <v <1}

of X x R(™, called the solution subvariety of (1), on which the map A
vanishes. A solution of (1) is a C™ map F' : X — R? whose n-graph
is contained in Sa, that is, {(z,)2F)|xz € X} C Sa. From this point
of view, the system (1) is equivalent to the system consisting of the
equations

(2) a(z,u™) =0,  a(z,u") e ({A )

since both (1) and (2) have the same zero set in X x R(").

For each nonnegative integer m, the m*® prolongation of (1) is the
(n 4+ m)*™ order system of differential equations A (z,u(+™) = 0
which consists of

(3) DA, (z,uT™) =0, 1<v<l, 0<|J/<m,

where Dy = D, . j) = Dj, o---0D;j is a composition of total
differential operators. The 0" prolongation is the original system
itself. As previously stated, the system (3) is equivalent to the system
consisting of the equations

4) a(z,u™™) =0, a(z,u"t™) € ({DsAL <v<t,0<]71<m)

so that we call (4) also the m'" prolongation of (1). It is easy to
see that (4) must be satisfied by any C™*™ solution of (1). So the
m*® prolongation A(™)(z,u("*™)) = 0 describes the subset Spm) C
X x R™t™) in which all (n 4+ m)-jets of C"*™ solutions of (1)
are to be contained. By a compatibility equation of (1) we shall
mean a differential equation b(x,u("**)) = 0 that is contained in
some prolongation of (1). The equations A(®)(z,u(®**)) = 0 as well
as projnit(AM) = 0 are to be satisfied by any C™** solutions,
for all # > s. A compatibility equation b(z,u(™**)) = 0, where
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b(z,u(™**)) € proj 27 (A)\ A®), has information on the properties
of C™*# solutions that the s*® prolongations A(®)(z, u(®*)) = 0 do not
show explicitly. It is called a compatibility equation of Finzi type. In
particular, suppose that there are homogeneous differential operators

L, = Z al (z,u™*™) Dy, v=1,...,1,
|J|=m

which are not all zero at any (z,u("*™) € Sa(m), such that the
combination Zizl L,A, depends only on the derivatives of order at
most m+n — 1 (the principal part of each £, A, being cancelled out in
the process of summation). We then obtain a compatibility equation
Zf/:l L,A, =0, which reveal the properties of solutions that are due
to the lower order terms of (1).

An invariant for (1) is a differential function a(z,u(™) which does
not change under the choice of solutions of (1). That is, if both F' and
F are C™ solutions of (1), then a(z, 7 F) = a(z, yF), for each € X.
Given a compatibility equation c(z, u(m)) = 0, by extracting a function
of independent variables from c(z,u(™)), we obtain a trivial invariant
for (1): Let ¢(x,u'™) = a(x, u(™) —b(z). Then c(z,u™) = 0 implies
that a(z, 77 F) = b(z), for any C™ solution F of (1). So a(z,u(™) is
an invariant for (1).

If (1) is determined or overdetermined, that is I > ¢, we form a matrix
M(€) = Ma (& z,u™) of size | x ¢ whose entries are the homogeneous
polynomials

®) Moa(© = 3 { G} -,

[0
|J|=n J

of degree n of £ = (&1,...,&p), where &5 = &, ---¢;,,. We call this
matrix the principal symbol of (1).

Definition 2. Given a point (zg, ugn)) € Sa,

(a) a non-zero vector { = (&1,...,&) € RP is a noncharacteristic
direction (respectively characteristic direction) to (1) at (wo,uén)) if
MAa (&; zo, u(()")) is of maximal rank (respectively not of maximal rank).
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(b) A hypersurface V := {z € X |¢(z) = ¢} of X is noncharacteristic
(respectively characteristic) to (1) at (mo,ugn)) if & = grady(zg) is
noncharacteristic (respectively characteristic) to (1) at (mo,u(()n)).

(c) The system (1) is elliptic at (zo, ug")) if there is no characteristic

direction at (zo, ugn)).

Definition 3. Given a solution F of (1),

(a) A hypersurface V := {z € X |¢(z) = ¢} of X is noncharacteristic
(respectively characteristic) to (1) at F if £ = grad ¢ («) is noncharac-
teristic (respectively characteristic) to (1) at (x, ) F) for each x € V.

(b) The system (1) is elliptic at a solution F, if it is elliptic at
(x,J2F), for all x € X.

A sufficient condition on a determined system A = 0 for a Finzi type
compatibility equation to exist is found in the following

Theorem 4 (Finzi [5] or [16]). Suppose
Ay(w,u™) =0, 1<v<yg,

is an n'® order determined system of differential equations for functions
u = (ut,...,ud) of x = (z',...,2P) € X, where X is an open
subset of RP. Suppose that A has no noncharacteristic directions at
(azg,uén)) € Sa. Then there exist homogeneous m'™ order differential
operators
EV: Z at{(x)u(n))DJa lgVSQa
[J|=m
which are not all zero at (xo,ugn)), such that at (mo,u(()n)) the combi-

nation 25121 L,A, depends only on derivatives of u of order at most
m+n— 1, that is,

!
Z L,A,(zo, u((]m+")) = b(zo, u(()k)%
v=1

for some differential function b(z,u®) of order k < m +n — 1.
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Moreover, if there are no noncharacteristic directions for A for all
(z, u(”)) in some relatively open subset SANV, with V open in X x R(™
then the differential operators L, depend smoothly on (J;,u(")).

The key to the proof is the observation of the fact that A has no non—
characteristic directions at (xo, Uo ) if and only if det [MA(&; zo, Uo ))]
= 0, for all £ € RP. Here, we observe that the above theorem holds for
overdetermined systems also. For then any determined subsystem will
satisfy the hypothesis of the Theorem 4. So, for the existence of Finzi
type compatibility equations we have the following

Corollary 5. Suppose
Ay(w,u(”)) =0, v=1,...,1l,

is an n'" order determined or overdetermined system of differential
equations for functions u = (u',...,u?) of x = (xl aP) € X, where
X is an open subset of RP. If, for each (z,u™) € SA MA(f z,u(™)
is not of mazimal rank, for any £ € RP, then there is a compatibility
equation of Finzi type.

Since the proof of Theorem 4 is constructive, if the hypothesis of
Corollary 5 is satisfied, we can construct compatibility equations of
Finzi type.

Let (M, g) be an n-dimensional Riemannian manifold, and F : M —

R"+p be an isometric embedding of M into a Euclidean space R”‘H’
Let M = F(M). Given a reference point P € M, we assume F(P) = O,

for snnphmty, where O is the origin of R**P. Let T~M be the tangent
space of M at O, and [T~ ] be the orthogonal complement of T~M
in T5R"+p. That is T5M = F.(TpM) and [T5 ] = [F.(TpM)]*+

Let (y',...,y""P) be the standard coordinates of R"*? and let 9,1,

., Oyntp denote the coordinate vector fields. There is no loss of

generality in assuming that T5M is spanned by {9,1,...,0,»}, and
that {Oyn+1,...,0yn+»} forms a basis of [Tgﬁ]l. Let (z',...,2") be a
Riemannian normal coordinate system at P with the coordinate vector

fields 0,1, .., 0;n. For convenience, we assume that F(0,:i|p) = 0y:l5,
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t = 1,...,n. With these coordinates, F' is represented by a map
from an open neighborhood Q of the origin O in R” into R"™*?,
F=(f1,..., f**?), such that F(O) = O and

ofe (1 ifi=oa
(6) oxi ©) = {0 if i # a,

At each = € (, let g;;(z) = g(8/0z%,0/027) be the Riemannian
metric. Then the map F : Q — R"™'P satisfies the following system:

n+p
(7) ZU?U? = gij(z), I<u,j<n
a=1

(7) is called local isometric embedding equations. Rewrite (7) as

n—+p
(8) Zuf‘u;" — gij(z) = Aij (z,uM) =0, 1<i,j<n,
a=1

The number of equations is n(n+1)/2 (note that Ajj =14y i), and (8)
is determined if p = n(n—1)/2 and underdetermined if p > n(n—1)/2.
In this paper, we consider only the cases 1 < p < n(n —1)/2. Then the
system (8) is determined or overdetermined. The principal symbol
matrix Ma (& z,u(™) for (8) is of dimension n? x (n + p). The
(n(i — 1) + j)-th row corresponds to the equation Ajj = 0. Then
the (n(i — 1) + j, ) component of M (& z,u(™) is

" (0D
(9) Z{ 6u:;] (w,u“))} G = uf + ufg

k=1

It is easy to verify that (8) satisfies the hypothesis of the Corollary 5.
In fact, the matrix (9) is of rank n, for all (z,u(™) € Sa and for all
€ € R™. Thus there exist Finzi type compatibility equations for (8).

Theorem 6. For each 4-tuple of integers i,j,k,1 = 1,...,n, the
equation

n+p
(10) > [ufud — ufusi] — Gijra (@) = Zijk1(e,u®) =0,

a=1
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where

1 [ Pgjn % ga %g;i % gin

Ciix1(®) =5 | 500 T 90i0aF ~ 9wi0zF  dwidel |’

is a compatibility equation of Finzi type for (8).

Proof. For each fixed 4,j,k,l, we define second order differential
operators by

—3Dgy  if (a,b) = (

—3DG k) if (a,b) = (

Eab = %D(j,k:) if (a, b) (

3DGy  if (a,b) = (4, k)

0 otherwise

Then consider the compatibility equation for (8)

(1) S5 gy = 0.

a=1b=1

Substitute Agp in (11) by (8). Then all the third order partial
derivatives of u’s in L,,A5p cancel out in the process of summation
and the left hand side of (11) becomes Z; jy1 (=, u(?). a]

From (10), we obtain Finzi type invariants

n+p
2

(12) ajjr1(z,u®) = Y [ufufy — ufuf]

a=1
for (8). The compatibility equations {Zijkl(w,u(2)) = 0} and the
Finzi type invariants {a4 jkl(xa u(?)} have geometrical meaning, as we
shall see. First, we will show that (10) is in fact the Gauss equations.
We fix some notations: Let V' be the Euclidean connection in R*TP,
V the Riemannian connection on M, and « the second fundamental
form of M. (-,-) denotes the Euclidean inner product and R denotes
the Riemann curvature tensor of M. Then we have the Gauss formula:

(13) (VxY)rwp) = (VxY)p + a(X,Y),
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for any pair of vector fields X,Y which are tangent to M at P € M.
The Gauss equations state that

(14)  R(X,Y,Z,W) = (a(X,Z),aY,W)) — (a(X, W), (Y, Z)),
forany X,Y,Z, W € Tp(M). Inlocal coordinates, using (13), we obtain

n+p 2 fa 2 fa
o°fe 0°f
(0(02,0.0) 020,00 = 3 | 0

a=1
_ <V8Iz (‘%k, ngj 8w1>

Similarly

n+p
62fa 82fa
(@1, 0,1), (025, 00)) = D [W W}

a=1

—(Va, 041, Vo _;0yr).
Thus if we write
T jx1(x) := (Vo 0zx, Vo, 0p1) — (Vo 041, Vo, ; Ogr)
then (14) becomes

n—+p
Rijx1(z) = > lugus; — ugusy) — T; jk1 (x)

a=1

which is equal to (10) with equality G jk1 () = T} jk1 (%) + Ri jk1 (2)-
And the relationship between the Finzi type invariants a4 jk1 and the
components Rj ji1 of the Riemann curvature tensor of M is given by

ajjr1(e,u®) = Tij(2) + Rijg ().

In particular, at the reference point P, the Finzi type invariants a4 jk1
are the same as the Riemann curvatures Rj jki, since x is a normal
coordinate system at P.

In [1, 2, 3, 6, 17], the Gauss equations are derived as integrability
conditions for the isometric embedding system, using E. Cartan’s
theory of exterior differential systems.
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We consider the following 2°¢ order system of compatibility equations
for (8) consisting of the 1%* prolongation A (z,u(?) = 0 and Finzi
type compatibility equations (10):

Aij (w,u(1)> =0, 1<1i,j<n,
(15) Fijx (m,u(2)> =0, 1<1i,j,k<n,

Zijk1 (w,u@)) =0, 1<1i,j,k,1<mn,

where
n+p
Fijr(z,u?) = DyAgy = Y [ufug +ufufy] - (9gi;/dz").
a=1

Observe that there are duplicates in (15), for example, A j =451
and ]_—ijk = j:jik'

Since (8) has no noncharacteristic direction at any point (z,u())
€ Sa and the principal parts of A() come directly from the principal
parts of (8) the 1% prolongation A™M (z,u(?) = 0 has no noncharac-
teristic direction. But the principal part of the Finzi type equations
Zijr (=, u) = 0 comes from the lower order terms so that they put
further restrictions on the principal symbol of AM (z,u?) = 0. In

fact, in Section 3, we shall show that (15) is elliptic at the solutions
satisfying certain geometric conditions.

2. Asymptotic submanifolds. We are considering the isometric
embedding of an n-dimensional smooth Riemannian manifold (M, g)
into an Euclidean space R**?, 1 < p < n(n — 1)/2. In this section
we characterize asymptotic hypersurfaces of M using the compatibility
system (15). We first recall the definitions.

Definition 7. A linear subspace W of the tangent space TpM is
asymptotic if there exists a vector N normal to T'»(pyM such that

(a(X,Y),N) =0, forall X, Y e W.

Definition 8. A submanifold V' of M is asymptotic at z € V if T,V
is asymptotic, and asymptotic if it is asymptotic at each point z € V.
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The notion of asymptotic submanifold, which generalizes the idea of
the asymptotic lines of a surface in R3, was used by Jacobowitz [9, 10]
and Tenenblat [21] to study deformation of isometric embeddings. We
are interested in asymptotic hypersurfaces, namely, (n —1)-dimensional
asymptotic submanifolds.

Now consider the following compatibility system for (8) which is a
subsystem of (15).

AlJ (m7u(1)) = 07 1,] = ]-7 y 1y
(16) Hij(z,u?) =0, i,j=1,...,n,
Lle(w7u(2)) = 07 l’J ’k:17 , I,
where
n+p )
Hij (2, u®) =) [ufuf + ufuf] — (9gi;/02)(x),
a=1
n+p
Lijk(z,u?) i= > " [ufiufy — ufjug]
a=1

_1[ 9%y %gir.  Pgir  Pgu
2| 0ziOz* = Oxifxi  Oxidxt  OxidxF |’

Notice that Hij = fiji and Lijk = *Zijki-

Theorem 9. Suppose that (M,g) is a Riemannian manifold of
dimension n and F : M — R"™P, 1 < p < n(n —1)/2, an isometric
embedding of M into a Euclidean space R™"P. Then a hyperplane
W of TpM is characteristic for (16) at (P,)%F) if and only if it is
asymptotic.

Proof. We may assume that P is the reference point, as in Section 1.
Let a nonzero vector w = w10, + +++ + w, 0~ define a characteristic
hyperplane W for (16) at (O,7%4F). That is, W is a set of vectors
which is normal to w. Then the principal symbol matrix M(w) of (16)
at (0, 5 F) is not of maximal rank. We decompose M(w) into 2n + 1
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blocks as
Ma (w; O, )5 F)
Mll_I(w;O,JZOF)
Ma (w; O, 75 F)
(17)  M(w;0,56F) = | My(w; 0,55F) | = | Mi(w; 0,75 F)
ML("J’O’JOF) M]l_,(w§07.720F)

M (w; 0, 75 F)

where M (w) is the principal symbol of the system consisting of n?
equations, Ajj (z,uM) =0, i,j = 1,...,n, Mj;(w) is that of the
system consisting of n equations, Hj j (z,u®) =0, j=1,...,n, and
Mi (w) is that of the system consisting of n? equations, L jk (2, u®) =
0, j,k=1,...,n. Then, Ma(w;0, 7% F) is a zero matrix and, noting
(6), for each i =1,...,n,

w2 0 -+ 0 ww; 0 =« 0 0 0 -+ 0
) 0 w? -+~ 0 waw; O ««+ 0O 0O O -+ O
Mﬁ(w;O,fOF) = .
0 0 -+ 0 wnw; 0 +++ 0 w2 0 -+ 0
T T
i-th column n-th column

The (n(j—1)+k, «) component of M%‘(w; 0, 75 F) (the (n(j —1)+k)-
th row corresponds to the equation Lj jx = 0) is

o2 fo o2 fo
{ (9xj£xk (O)}M’Q a { axi(éwk (0) }wiwj
o2 fo o2 fo
- {Wi;xj(O)}wiwk + {ﬁ(O) }ijk.

For My(w; 0, 4F), the first n columns are linearly independent
and the rest ones are zero vectors. Thus the last p columns of
M;j (w; O, )4 F) must be linearly dependent, for (17) is not of maxi-
mal rank. Therefore, if we write the columns of My (w; 0,75 F) as




ISOMETRIC EMBEDDINGS OF RIEMANNIAN MANIFOLDS 1245

Aq, ..., Anyp, there exist real numbers ay, ..., a, which are not all zero
such that
(18) alAn+1 + o+ apAn+p =0.

With these a;’s, we associate a nonzero vector N, = alayn+1 + -+

a,0yn+r which is normal to M at F(P). Then (18) holds if and only if
forall 1 <i,j,k <mn,

0 = (@(w;iOpi — w;jOyi , Wiy — wiOyi), Ng).

It is easy to verify that {w;0,; — w;j0yi }1<s j<n generate W. In fact, if
wi # 0, {wr0ypi — w0k b1<j<n form a basis of W. Hence we have

<0((X, Y) ) Na> =0,

for all vectors X,Y contained in W. Therefore W is asymptotic at P.

The converse can be proved similarly. u]

Corollary 10. Suppose that (M,g) is a Riemannian manifold of
dimension n and that F : M — R"? 1 < p < n(n — 1)/2, be
an isometric embedding of M into a Euclidean space R"™P. Then a
hypersurface of M is characteristic to (16) at F if and only if it is
asymptotic.

In cases of isometric embeddings M™ — R™"+t1)/2 Tenenblat
[20] shows that the characteristic (n — 1)-dimensional submanifolds
in Cartan’s sense are the asymptotic hypersurfaces.

Corollary 11. Suppose that (M,g) is a Riemannian manifold of
dimension n and F : M™ — R""P_ 1 <p < n(n—1)/2, an isometric
embedding which is twice continuously differentiable. Let a hypersurface
H of M divide M into two parts My and Ms. Suppose that both F|pr, um
and F|y,um are smooth and that F' is not smooth at any point of H.
Then H must be an asymptotic hypersurface.

Proof. Let H be nonasymptotic at P. We may assume that P
is the reference point, as in Section 1. Then by Theorem 9, it is
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noncharacteristic for (16) at (O, 3 F), hence noncharacteristic for (16)
in an open subset of the solution subvariety of (16). Then, on a
neighborhood U of O in X, the values and the 15 derivatives of F
uniquely determine all the higher derivatives of F', hence F' must be
smooth at P. It contradicts the hypothesis. O

3. The ellipticity of isometric embeddings. In this section,
we adopt the definitions and notation of Tanaka [19]: Let M be an
n-dimensional smooth manifold. Let I'(M, m) denote the vector space
of all smooth maps of M to R™ and A(M,m) the subset of I'(M, m)
consisting of all embeddings of M in R™. Given a positive integer r,
we introduce the C"-topology in I'(M,m) and denote by A(M,m)cr
the subset A(M,m) of I'(M, m) equipped with the subspace topology
induced by the C"-topology of I'(M,m). S?T* will denote the vector
bundle of symmetric tensors of type (0,2) on M.

Let F be a smooth embedding of M into R™ with M = F(M). We
induce a Riemannian metric g on M by this embedding. Let P € M.
Then for any normal vector N € [Trp)M]*, we define an element 6y
of S2T} by

QN(X,Y):<VvaF,N>, for X, Y € TpM,

where V is the Levi-Civita connection on M associated with the
Riemannian metric g and (-,-) denotes the Euclidean inner product,
as before. Here

VxVyF :=V*F(X,Y):= (V*f}(X,Y),..., V*f™(X,Y)).

It is easy to see that VxVy F = a(X,Y). So we call 8 the second
fundamental form of F' corresponding to the normal vector V.

Definition 12 (Tanaka [19]). A smooth embedding F' of M into R™
is called elliptic at P € M if it satisfies one of the following equivalent
conditions :

(a) For any nonzero normal vector N € [T P)M ]+, On has at least
two eigenvalues of the same sign.

(b) The subbundle of S?T% consisting of the second fundamental
forms of F' contains no nonzero elements of the form ( - 7, where ¢ and
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n are covectors with the same origin. Here - denote the symmetric
product, that is, (¢ - 7)(X,Y) = {((X)n(Y) + ¢(Y)n(X)}/2, for
X, Y eTpM.

Now we define F' to be elliptic if it is elliptic at each point P € M. The
following is a global rigidity theorem for elliptic isometric embeddings.

Theorem 13. [19]. Let Fy be an embedding of M into R™. We
assume that Fy is elliptic, p(Fp) = m(m+1)/2 and that M is compact.
Then there exists a neighborhood U(Fy) of Fy in A(M, m)gs having the
following property: If F,F' € U(Fy) and if F and F’' induce the same
Riemannian metric on M, then there is a FEuclidean transformation a
of R™ such that F' = aF.

In Theorem 11, p(Fp) denotes the dimension of the space of infinites-
imal isometric deformations of Fy We notice that p(Fy) > m(m+1)/2,
in general, and that p(Fy) = m(m + 1)/2 means that the embedding
Fy is infinitesimally rigid.

We observe that Definition 12 makes sense also for the embeddings
of differentiability class C?. In what follows, an elliptic embedding
is assumed to be twice continuously differentiable, unless otherwise
stated.

On the other hand, we may define ellipticity for a C? isometric
embedding as follows : An isometric embedding F' : M — R"*P
is called elliptic if the system (16) of compatibility equations is elliptic
at F, namely, the principal symbol matrix (17) is of maximal rank at
any point of two-jets of F.

Now we have two concepts of ellipticity for isometric embeddings, one
defined geometrically and the other analytically. We shall show that
these two concepts are equivalent.

Lemma 14. Suppose that (M,g) is a Riemannian manifold of
dimensionn and F : M — R™"?, 1 < p < n(n—1)/2, is an isometric
embedding. Then F is elliptic at P in Tanaka’s sense if and only if M
has no asymptotic hyperplane at P.
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Proof. Suppose that a hyperplane W of TpM is asymptotic. Then
there exists a nonzero vector N € [Ir(pyM]* such that (a(X,Y), N) =
0, for all X,Y € W. We choose an orthonormal basis {vi,...,v,} of
TpM such that W is spanned by {vy,...,v,_1}. With respect to this
basis the second fundamental form 6y of F' at P is represented by

Oy = ZZ@N(’W,’U]')’U; X ’U;

i=1 j—1
n n
== HN('Uia’Un) V; ®Un + HN('Una'Uj)'Un®'Uj
i=1 j=1

= [ZHN(vi,vn)vf] v +ur® [291\1(%,%)”:}
i=1

i=1
= [2 ZHN(vi,vn)v:] cur.

i=1

This contradicts the ellipticity of F' at P.

Conversely, suppose that F' is not elliptic at P in Tanaka’s sense.

Then there exists a nonzero vector N = Y7, a,0ynsr € [T5M 1+
and two nonzero covectors (,n € THpM such that Oy = (- n. Let
¢=>"_,brdz" with bs # 0 and n = >_"_, csdz®. Then

o= [$ohar] [$ce]

1
= [E(brcs + bscr)} dz” @ dz®.

Let W be an (n — 1)-dimensional subspace T»M spanned by

{bsOpe —b0ps | k=1,...,6 —1,64+1,...,n}.
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Then, for each i,5 € {1,...,6 — 1,6 +1,...,n},
<a(b58$i — b;0y5,b50,5 — bjaza), N>
= On(bsO0yi — b;0y5,b50,5 — bj0,6)

= { zn:zn: B(b,,cS + bsCT)] dz" ® dms}
r=1s=1

- (bsOyi — biDys,bsOys — b;Oys)

1
5{(bicj + bJCl)bg - (biq; + b(;Ci)b(;bj
— (b(;Cj + bjcg)bib(; + 2b505bibj} =0

Thus the subspace W is asymptotic, which contradicts the hypothesis.
O

Theorem 15. Suppose that (M,g) is a Riemannian manifold of
dimensionn and F : M — R"? 1 < p <n(n—1)/2, is an isometric
embedding. Then F is elliptic in Tanaka’s sense if and only if (16) is
elliptic at F'.

Proof. This follows immediately from Theorem 9 and Lemma 14.
]

Now from the analyticity of solutions of elliptic partial differential
equations (See [15]), it follows that

Corollary 16. Suppose that (M,g) is a real analytic Riemannian
manifold of dimensionn and F : M — R""P, 1 <p<n(n—1)/2, is
an isometric embedding which is elliptic in Tanaka’s sense. Then F' s
real analytic.

Proof. Since (M, g) is real analytic, (16) is a real analytic system of
partial differential equations. And, by Theorem 15, (16) is elliptic at
F which is a C? solution. So by the regularity theorem for an elliptic
system of partial differential equations, the solution F' is real analytic.
]

We notice that the ellipticity is not an intrinsic property of manifolds
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in general but depends on the embedding. But in the cases of codi-
mension 1, ellipticity is invariant under the choice of embeddings. For
an isometric embedding F' of an n-dimensional Riemannian manifold
(M, g) into R, the following are equivalent:

(i) F is elliptic.

(ii) M has at least two nonzero principal curvatures of the same sign
at each point of M.

(iii) M has a plane section with positive curvature at each point of

M.

But the sectional curvatures are invariant under the choice of isometric
embedding. Thus for the isometric embeddings of codimension 1, we
have

Corollary 17. Suppose that (M,g) is a real analytic Riemannian
manifold of dimension n and F : M — R"* s an isometric
embedding. If M has at least two nonzero principal curvatures of the
same sign, then F is real analytic. Furthermore, any C? isometric
embedding of M into R™! is real analytic.

Finally, for the class of elliptic embeddings, we have a local rigid-
ity theorem. In [9], using the linearization of the local isometric em-
bedding equation, Jacobowitz proved that if there exists a local an-
alytic isometric deformation of a real analytic isometric embedding
F:M" — R"P 1< p<n(n—1)/2, leaving a hypersurface fixed,
then this hypersurface is necessarily asymptotic. Thus, an elliptic em-
bedding does not admit such a deformation. Using the compatibility
system (16) instead of the linearization, we obtain the following

Theorem 18. Let (M,g) be a real analytic Riemannian manifold
of dimension n and let Fy and Fy be two elliptic isometric embeddings
of M into R"*?, 1 < p < n(n — 1)/2. Suppose that Fi|g = Fsly
and dFi|g = dF3|g on a hypersurface H of M. Then Fy = F5 on a
netghborhood of H.

Proof. Since the embeddings are elliptic, H must be noncharacteristic
to (16) at Fy and at Fy. Then Fy|g and dF |y determine all derivatives
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of Fy on H and Fy|g and dF>|g determine all derivatives of F; on H.
But then, since Fi|g = Fy|g and dFi|g = dFs|g, the values and
all the derivatives of F; and F, coincide on H. Hence F; = F, on a
neighborhood of H, by the real analyticity of F} and F» (Corollary 16).
O
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