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ON THE EXISTENCE OF THE
CARATHEODORY SOLUTIONS FOR
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Dedicated to Paul Waltman on the occasion of his 60th birthday

ABSTRACT. In the paper we give some sufficient con-
ditions for the existence of Carathéodory solutions to the
Darboux-Goursat boundary value problem and the Dirichlet
problem.

0. Introduction. The Darboux-Goursat and Dirichlet boundary
value problems are, in general, considered in the Sobolev-type func-
tional spaces where the differentiation of functions is understood in the
generalized sense (cf., e.g., [7, 6]).

In the present paper we give some sufficient conditions for the exis-
tence of Carathéodory solutions to the Darboux-Goursat problem in the
space of absolutely continuous functions in R?. By a Carathéodory so-
lution we mean here an absolutely continuous function which possesses
the partial derivatives in the classical sense and satisfies the equation
under consideration almost everywhere.

Making use of the properties of absolutely continuous functions, one
can prove some generalization of the Du Bois-Reymond lemma (cf. [3])
for functions of several variables. The formulation of this lemma and
an application to the Dirichlet-type boundary problems are given in
the final part of the paper.

1. Absolutely continuous functions of several variables.
Denote by P* an interval in the space RF, k > 1, of the form

Pt ={zcRM0O<z'<1,i=1,2,...,k}.
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Let F' = F(Q) be an additive function of an interval Q C P* where
(1) Q={recRF0<zi<s' <zi<1,i=1,2,...,k}

and the points z}, ¢ are fixed.

The function F is called absolutely continuous if, for any € > 0, there
exists § > 0 such that Y | |F(Q;)| < ¢ for any system of intervals
Q; C P? such that > ., |Q;| <& (cf. [2, 5]).

Let z be a real function defined on P*. The function of an interval
Q (cf. (1)) defined by the formula

n

(2) F(Q) =Y ()i fia(al, 2, ,al)

where ; = 0,1 is called a function associated with z (the summation
in formula (2) is taken over all systems e1,&3,... ,e,; & = 0,1) (cf. [2,

5).

In the case k = 2, formula (2) takes the form

(3) F.(Q) = z(x%, x%) — z(wé,x%) + z(xé,w%) — z(x%, x%)

Definition 1. The function z : P* — R is called an absolutely
continuous function on P* if the associated function F,(Q) is an
absolutely continuous function of the interval Q C P* and each of the
functions z(0, 22, ... ,z*), 2(z,0,2%,... ,2%),..., 2(z%,... ,2¥ "1 0) is
an absolutely continuous function of (k — 1) variables. For k = 1, we
adopt the classical definition of an absolutely continuous function of
one variable.

The space of functions defined above will be denoted by AC(P*).
We shall prove

Theorem 1. A function z € AC(P?) if and only if

1 2

(4) z(xl,:v2):/0z1 /sz llvz(xl,x2)+/0x ll(x1)+/0w (z?) + ¢
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where 112 € L1(P?), 1, 12 € L(]0,1]), c € R.

Proof. Let z € AC(P?). Consider the function
(5) w(zt, z?) = z(2!, 2?) — 2(0,22) + 2(0,0) — z(z*,0).

By formula (3), we have F.(Q) = F,(Q) for any interval ). By
definition, F,(Q) is an absolutely continuous function of an interval.
So there exists a function {12 € L'(P?) (cf. [2, 5]) such that

©) R@ = [[ 126

for any interval Q C P2. Denote by Q(z!,z?) an interval of the form
Q(z', z?) = {(t',t?);0 < t' < z';0 < t* < 2?}.

From equalities (5) and (6), we get

w(zt,2?) = Fp(Q(z',2%)) = //Q(zl,ﬂ) M2 (%)
/ / 112(¢1 42)
= z(z',2%) — 2(0,2°%) + 2(0,0) — 2(z*,0).

The last equality and the well-known integral representation for
absolutely continuous functions of one variable yield formula (4) with
¢ =2(0,0).

The second part of the theorem follows directly from the properties
of the integral. O

Theorem 1'. A function z € AC(P*) if and only z'f

zw,...,xk):/’”.../’”"l / /
(7) / / +/0 T
+/0 I* +
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where [":'2 0% gre integrable functions on the respective intervals of
dimensions s = 1,2,... k.

Proof. By Theorem 1, formula (7) holds for ¥ = 1 and 2. Let us
assume that any absolutely continuous function on P*~1, k > 2, may
be represented in form (7). Consider a function

w(zt,z?,... 2% = z(z', 2%, ..., 2F) = [2(0,27,... ,zF)

+2(zt, 0,2, .. 2R) + o 2(2t 2?2 0)) 4
+ (=1)*712(0,0,... ,2*) + 2(0,0,... ,zF 71 0) + -
+ 2(z',0,0,...,0)] + (=1)*2(0,0,... ,0).

By formula (2), we have F,(Q) = F,(Q) for any interval Q C P*. By
definition 1, F,,(Q) is an absolutely continuous function of an interval.
So there exists a function (1'% * € L1(P*) such that

Fu(Q) :/ 2k (gt ? )
Q

for any interval Q C P* (cf. [2]). Denote by Q(z!,z2,...,z%) an
interval of the form

Qzt, 22, ... 2" = {(t",%,... ,tF);0 <t <2ti=1,2,... k}.

It is easy to notice that

w(zt, z?,. .. z*

w(Q(zt, 22, ... zF))

)=F, x
€T .’l}k
_ / / l1’2"" ’k(tl,tZ, L ,tk).
0 0

The above equality and the induction assumption yield formula (7).
]

The space AC(P*) defined above is identical with the space of
absolutely continuous functions defined in paper [8]. But the above
definition and the proof of Theorems 1 and 1’ are more natural and
simpler.



CARATHEODORY SOLUTIONS 119

By basing oneself on integral representation (7), it is possible to prove
that any z € AC(P*) possesses all derivatives (in the classical sense)
of the form

0°z(x)
6xi1 .. 8$is ’

1<iy<ig<---<ig<k, zePFae,

s=1,2,...,k

which are integrable on P*.

Moreover, z possesses a total differential (Fréchet’s differential) for
almost all z € P* (cf. [9]).

2. On the Darboux-Goursat boundary value problem. It is
well known that the space AC([0, 1], R™) is a ‘good’ space for ordinary
differential systems

(8) = f(t,z), z(0) = xo.

This space is a ‘good’ space in the sense that system (8) possesses
in AC([0,1], R™) a unique solution which continuously depends on
the initial condition provided f is measurable with respect to ¢ and
lipschitzian with respect to x. The analogous role is played by the
space AC(P?, R™) for partial systems of the form

0%z 0z 0z
9 = _— JR—
) I
with the boundary conditions of Darboux-Goursat type

(10)  z2(z,0) = (=),  z2(0,y) =%(),  »(0)=1(0).

(AC(P?%, R™) denotes the space of vector functions z = 2(z,y), (z,y) €
P2z =(2',...,2™) and 2%, i = 1,2,... ,m, is an absolutely continu-
ous function in the sense of Definition 1). All derivatives in system (9)
are understood in the classical sense.

We shall assume that:

(a) the function f is lipschitzian with respect to z, 2z, zy, i.e., there
exists a constant L > 0 such that

If(x,y,wo,wl,wz) - f(maya 205 215 22)|

< L(Jwo — 20| + |w1 — 21| + |w2 — 22])
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for (z,y) € P? a.. and for all points (wg,w;,wz) € (R™)3 and
(Z()aZl,ZZ) € (Rm)3,

(b) for each point (wg, w1, ws) € (R™)3, the function f(-, -, wo, w1, w2)
is measurable on P2,

(c) there exists a point (@y, w1, ws) € (R™)? such that the function
f(-,-, Wy, Wy, Ws) is integrable on P2,

One can prove

Theorem 2. If the above assumptions (a)—(c) hold and the functions
¢ and 1 are absolutely continuous on [0, 1], then the Darbouz-Goursat
problem (9-10) possesses a unique solution z € AC(P?, R™). The
function z satisfies equation (9) for (x,y) € P? a.e. and boundary
conditions (10) for all z,y € [0,1], i.e., z is a solution of system (9-10)
in the sense of Carathéodory.

For linear systems, the proof of Theorem 2 is given in [8] (for the
general case, see [1]). Let us notice that this theorem is quite analogous
to the well-known existence theorem for ordinary systems.

Sketch of the proof of Theorem 2. It is easy to observe that, by
substituting

w(xvy) :Z(I,y) 7Q0(I) *d’(y)‘ﬂ% CZSO(O) :¢(0)a

boundary value problem (9)—(10) can be reduced to a problem with ho-
mogeneous boundary conditions. Therefore, without loss of generality,
one may assume that p(z) = 0 and ¥ (y) = 0. It follows from equal-
ity (4) that any function z € AC(P? R™) satisfying the conditions
z(2,0) = 0 and 2(0,y) = 0 can be represented in the form

z(z,y) = /Ox /Oyg(fc,y) dz dy

where g € L'(P?,R™). So, a system with homogeneous boundary
conditions can be represented in the form

g(w,y)—f<w,y,/oz/0yg,/0yg,/0zg>-
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Let £ > 1 be a number satisfying the inequality

1 1

where L is the constant from the Lipschitz condition. In the space
LY(P?, R™) let us introduce a norm defined by the formula

1 1
lolhe = [ [ e tlg(a, )] dody.
0 JoO

It is easy to show that

e lgllzr < llglle < llgllz:-

Consequently, the norms ||g||; and ||g||L: are equivalent.

Denote by F = (F,...,F™) : LY(P*, R™) — L'(P? R™) an
operator defined by the formula

Fi(g)(z,y) = f* (my/oz /Oyg(w,y),/Oyg(x,y)a/ozg(w,y))

It follows from the assumptions that the operator F' is well defined. We
shall demonstrate that F' is a contracting operator. We have

1 1 z py Yy z
IIF(g)*F(h)HkZ/ / e’“(“”y)f(fv,y,/ / g,/ g,/ g>
o Jo o Jo 0 0
T Y Y T
—f(x,y,/ / h,/ h,/ h> dx dy
o Jo 0 0
1 1 T y
SmL/ / e—k(z+y)/ / lg — h|
o Jo o Jo
1 1 Yy
+mL/ / e_k(””+y)/ lg — Al
o Jo 0
1 1 T
+mL/ / e*k(”y)/ lg — hl.
o Jo 0

Integrating by parts, we obtain

e 5 1
/ / <e—k(z+y) / lg — h|(s,7) ds> dedy < —|lg = hl[x
0o Jo 0 :
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and

Y k [f 1
e \9—h|(w,y)SE|\9—h||k-
0 0 0

Integrating by parts twice, we get the estimate

Y T L b 1
e l9 = hl(z,y) < 5 lg = hllx-
0 0 0 0

Consequently, we obtain

1 1
150) ~ P < 202 (5 + 3 )llg bl =l — Al
Since @ < 1, we ascertain that F is a contracting operator. So
there exists exactly one point go € L'(P?, R™) such that go = F(go).
Adopting

zo(z,y) = /Om /Oy go(x,y) + o) + ¥(y) — c

where ¢ = ¢(0) = ¢(0), we obtain a solution of system (9) in the space
of absolutely continuous functions on P2. i

3. On a boundary value problem of Dirichlet type. Let a be
any function from L?(]0,1], R™). The Du Bois-Reymond lemma (fun-
damental lemma) says that a(t) = const. a.e. provided fol a(t)h'(t)dt =
0 for each absolutely continuous function h such that h(0) = h(1) =0
and b’ € L%, ie., h € WD1 2. This lemma plays an essential role in the
variational theory of ordinary differential equations with Dirichlet-type
boundary conditions (cf. [3, 4]).

At present, we give some generalization of the Du Bois-Reymond
lemma to the case of functions of several variables.

Let ACZ(P*, R™) denote the space of all absolutely continuous vector
functions z = (2!,...,2™) such that z* € AC(P?), z%|5pr = 0 and all
cross derivatives

0°z(x)
8'1-1'1 ...61;1'3’
1<ii<io<--<is <k, 1=12,...,m,

s=12,...,k,
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belong to L?(PF).
Lemma 1. Ifa € L?(P*,R™) and, for any h € ACZ(P* R™), the
equality
819
/Pk a(z) oxt,..., 0z h(@)dz =0
holds, then the function a can be represented in the form

a=(c1+-+eg)—(cr2+--+erteazt+Fcap o+ cho1k)
+(c123+ - -+ciok+- -+ Ch_2k-1k)
+o b (D 1z k1t ) (=D ek

1 1 1
Ciy iz, yis = / / - / a(z)dz™ dz*? ... dz',
0o Jo 0

1<t <ig<---<is < k.

where

The functions c;,,... ;, are square-integrable and constant with respect
to the variables z1,. .. ,x's. For k = 2, equality (10) takes the form

a(a:l,mQ) = cl(xz) + cz(xl) —c1,2

where cy1,ca € L?([0,1],R™), c1,2 is a constant vector.

The proof of Lemma 1 will be published in Bull. Soc. Math. Belgique
(June 1993).

Further, we shall consider the case of two variables. Making use of
Lemma 1, we shall prove

Lemma 2. If functions ay, az,b € L>(P%, R™) and, for any function
h € AC2(P?, R™),

1 pl
/ / (a1hy + aghy + bh) dxdy =0,
o Jo
then

/Oy a1 (z,y) dy /Omaz(ﬂcay) d$+/ow/0yb(w,y) dzdy = ¢1(y) + ca(z)—c
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for some functions cy,co € L2([0,1], R™) and ¢ € R™.

Proof. Integrating by parts, we have

/ / arh, drdy = — / / </ ax mv)dv)hwy(w,y)dacdy,
/ / ashy drdy = — / / </ azuy)du>hzy(m,y)dxdy,
/ / bhdwdy—/ / </ / u, v dudv)hzy(ac y)dx dy

where h € ACZ(P%, R™).
By the assumption,

1 1 Y T T Y
// {/ alf/ a2+/ / b]hzyd:cdy:(]
o Jo 0 0 o Jo

for any function h € ACZ(P?, R™).

Making use of Lemma 1 we get the assertion of Lemma 2. O

Let f be a functional of the form
f(z):/ F(m,zz,zy,z)dx:/ F(z,Vz,z)dx
Pk Pk

defined in the Sobolev space Hy»? (P2, R™).
We shall assume that

(a) f is a Gateaux-differentiable functional, and the differential is
defined by the formula

OF OF OF
11 Df(2)z = e+ s T
(11) f(2)z /Pk <82kzw+ 8zyzy+ 52 z> dz dy,
(b) 8F/0dz,, OF |0z, and OF/ 0z are functions of the space L?( Pk R™),

with any z € Hé’Q.

By making use of Lemma 2, it is easy to prove
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Theorem 3. If conditions (11) are satisfied and z° € Hy” is a
critical point of the functional f, that is, Df(2°) = 0, then the point
2V satisfies the Euler equation of the form

Y 6F
B 0 (9zz / 8zy // 82 dwdy

=c1(y) +co(z) — ¢

where p° = (z,vy, 22, zg, 2%), e1, c2 are some functions from L?(P?, R™),
and c € R™.

Now let us consider a particular case when f is of quadratic form.
Namely, let

(12) flz) = // [zfAuzz + 2254412,2?; + ngggzy — 2bz] dz dy
P2

where z € Hy?(P?, R™). We shall assume that

(c) the matrices A;j, i,j = 1,2, are essentially bounded on P?,
b c L2(P2,Rm), Aij(way) c Rmxm’

(d) there exists an o > 0 such that

€1 Aui (2, y)én + 26] Ara (2, y)€2 + wiz Ana (2, y)€2 > a(|&]” + &)
for (z,y) € P? a.e. and any &;,&; € R™.

It is known that the functional f given by formula (12), under
assumptions (¢) and (d) attains its minimum at exactly one point
2% € Hy? and f is differentiable (cf. [6]). This fact and Theorem 3
imply the following

Theorem 4. If assumptions (c¢) and (d) are satisfied, then there
exists eractly one function 2° € Hé’z(P2, R™) such that

(i) 2° is @ minimizer of the functional f given by (12),

(ii) 2° satisfies the following Euler equation

(13)
y ¢ ry

,/ (A1122+A1222) dyf/ (Agzz + A2 )dx—i—/ / b(z,y) dz dy
0 0 0o Jo

=ci(y) +ca(z) — ¢ (z,y) € P? a.e.,
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where c¢; and ¢y are some functions from L?([0,1], R™), c € R™.

Let the matrices A;j, i,j = 1,2, satisfy assumptions (c) and (d).
Consider an elliptic system of the form

0 0
(14) %(Auzz + Algzy) + a_y(AQQZy + Algzz) = b

with the boundary condition

(15) z(z,y) =0 for (z,y) € 0P

It is easy to notice that, in the case when Aj2 = 0 and A;; and Ag
are constant matrices, the problem of solving system (14)—(15) reduces
to the classical Dirichlet problem.

Now let us consider an integro-differential system of the form

Y T
(16) / (Anzm + Alzzy) dy + / (Azgzy + Algzz) dx
0 0

= /Oz /Oybdacdy—kal(w) + az(y)

with the boundary condition
(17) z(z,y) =0 for (z,y) € OP?

where a; and a, are some functions from the L?([0, 1], R™)-space.

We shall say that a function 2 € ACZ(P?, R™) is a solution of system
(16)—(17) in the sense of Carathéodory if there exist some functions a;
and ap € L? such that 2" satisfies system (16) for (z,y) € P? almost
everywhere.

It is easy to notice that any function 2° € ACZ(P% R™) which
satisfies system (14) for (z,y) € P? a.e. is a solution of system (16) for
some a1, as. The converse implication holds only under the additional
assumptions.

Problem (16)—(17) will be referred to as the integro-differential Dirich-
let problem.
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Theorem 4 immediately implies the following

Theorem 5. If the matrices A;; are essentially bounded and sat-
isfy conditions (c) and (d), then integro-differential Dirichlet problem
(16)—(17) possesses a unique solution in the sense of Carathéodory.
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