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ABSTRACT. In this paper we establish sufficient conditions
for uniform persistence in nonautonomous Kolmogorov-type
delayed population models. The method involves the con-
struction of a set of proper autonomous ordinary differential
systems whose solutions can serve as lower or upper bounds
for the delayed system in certain regions. The results are new
even for nonautonomous ordinary differential systems.

1. Introduction. A basic and important ecological question asso-
ciated with the study of mathematical population interaction models
is the long term coexistence of the involved populations. Mathemati-
cally, this is equivalent to the so-called persistence of the populations.
Roughly speaking, we say a population x(t) is persistent if

(1.1) lim inf
t→+∞ x(t) > 0,

and we say a system is persistent if all its populations are persistent.
Most of the existing persistence results are established for autonomous
systems of ordinary differential equations which make use of the dy-
namics in Euclidean spaces. Recently, the persistence theory of nonau-
tonomous and infinite dimensional systems has also received some at-
tention. An excellent survey of such activities is given by Hutson and
Schmitt [16]. Detailed persistence theory for systems of autonomous
ordinary differential equations can be found in Butler et al. [2] and
[3]. A general persistence theory for autonomous infinite dimensional
systems is documented in [14]. See also [19].
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In this paper we consider the persistence aspect of general nonau-
tonomous delay differential Kolmogorov-type population interaction
models of the form

(1.2)
x′(t) = x(t)f(t, xt, yt),
y′(t) = y(t)g(t, xt, yt),

where f and g are continuously differentiable with respect to (t, xt, yt).
Here xt(θ) = x(t + θ), yt(θ) = y(t + θ), θ ∈ [−τ, 0], τ < +∞. When
there exists no delay, standard assumptions for (1.2) to be competition
or predator-prey models are well documented in [10].

Persistence results for autonomous delay differential population mod-
els are documented in Burton and Hutson [1] for Lotka-Volterra type
systems with infinite delay, and in Cao et al. [4] for two species
Kolmogorov-type systems with a single discrete delay, and in Wang
and Ma [21] for Lotka-Volterra type systems with discrete delays. The
results in the first two papers exploit the dynamical system proper-
ties of the solution maps of the considered systems, while Wang and
Ma’s results make use of the autonomous Lotka-Volterra structure and
discrete delay properties.

Since system (1.2) is nonautonomous, the general theory of Hale and
Waltman [14] no longer applies and construction of persistence func-
tionals becomes daunting. To overcome these difficulties we construct a
set of proper autonomous ordinary differential systems whose solutions
can serve as lower or upper bounds for the delayed system (1.2) in cer-
tain regions. Such comparison arguments may be extended to higher
dimensional systems (multi-species interaction models). Our results
are new even for nonautonomous ordinary differential systems. They
are also sharp in the sense that when they are applied to the well-
known autonomous Lotka-Volterra type ordinary differential systems,
the conditions become both necessary and sufficient.

In the next section, we describe our models and definitions in detail
and consider the persistence question for a single species model. In
Section 3, we obtain persistence results for competition interaction
population models. Section 4 is the main part of this paper, where
we present persistence results for system (1.2) when it is used to model
predator-prey interactions. The paper is ended with a brief discussion
section.
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2. Models and preliminaries. We view x(t) and y(t) in system
(1.2) as population densities at time t for species x and y, respectively.
We therefore consider (1.2) with initial conditions

(2.1)
x(θ) = ϕ1(θ) ≥ 0, θ ∈ [−τ, 0],
y(θ) = ϕ2(θ) ≥ 0, θ ∈ [−τ, 0],

where ϕ1 and ϕ2 are continuous. Existence, uniqueness and continuous
dependence of solutions are assured by Theorems 2.2.1 2.2.3 in Hale
[13]. Moreover, it is easy to show that solutions are nonnegative in their
maximum interval of existence, and if ϕ1(0) > 0 and/or ϕ2(0) > 0, then
x(t) > 0 and/or y(t) > 0 in the maximum interval of existence.

In the following, we place proper assumptions on functions f and g
to make it consistent with models of competition and predator-prey
interactions (see [10]). We denote C+ = C([−τ, 0], R+) the set of
continuous functions that map [−τ, 0] into R+ = {x : x ≥ 0} with
norm

||φ|| = max{φ(θ) : θ ∈ [−τ, 0]}, φ ∈ C+.

Competition assumptions. The following assumptions on f and g
render (1.2) a competition model.

(C1f ): There exist positive constants δ1 = δ1(f), δ2 = δ2(f),
K1 = K1(f), K2 = K2(f), with K1 < K2 such that for all t ≥ 0,

(2.2) f(t, xt, 0) > δ1, for x(t+ θ) ∈ [0,K1], θ ∈ [−τ, 0],

and

(2.3) f(t, xt, 0) < −δ2, for x(t+ θ) ∈ [K2,∞), θ ∈ [−τ, 0].

(C2f ): f(t, xt, 0) ≥ f(t, xt, yt) for all t ≥ 0, xt, yt ∈ C+, and there
exist positive constants δ3 = δ3(f) and k = k(f) such that for all t ≥ 0,
xt ∈ C+

(2.4) f(t, xt, yt) < −δ3, for y(t+ θ) ∈ [k,∞), θ ∈ [−τ, 0].

Also, for each pair (x0, y0), x0 > 0, y0 > 0, there exists l(x0, y0) such
that

(2.5) f(t, xt, yt) ≥ −l(x0, y0), for ||xt|| ≤ x0, ||yt|| ≤ y0.
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(C3f ): There exists a positive constant M = M(f), such that

(2.6) f(t, xt, yt) ≤M, for t ≥ 0, xt, yt ∈ C+.

C1f assumes that the growth rate for small population in the absence
of competitors is positive, while there is a self-crowding effect creating
a negative growth rate at high population levels, even in the absence
of competition. C2f states that the existence of y is negative to the
growth of x and when the population of y is large, the growth rate of
x becomes negative. (2.5) assumes that the negative fluctuation effect
on the growth rate of x is limited for limited population densities of
species x and y, while C3f assumes that there is an upper bound for
the growth rate of x.

In (C1f ) (C3f ) we replace f by g and denote the resulting as-
sumptions as (C1g) (C3g), respectively. When system (1.2) satisfies
(C1f ) (C3f ) and (C1g) (C3g), we call it a competition system.

Predator-prey assumptions. The following assumptions on f and g
make (1.2) a predator-prey model.

(P1): The same as (C1f ).

(P2): The same as (C2f ).

(P3): The same as (C3f ).

(P4): g(t, xt, 0) ≥ g(t, xt, yt), t > 0, xt, yt ∈ C+.

(P5): There is a continuous function m(x) for x ≥ 0, with m(0) < 0,
such that for each x0 > 0, t ≥ 0, xt, yt ∈ C+, g(t, xt, yt) ≤ m(x0),
when ||xt|| ≤ x0.

(P4) assumes the existence of self-crowding effect for species y.
(P5) says that the growth rate of y is uniformly limited by the prey
density x. When prey is absent, predator density y decreases.

Remark 2.1. Clearly, (C3f ) implies that for t ≥ 0, x(t) is bounded by
x(0)eMt, as long as y(t) exists. For the competition model, the same
conclusion applies to y(t); therefore, (x(t), y(t)) exists for all t ≥ 0.
For predator-prey models, (P5) implies that y(t) exists so long as x(t)
exists. A standard continuation argument indicates that (x(t), y(t))
also exists for all t ≥ 0.
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Definition 2.1. We say the population x(t) in system (1.2) is uni-
formly persistent, if there are positive constants µ1 and µ2 (indepen-
dent of initial conditions), µ1 < µ2, such that for large t we have
x(t) ∈ [µ1, µ2]. The same definition applies to y(t). And we say system
(1.2) is uniformly persistent, if both x(t) and y(t) are so.

Equivalently, we say system (1.2) is uniformly persistent if there exists
a compact region D ⊂ intR2

+ such that every solution of (1.2) with
initial conditions satisfying (2.1) and x(0) > 0, y(0) > 0 will eventually
enter and remain in region D. Please note the slight differences of our
definition with that of Hale and Waltman [14]; here we also require
that the system be dissipative. The above definition is used in Wang
and Ma [21], and in [1], where it is called permanently coexistent.

Theorem 2.1. Let F (t, xt)=f(t, xt, 0) and let f satisfy (C1f ) (C3f ).
Then the solution x(t) of

x′(t) = F (t, xt), x0 ∈ C+, x(0) > 0

is uniformly persistent.

Proof. In other words, we need to show that there are two positive
constants (independent of x0) η1 and η2, η1 < η2, such that for large
t (depending on x0), x(t) ∈ [η1, η2]. We show first that we can choose
η2 = K2e

Mτ . From (2.3) in (C1f ) we see that for any t0 > 0, there
is a t1 > t0, such that x(t1) ≤ K2; otherwise, x(t) tends to zero,
contradicting (2.3). If for large t, x(t) > η2, then there exist t1, t2,
t2 > t1 > 0, such that

x(t1) = K2, x(t2) = η2, x′(t2) ≥ 0, x(t) ∈ [K2, η2]

for t ∈ [t1, t2].

Since (C3f ), we have for t ≥ t1,

x(t) ≤ x(t1)eM(t−t1),

which implies that t2 − t1 ≥ τ . However, by (2.3), we thus have

f(t2, xt2 , 0) < −δ2 < 0,
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and hence x′(t2) < 0, a contradiction.

Let η1 = K1 exp(−l(η2 + 1)τ ), where l(x) ≡ l(x, 0) as defined in
(C2f ). We show now that for large t, x(t) > η1. By (2.2), we see that
for any t0 > 0, there is a t1 > t0 such that x(t1) ≥ K1; otherwise x(t)
will tend to infinity, contradicting (2.2). Assume that for t ≥ t̄ > τ ,
x(t) ≤ η2 + 1. If for large t, x(t) < η1, then there are t1 and t2,
t2 > t1 > t̄+ τ , such that

x(t1) = K1, x(t2) = η1, x′(t2) ≤ 0, x(t) ∈ [η1,K1],

for t ∈ [t1, t2].

Since (2.5), we have for t ∈ [t1, t2],

x(t) > x(t1)e−l(η2+1)(t−t1).

Hence,
t2 − t1 ≥ τ,

and by (2.2), we must have x′(t2) > 0, a contradiction.

3. Competition systems. In this section, we assume system
(1.2) satisfies (C1f ) (C3f ), (C1g) (C3g). For convenience, we denote
δ1f = δ1(f), and similarly for δ2f , K1f , δ1g, δ2g, Mf , Mg, lf , lg, etc.
We have the following dissipativity result for system (1.2).

Lemma 3.1. Let ηx = K2f exp(Mfτ ), ηy = K2g exp(Mgτ ), and
(x(t), y(t)) be a solution of (1.2) and (2.1) such that x(0) > 0, y(0) > 0.
Then

(3.1) lim sup
t→+∞

x(t) ≤ ηx, lim sup
t→+∞

y(t) ≤ ηy.

Proof. We need only show that lim supt→+∞ x(t) ≤ ηx, since
lim supt→+∞ y(t) ≤ ηy can be shown similarly. Indeed, the arguments
are very much like the first half of the proof of Theorem 2.1.

If the conclusion is false, then there exist t1, t2, t2 > t1 > 0, such that

x(t1) = K2f , x(t2) = ηx, x′(t2) ≥ 0, x(t) ∈ [K2f , ηx]
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for t ∈ [t1, t2]. From (C3f ), we have

t2 − t1 > τ.

And (2.3) leads to x′(t2) < 0, a contradiction. This proves the lemma.

Theorem 3.1. In system (1.2) assume (C1f ) (C3f ) and (C1g) (C3g)
hold. Assume further

(C): There is a positive constant δ0, such that for all t ≥ 0,

(i) f(t, xt, yt) > δ0, for ||xt|| ≤ δ0, ||yt|| ≤ ηy + δ0,

(ii) g(t, xt, yt) > δ0, for ||xt|| ≤ ηx + δ0, ||yt|| ≤ δ0, where ηx and ηy

are defined in Lemma 3.1.

Then system (1.2) is uniformly persistent.

Proof. We adopt a similar approach as the proof of Theorem 2.1. Let

η̄x = δ0 exp{−lf (ηx + δ0, ηy + δ0)τ},
η̄y = δ0 exp{−lg(ηx + δ0, ηy + δ0)τ}.

We prove below that

(3.2) lim inf
t→+∞ x(t) ≥ η̄x.

The proof of lim inft→+∞ y(t) ≥ η̄y is similar. From Lemma 3.1, we
know that there exists t0 > 0, such that for t ≥ t0,

(3.3) x(t) < ηx + δ0, y(t) < ηy + δ0.

If (3.2) is false, then there exist t1, t2, t2 > t1 > t0, such that

x(t1) = δ0, x(t2) = η̄x, x′(t2) ≤ 0, x(t) ∈ [η̄x, δ0],

for t ∈ [t1, t2].

Clearly, (2.5) implies that

t2 − t1 ≥ τ.
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However, by (i), we must have

x′(t2) = x(t2)f(t2, xt2 , yt2) > δ0x(t2) > 0,

a contradiction.

In the following, we apply the above theorem to the nonautonomous
Lotka-Volterra type competition system with distributed delays of the
form
(3.4)

x′(t) = x(t)
[
a(t) − b(t)

∫ 0

−τ

x(t+θ) dµ1(θ) − c(t)
∫ 0

−τ

y(t+θ) dµ2(θ)
]
,

y′(t) = y(t)
[
k(t) − h(t)

∫ 0

−τ

x(t+θ) dµ3(θ) − f(t)
∫ 0

−τ

y(t+θ) dµ4(θ)
]
,

where 0 ≤ τ < +∞, and µi, i = 1, 2, 3, 4, are nondecreasing functions
satisfying µi(0+) − µi(−τ−) = 1. a(t), b(t), c(t), k(t), h(t) and f(t) are
bounded positive continuous functions that are also bounded away from
zero. For convenience, we assume that

(3.5)
a(t) ∈ [a, ā], b(t) ∈ [b, b̄], c(t) ∈ [c, c̄],
k(t) ∈ [k, k̄], h(t) ∈ [h, h̄], f(t) ∈ [f, f̄ ],

where a, b, c, k, h and f are positive constants. It is easy to see that
assumptions (C1f ) (C3f ) and (C1g) (C3g) are satisfied by system
(3.4). For detailed biological interpretation, see Freedman (1980).
Applying Theorem 3.1 to (3.4), we have

Theorem 3.2. Assume that system (3.4) satisfies

(3.6) a− c̄
k̄

f
ek̄τ > 0 and k̄ − h̄

ā

b
eāτ > 0.

Then (3.4) is uniformly persistent.

Proof. Since all the coefficients are positive and bounded from both
below and above, we see that (C1f ) (C3f ) and (C1g) (C3g) are all
satisfied.
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From (3.6), we see that there exists a constant ε > 0, such that

ā− c̄

(
k̄

f
+ ε

)
ek̄τ > 0, and k̄ − h̄

(
ā

b
+ ε

)
eāτ > 0.

Define

K2f ≡ ā

b
+ ε, K2g ≡ k̄

f
+ ε.

We see that (C1f ) and (C1g) can be satisfied by letting K2(f) = K2f ,
K2(g) = K2g. Clearly, Mf = M(f) = ā, Mg = M(g) = k̄. Hence, we
have

ηx =
(
ā

b
+ ε

)
eāτ , ηy =

(
k̄

f
+ ε

)
ek̄τ .

It is now easy to see that (i) in Theorem 3.1 reduces to

ā− c̄

(
k̄

f
+ ε

)
ek̄τ > 0,

while (ii) in Theorem 3.1 reduces to

k̄ − h̄

(
ā

b
+ ε

)
eāτ > 0.

Theorem 3.2 now follows from Theorem 3.1.

In the autonomous case, that is, when ā = a, b̄ = b, c̄ = c, k̄ = k,
h̄ = h, and f̄ = f , condition (3.6) reduces to the uniform persistence
condition (4.4) in [4]. When, in addition, τ = 0, i.e., when (3.4) reduces
to autonomous ordinary differential system, our persistence condition
(3.6) becomes

b

h
>
a

k
>
c

f
,

which in fact is both necessary and sufficient for uniform persistence
(see [20]).

4. Predator-prey systems. We assume throughout this section
that system (1.2) satisfies (P1)–(P5). Note that we do not assume that
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g is strictly decreasing with respect to yt, which amounts to the so-
called self-crowding effect. If such an effect exists, then boundedness
of solutions of (1.2) with (2.1) are easy to obtain. This is the case for
the work of Wang and Ma [21]. As we have mentioned in section 2, it
is easy to show that x(t) is bounded (see also the proof of Lemma 3.1).
The next lemma shows that y(t) is also bounded.

Lemma 4.1. Assume system (1.2) satisfies (P1)–(P5). Then there
is a positive constant q such that

lim sup
t→+∞

y(t) ≤ q,

for all solutions of (1.2) with (2.1).

Proof. Let ηx = K2f exp(Mfτ ); then a similar argument as the proof
of Lemma 3.1 shows that

(4.1) lim sup
t→+∞

x(t) ≤ ηx

for all solutions of (1.2) with (2.1).

Since (C2f ), there exist positive constants δ3 and k such that for all
t ≥ 0, xt ∈ C+,

(4.2) f(t, xt, yt) < −δ3, for y(t+ θ) ≥ k, θ ∈ [−τ, 0].

From (P5), we see that there exists a positive constant p such that
m(p) < 0

(4.3) g(t, xt, yt) ≤ m(p) < 0, t ≥ 0, xt, yt ∈ C+, ||xt|| ≤ p.

Let ε ∈ (0, 1) be a constant. There exists a constant T > 0, such that
the solution x(t) of

x′(t) = −δ3x(t)(4.4)
0 ≤ x(t0) ≤ ηx + ε,(4.5)

satisfies

(4.6) x(t) ≤ p, for t− t0 ≥ T.
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Denote

ξ = ξ(ε) = m(ηx + ε),(4.7)
ηy = k exp(ξ(τ + T )).(4.8)

We claim that

(4.9) lim sup
t→+∞

y(t) ≤ ηy.

Assume in the following that (4.9) is false. Note that for any t0 > 0,
there is a t > t0 such that y(t) < k. Otherwise, x(t) tends to zero and
we must have, from (P5),

y′(t) ≤ y(t)m(p)

and, therefore,
y(t) → 0, as t→ +∞,

a contradiction. Since (4.1), there is a t0 = t0(ε) > τ such that

(4.10) ||xt|| ≤ ηx + ε, for t ≥ t0.

The preceding arguments indicate that there exist t2 > t1 ≥ t0 such
that
(4.11)
y(t1)=k, y(t2)=ηy, y′(t2)≥0, y(t)∈ [k, ηy), t∈ [t1, t2].

From (P5), we obtain

(4.12) y′(t) ≤ m(ηx + ε)y(t) = ξy(t), t ≥ t0.

Hence, we must have

(4.13) t2 − t1 ≥ τ + T.

However, the solution x(t) of

(4.14) x′(t) = x(t)f(t, xt, yt), ||xt1 || ≤ ηx + ε,
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satisfies
x′(t) ≤ −δ3x(t)

and, hence,

x(t) ≤ x(t1)e−δ3(t−t1) ≤ p, for t− t1 ≥ T.

This implies that
||xt2 || ≤ p,

and, hence,

y′(t2) = y(t2)g(t2, xt2 , yt2) < m(p)ηy < 0,

a contradiction. This proves the lemma.

In the following, we denote

f(t, x, y) ≡ f(t, x̂, ŷ),(4.15)
g(t, x, y) ≡ g(t, x̂, ŷ),(4.16)

where we denote x̂, ŷ ∈ C+, x̂(θ) = x, ŷ(θ) = y, θ ∈ [−τ, 0]; that is,
replacing φ, ψ in f(t, φ, ψ), g(t, φ, ψ) by constants x and y, respectively.
Also, we assume that there exist continuously differentiable functions
f(x, y), g(x, y) and ḡ(x, y) such that for t ≥ 0,

f(x, y) ≤ f(t, x, y),(4.17)
g(x, y) ≤ g(t, x, y) ≤ ḡ(x, y).(4.18)

Assume further that

(P6) f is strictly decreasing with respect to both x and y, f(0, 0) > 0,
and

lim
x→+∞ f(x, 0) = lim

y→+∞ f(0, y) = −∞.

(P7) g and ḡ are increasing with respect to x, but nonincreasing with
respect to y. ḡ(0, 0) < 0.

Let ε ∈ (0, 1) be a constant. From the proof of Lemma 4.1, we see that
there is a t0 = t0(ε, ϕ1, ϕ2), such that for t ≥ t0,

x(t) ≤ ηx + ε, y(t) ≤ ηy + ε,
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where ηy is defined as in (4.8). Clearly,

(4.19) −α ≡ −α(ε) ≡ f(ηx + ε, ηy + ε) < 0.

And hence the solution (xt, yt) of (1.2) satisfies

(4.20) x′(t) ≥ x(t)f(ηx + ε, ηy + ε) = −αx(t), t ≥ t0 + τ,

which implies that

x(t) ≥ x(t+ θ)eαθ, θ ∈ [−τ, 0], t ≥ t0 + τ,

or equivalently,

(4.21) x(t+ θ) ≤ x(t)e−αθ, θ ∈ [−τ, 0], t ≥ t0 + τ.

Also, we have from (C3f ),

x′(t) ≤ x(t)M,

which leads to

(4.22) x(t+ θ) ≥ x(t)eMθ, θ ∈ [−τ, 0], t ≥ t0 + τ.

Similarly, we have that for t ≥ t0 + τ ,
(4.23)

−β ≡ −β(ε) ≡ g(0, ηy + ε) ≤ y′(t)/y(t) ≤ ḡ(ηx + ε, 0) ≡ γ(ε) ≡ γ,

and hence, for t ≥ t0 + τ ,

(4.24) eγθy(t) ≤ y(t+ θ) ≤ e−βθy(t), θ ∈ [−τ, 0].

For convenience, we denote

F (x, y) = f(eατx, eβτy),
(4.25)

G(x, y) = ḡ(eατx, e−γτy), G(x, y) = g(e−Mτx, eβτy).
(4.26)
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In the following, we need to compare solutions of (1.2) with those of
the following two nondelayed autonomous predator-prey systems

(4.27)
u′(t) = u(t)F (u(t), v(t)), u(0) > 0,
v′(t) = v(t)G(u(t), v(t)), v(0) > 0

and

(4.28)
u′(t) = u(t)F (u(t), v(t)), u(0) > 0,
v′(t) = v(t)G(u(t), v(t)), v(0) > 0.

Further, we let x∗ > 0 be the unique solution of

(4.29) F (x, 0) = 0.

We now state and prove the main result of this section.

Theorem 4.1. Assume system (1.2) satisfies (P1)–(P7), and

(P8) G(x∗, 0) > 0.

Then (1.2) is uniformly persistent.

Proof. From the definition of uniform persistence, we need only show
that there is a δ > 0, independent of initial data, such that

(4.30) min{lim inf
t→+∞ x(t), lim inf

t→+∞ y(t)} > δ.

Denote x1 > 0 the unique solution of

(4.31) G(x, 0) = 0.

We claim that there is an x̄ ≥ min{x∗, x1}, and a sequence {ti}∞i=1,
ti = ti(ϕ1, ϕ2) > τ , ti → +∞ as i → +∞, such that x(ti) = x̄.
Otherwise, we have for all large t, y′(t) < 0, and hence we must have
limt→+∞ y(t) = 0, which leads to

lim sup
t→+∞

x(t) ≥ x∗,
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and (P8) thus implies for all large t, y′(t) > 0, a contradiction.

Recalling that we have assumed that for t ≥ t0 = t0(ε, ϕ1, ϕ2),

x(t) ≤ ηx + ε, y(t) ≤ ηy + ε.

We assume below that ε < 1.

We have two cases to consider:

(i) there is a t1 ≥ t0 + τ , such that

(4.32) x(t1) = x̄, F (x(t1), y(t1)) ≤ 0;

(ii) there is a t1 ≥ t0 + τ such that

x(t1) = x̄, F (x(t1), y(t1)) > 0.

We define
x̂ =

1
2

min{x∗, x1}.
We denote

(4.33) ū(t) = u(t, x̂, η), v̄(t) = v(t, x̂, η),

the solution of (4.27) with initial value (x̂, η), where η ≥ max{ηx +
1, ηy + 1} satisfying F (0, η) < 0. Then, from a standard phase plane
analysis of system (4.27), we know that there is a τ1 > 0 such that

ū′(τ1) = 0 and ū′(t) < 0 for t ∈ [0, τ1),
and v̄′(t) < 0 for t ∈ [0, τ1].

Denote

(4.34) u(t) = u(t, ū(τ1), v̄(τ1)), v(t) = v(t, ū(τ1), v̄(τ1)),

the solution of (4.28) with initial value (ū(τ1), v̄(τ1)). Then there is a
τ2 > 0, such that v′(τ2) = 0. Denote

Γ1 = {(ū(t), v̄(t)) : 0 ≤ t ≤ τ1},
Γ2 = {(u(t), v(t)) : 0 ≤ t ≤ τ2},
Γ3 = {(x, v(τ2)) : u(τ2) ≤ x ≤ η},
Γ4 = {(η, y) : v(τ2) ≤ y ≤ η},
Γ5 = {(x, η) : x̂ ≤ x ≤ η}.
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FIGURE 1. Illustration of the proof of Theorem 4.1.

Then ∪5
i=1Γi constitutes the boundary of a closed bounded region

Ω = Ω(x̂) in the x− y plane. We claim that for t ≥ t1 = t1(ε, ϕ1, ϕ2),
(x(t), y(t)) ∈ Ω. Note that Ω is independent of initial value (ϕ1, ϕ2).

We consider first case (i). Observe that for t ≥ t1, (x(t), y(t)) can
never leave Ω through Γ1. Since if (x(t), y(t)) = (ū(t̄), v̄(t̄)) ∈ Γ1, then
0 > x′(t) ≥ ū′(t̄), y′(t) ≤ v̄′(t̄) < 0, which implies that dy/dx > du/dv.
Similarly, we see that (x(t), y(t)) cannot leave Ω through Γ2. And it is
obvious that (x(t), y(t)) cannot cross Γ3, Γ4 and Γ5. This proves the
claim for case (i).

Consider now case (ii). Clearly, we can replace x̂ in (4.33) by a
sufficiently small ū(0) and construct a new region Ω(ū(0)) accordingly
to envelope (x(t1), y(t1)). However, as our notation suggests, the region
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Ω(ū(0)) now depends on (x(t1), y(t1)).

Observe that since (P6), there is a constant ρ0 > 0, such that if

max{x(t), y(t)} < ρ0,

then x′(t) > 0. By choosing sufficiently small constant ρ1, we claim
that for any solution (x(t), y(t)) of (1.2), there must be a t∗ > 0, such
that

min{x(t∗), y(t∗)} > ρ1.

This is because for sufficiently small constant ρ > 0, y(t) cannot always
stay in

Ω1 = {(x, y) : 0 ≤ y ≤ ρ}.
Since otherwise lim inft→+∞ x(t) will be larger than or very close to the
value x∗ and hence forces y′(t) > 0 for large t, because of (P8). Also,
we knew earlier that x(t) cannot always stay in

Ω2 = {(x, y) : 0 ≤ x ≤ ρ}

for sufficiently small ρ. Moreover, for ρ < ρ0, (x(t), y(t)) can only travel
from Ω2 to Ω1 and not the other way around. We stress here that ρ1

is independent of (ϕ1, ϕ2).

Finally, we conclude that we can choose sufficiently small ū(0),
0 < ū(0) < x̂, such that

{(ρ1, y) : ρ1 ≤ y ≤ η} ∪ {(x, ρ1) : ρ1 ≤ x ≤ η} ⊂ Ω(ū(0)).

For this Ω(ū(0)) (independent of (ϕ1, ϕ2)), we have that for any solution
(x(t), y(t)) of (1.2) with x(0) > 0, y(0) > 0, there is a t∗ = t∗(ϕ1, ϕ2),
such that

(x(t), y(t)) ∈ Ω, for t ≥ t∗.

This proves the theorem.

Clearly, when applying the above theorem, one can take ε = 0 in
selecting α, β, γ in F,G, G.

In the rest of this section we apply the proof of Theorem 4.1 to the
nonautonomous Lotka-Volterra Michaelis-Menten type predator-prey
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system
(4.35)

x′(t) = x(t)
[
a(t)−b(t)

∫ 0

−τ1

x(t+ θ) dµ1(θ)

− c(t)
∫ 0

−τ2
y(t+ θ) dµ2(θ)

1 + n(t)
∫ 0

−τ3
x(t+ θ) dµ5(θ)

]
,

y′(t) = y(t)
[
− k(t) +

h(t)
∫ 0

−τ4
x(t+ θ) dµ3(θ)

1 + n(t)
∫ 0

−τ5
x(t+ θ) dµ6(θ)

− f(t)
∫ 0

−τ6

y(t+ θ) dµ4(θ)
]
;

again all the coefficients are positive continuous functions bounded
both above and away from zero, and τi ≥ 0, µi(θ) are nondecreasing,
µi(0+)−µi(−τ−) = 1, i = 1, 2, . . . , 6. We assume, in addition to (3.5),

(4.36) n(t) ∈ [n, n̄].

When all coefficients are constants and τi = 0, i = 1, 2, . . . , 6,
(4.35) reduces to the well-known Lotka-Volterra Michaelis-Menten type
predator-prey system (see (4.41) below) which is described in [10].

Theorem 4.2. In (4.35), let α be defined by (4.19) with ε = 0 and
x∗ = ab̄−1e−ατ1 . If

(4.37) he−āτ4x∗ > k̄(1 + n̄e−āτ5x∗)

then (4.35) is uniformly persistent.

Proof. Clearly (4.35) satisfies (P1)–(P5). We have

f(x, y) = a− b̄x− c̄y

1 + nx
,

g(x, y) = −k̄ +
hx

1 + n̄x
− f̄y,

ḡ(x, y) = −k +
h̄x

1 + nx
− fy.
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It is easy to see that (P6) and (P7) are satisfied. We have M = ā.

It is not difficult to see that we can define

F (x, y) = a− b̄eατ1x,

G(x, y) = −k +
h̄eατ4x

1 + neατ5x
− f̄ e−γτ6y,

G(x, y) = −k̄ +
he−āτ4x

1 + n̄e−āτ5x
− feβτ6y,

and almost repeat the proof of Theorem 4.1 to show that if x∗ is the
solution of

F (x, 0) = 0

and

G(x∗, 0) > 0,

then (4.35) is uniformly persistent. This is equivalent to

x∗ = ab̄−1e−ατ1 ,

and
he−āτ4x∗ > k̄(1 + n̄e−āτ5x∗).

This completes the proof.

In particular, if we have τ1 = 0, then condition (4.37) reduces to

(4.38) he−āτ4ab̄−1 > k̄(1 + n̄e−āτ5ab̄−1),

which is an inequality explicitly in terms of bounds of coefficients.

When, in addition, τ4 = τ5 = 0, then (4.37) becomes

(4.39) hab̄−1 > k̄(1 + n̄ab̄−1).

Note that condition (4.39) does not depend on τ2, τ3, τ6, c, and f !



184 Y. KUANG AND B. TANG

When (4.35) is autonomous (i.e., a = ā = a, b = b̄ = b, k = k̄ = k,
n = n̄ = n, h = h̄ = h, c = c̄ = c, f = f̄ = f), (4.39) reduces to

(4.40) ah > k(b+ na),

which is exactly the necessary and sufficient condition for the uniform
persistence of

(4.41)
x′(t) = x(t)

(
a− bx(t) − cy(t)

1 + nx(t)

)
,

y′(t) = y(t)
(
− k +

hx(t)
1 + nx(t)

− fy(t)
)
.

5. Discussion. In this paper, we considered the uniform persistence
aspect of general nonautonomous two species interaction systems with
time delays. Our approach is very different from standard ones. In
fact, standard methods such as dynamical systems theory of Hale and
Waltman [14] cannot be applied to nonautonomous systems, and so
does the Liapunov functional approach developed by Burton and Hut-
son [1], which was used (with some difference) in Wang and Ma [21]
as well. Our approach basically is some kind of comparison argument.
In predator-prey systems, we construct two relevant ordinary differen-
tial systems (which are also predator-prey models) whose solutions can
serve as bounds for that of the delayed system.

Our results are complementary to existing results for autonomous
delayed systems. They are not as sharp as should be in some special
cases. For example, when reduced to Lotka-Volterra autonomous
systems with discrete delays, our results for predator-prey models
depend on lengths of delays while the result of Wang and Ma [21] does
not. Of course, our results are much more general. We do not even
assume self crowding effect among predators, another key assumption
in Wang and Ma’s [21] result. However, when applied to autonomous
Lotka-Volterra systems without delays, our conditions are necessary
and sufficient.

We would like to point out here that the monotonicity assumptions
made in (P6) and (P7) can be weakened. This can be seen from the
proof of Theorem 4.1.
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Finally, we would like to see some kind of generalization of our
approach to higher dimensional systems. So far, we find this is quite
difficult.
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