ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 24, Number 3, Summer 1994

BARGMANN-TYPE KERNELS
AND UNBOUNDED SUBNORMALS

AMEER ATHAVALE

ABSTRACT. A class of positive definite kernels k! on the
complex plane is introduced such that the multiplication op-
erator M (kp!) in the Hilbert space H(kp!) associated with kp!
is an unbounded subnormal, M(k;i!) in particular being the
multiplication operator in the classical Bargmann space. Mul-
tivariable unbounded subnormal weighted shifts, analogous to
the tuple of creation operators corresponding to the multidi-
mensional Schrodinger representation, are also discussed and
the subnormality of such shifts is related to the multidimen-
sional Stieltjes Moment problem.

1. Preliminaries. Let H be a separable Hilbert space, and let
S = (S1,.-.,Sm) be a tuple of (possibly unbounded) linear operators
in ‘H such that the operators Si,...,S,, have a common invariant
dense domain D(S) in ‘H and commute with each other on D(S). The
tuple S is said to be subnormal if there exist a Hilbert space I, a
tuple N = (Ny,...,N,,) of normal operators Ny,...,N,, in K and a
dense subspace D(N) of K such that D(NV) is invariant for all N; and
N}, N; are commuting on D(N), D(S) C D(N) and N;/D(S) = S;
for all i. The study of unbounded subnormal tuples S has received
some attention in recent years with the special emphasis on the case
m =113, 16, 18, 21, 22, 23|. In what follows, if @ = (ay,... ,an)

and 8 = (B1,...,Bm) are multiindices of nonnegative integers and
z = (21,-.. ,2m) is a tuple of complex numbers, then z* will denote
271257 ... 2% and a+ B will denote the tuple (a1 + 51, .. , Qy + Bm)-

The symbol €(j) will stand for the m-tuple (0,...,1,...,0) which has
1 in the jth coordinate place and zeros elsewhere. For a subset A of
the real line R or the complex plane C, A™ will denote the Cartesian
product of A with itself n times. Occasionally, we might forego the
multiindex notation in the interest of clarity. Finally, N will denote
the set of nonnegative integers.
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892 A. ATHAVALE

If {aq}aen= is a multisequence of real numbers such that a, =
fk z*du(x) for some subset K of R™ and some positive measure p
satisfying [, |#%|du(x) < oo for all @ in N™, then {a,} is said to be a
K-moment sequence. According to whether K = [0,1]™, (—o0, 00)™ or
[0,00)™, {aq} will be referred to as a Hausdorff, Hamburger or Stieltjes
moment sequence, respectively. The problem of determining whether
a given sequence {a,} is a Hausdorff, Hamburger or Stieltjes moment
sequence is the Hausdorff, Hamburger or Stieltjes Moment Problem,
respectively, and the reader is referred to [5, 6, 10, 20 and 24| for
extensive treatments of such problems. The connection of the Hausdorff
Moment Problem with the bounded subnormal operator theory is well
known [3, 9, 12, 14, 19|, and that of the Stieltjes Moment Problem
with the unbounded subnormal operator theory of a single operator
has been established and explored in [21, 22 and 23]. The m-tuple
at = (af,...,a}) of creation operators corresponding to the m-
dimensional harmonic oscillator or the 2m-dimensional Schrédinger
representation of quantum mechanics is the most famous example
of an unbounded subnormal tuple (see [7, 11, 13, 21 and 22]).
Now a™ is really the tensor product of the one-dimensional creation
operators a; , the domain for at being the m-fold tensor product of
the Schwarz space with itself. Also, at, as restricted to the linear
span of the products of one-dimensional Hermite functions, is seen
to be a multivariable weighted shift. Recall that if {e,}oaenm is an

orthonormal basis of a Hilbert space H and {w((xj)}, ji=1...,m,

is a set of positive numbers, then T' = (T4,...,T,,), defined on the
linear span of {e,} by Tjeq, = w,()f)ea+5(j), ae€N™j=1,...,m,is

called a multivariable weighted shift with weights {wc()‘J )}. We always
assume that the coordinates 7; of such a multivariable weighted shift
are commuting so that w((f )wgﬂs(j) = w&k)wg_i)_s( K for all @ in N™, and
for all j,k > 1.

A positive definite kernel k on a subset A of C™ is a function k(z, w)
from A% = A x A into C satisfying >_, 5 k(2a;28)cas > 0 for all
possible choices of a finite sequence of points {z, } from A, and complex
numbers c,. We will be exclusively concerned with positive definite
kernels k(z,w) = Y aa2“0* (an > 0 and ~ denotes the conjugate),
defined on either C™ or the unit polydisk D™ of C™. It is well-known
(see [2] and [8]) that a positive definite kernel k gives rise to a functional
Hilbert space #H(k) such that the tuple M (k) = (M,,,... ,M,, ) of

Zm



BARGMANN-TYPE KERNELS 893

multiplications by coordinate functions in H(k), acting on the linear
span of {2%,/a,}, can be identified with the multivariable weighted shift
T = (Ty,...,Ty) with weights {w,()f) = \/@a/aa1e(j)}- The tuple a™
referred to earlier can be looked upon as M (k) in H(k), where k(z,w) is
exp(z1W1 + - + ZmWm) [7, 11, 13] and H (k) is the famous Bargmann
space. The Bargmann space has already received some attention from
the viewpoint of operator theory (see [7, 13 and the references therein]).

In this paper we introduce a class of multiplication tuples analogous
to a* in the Bargmann space by considering positive definite kernels
on C™ that are analogs of the Fischer or Bargmann kernel exp(zyw; +
-+ + 2, W,,) and relate the question of the subnormality of a class
of multivariable weighted shifts, of which a® is a prototype, to the
multidimensional Stieltjes moment problem.

2. Subnormality of a single operator. Let k(z,w) =
Yoo g anz"w" be a positive definite kernel on C or the unit disk D
in C. We associate with k a positive definite kernel k! on C de-
fined by k!(z,w) = > o7 j(an/n!)z"w"™. For example, the Szegd kernel
1/(1 — zw) on D gets associated with the Bargmann kernel exp(zw)
on C. Later, we will provide a stronger motivation for considering
the association & — k! by referring to the solutions of the confluent
hypergeometric equation of the theory of special functions. First we
record some elementary observations related to the association k& — k!.
Recall that a densely defined operator T" in # is said to be hyponor-
mal if D(T) C D(T*) and ||Tz| > ||T*z|| for all z in D(T') (see [18]),
where || -|| denotes the norm of H; and, for a weighted shift operator T,
this amounts to the corresponding weight sequence being nondecreasing
[18]. The proof of Proposition 1 below is straightforward.

Proposition 1. If M(k) is hyponormal, then so are M(k!) and
Mk — k).

Proposition 2. Let k = > 7 ja,z"w" be a positive definite kernel
on C such that M(k) is an unbounded subnormal in H(k), and let
I =30 buz"0" be a positive definite kernel on D such that M(l)
is a bounded subnormal on H(l). Then both M(k!) and M(I!) are
subnormal.
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Proof. Note that {n! = [;~a™exp(—x)dz} is a Stieltjes moment
sequence. If M(k) is an unbounded subnormal in #(k), then {1/a,}
is a Stieltjes moment sequence [22] and hence so is {n!/a,} (see [20 or
24]); so that M (k!) is subnormal [22]. If M(l) is a bounded subnormal
on #H(l), then {1/a,} is a Hausdorff (and hence a Stieltjes) moment
sequence [19]; so that {n!/a,} is again a Stieltjes moment sequence,
leading to M (I!) being subnormal. O

We plan to make the content of Proposition 2 more explicit for
the special class {k,} of positive definite kernels on D defined by
kn(z,w) = (1 — zw)~™. (The kernel k; is the Szegé kernel and ks
is, modulo the factor 1/, the Bergman kernel. The importance of the
class {k,} for the bounded subnormal operator theory was highlighted
in [1] and the appropriate generalizations of k,, have been explored in
[2] and [3]). First, however, we address the question of computing the
measure du(x) associated with {n!/a,}, where a,, is as in Proposition 2.
For this, we need the theory of Stieltjes-Mellin transforms as expounded
in [24, Chapter VI]. If da(z) is the measure associated with {a,} for
some nondecreasing function a on [0,00) and B(y) = —exp(—y) on
[0,00), then n!/a, = [;° a™ da(z) [ y™ dB(y). If

o' (t) = —a(exp(—t)) and B'(u) = —B(exp(—u)),

then

nl/a, = /00 exp(—nt) dv'(t),

— 00
where

() = /oo o (t — ) (u) du

— 00

is the Stieltjes resultant of o’ and 8'. (J°°_|de/(t)| < oo forces o/ (—oco)
to be finite; hence we may assume o/(—o0) = 0 and use [24, Chapter
VI, Theorem 10]). Thus, we get n!/a, = fo 2™ dy(z) by using the

substitution z = exp(—t); and in fact f 0,00) " d~y(z) can be interpreted
as the Cauchy limit [} 2" dy(z), where y(z) = —/(logz ™).
We now find out the measures dyu,(x) associated with M (k,!), p > 2.
Note that, modulo constant factors, ky(z,w) = > 7, a'? znign where
/(p)—fo (1-z)P~2dz. Thusn‘/ap)—f0 Y™ exp(— dyf0
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x)P~2dzx, and using the substitution (z,y) = (exp(—s),exp(—t)), one
has

n!/alP) = /°° exp(—exp(—t)) dt /000 exp(—n(s+1))

— 00

(1 — exp(—s))P 2 exp(—s — t)ds

— /oo exp(— exp(—t))dt/too exp(—nu)

— 00

(1 — exp(t — u))P~? exp(—u) du

_ / Z exp(—nu) ( / oo exp(— exp(—t))

(1 — exp(t — u))P~2 dt> exp(—u) du

[ ([ " exp(-exn(-0)

(1— zexp(t))P 2 dt) dz;

so that

dp(z) = ( / T e (— exp(—))(1 - xexp(t))p_zdt> da.

— 00

It is easy to see that the weighted shift operator with weights

{ [aP 1) 1}

can be identified with M (k,!) in H(k,!), where H(k,!) is the Hilbert
space obtained by completing the set of analytic polynomials in
L*(C,v,) with dv,(rexp(if)) = du,(r?) exp(if) /2. o

The study of Toeplitz operators on the spaces #H(k,!), p > 2, along
the lines of [7] seems desirable. Here we only note that the analog of
Theorem 5 in [7] is true for the spaces #(k,!) and illustrate the required
argument for the case p = 2. If ¢ is in L>°(C, 1), then the Toeplitz
operator T, on H(ky!) is defined by T, f = P(¢f), f € H(ks!), where
P denotes the projection of L?(C,v5) onto H(ks!).
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Theorem 1. If ¢ is in L>°(C,v2) has compact support, then T, is
a compact operator.

Proof. Note that {e, = (n!/(n + 1))~*/22"} is an orthonormal
sequence in H(ka!). If ¢ in L*°(C, v2) is such that |¢| < K a.e. [12] and
©(z) = 0 for |z| > a; and if (.,.) denotes the inner product of H(k2!),
then

(Tper, ej) = (K131/((k+1)(j +1))) 7% < P(p2"), %)

= (BY((k+ 1) + 1)) Y/2 /C ()2 din(2),

so that
[(Tpex, &) < (KY5/((k+1)(G + 1))/ Ka**

/(Oyoo) (/:grz exp(— exp(—t)) dt) d(r2)

= (RY/((k + 1) (G + 1)) 72 K",

2
since f(o oo)(f__olsgr exp(— exp(—t)) dt) d(r?) = (n!/n+1),—o = 1. But
then >, . [(Tpex, e;)|? is easily seen to be finite, leading to 7, being
compact. O

Since the multiplication operator M (k;!) in the Bargmann space has
a natural connection with the differential operator z — d/dz acting
on the linear span of Hermite functions (see [7, 11 and 22]), it
is relevant to ask whether M(k,!), p > 2, is related in a natural
way to some differential operator acting on an appropriate family of
orthogonal functions in L?(R, u,). The answer to this question might
also illustrate the physical significance, if any, of the operators M (kj!).
To provide a stronger motivation for the above comments and the need
to consider the association k — k! in general, the reader is referred to
the confluent hypergeometric equation (see [15])

(A) zd*u/dz? + (¢ — 2) du/dz — au = 0,
where we assume that a and c are positive integers, u being a function
of z. One of the linearly independent solutions of (A) is given by

oo

®(a,¢;2) = (D(e)/T(a) Y (T(a+n)/(T(c+n)(n+1)))2",

n=0
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where I' denotes the Gamma function.

Note that the positive definite kernels k,!, p > 1, are precisely the
Kummer functions ®(p, 1, z), p > 1, with z replaced by z@! The author
admittedly lacks in his knowledge of the theory of special functions to
pursue this topic any more at this juncture.

The reader is reminded that two densely defined operators S and 7 in
H and /C, respectively, are said to be quasisimilar if there exist bounded
linear operators A : H — K and B : K — H such that A and B are
injective and have dense ranges, and such that AS C T'A and BT C SB
[18]. Note that quasisimilarity is an equivalence relation on the class of
densely defined operators. The operators M (k,!) discussed above are
seen to determine disjoint quasisimilarity orbits. For example, consider
the operators M (k;!) and M (ks!). If B is a bounded linear operator
from H(k2!) to H(ky!) and {e%l)}, {eg)} are orthonormal bases in

o0

H(k1!), H(ka!), respectively, then we may write Bel?) = > j—0 an,jeg-l),
n > 0. The relationship BM (k3!) C M (k1!)B would force

(n+1)/Vr+2)Y aniriet” =3 i+ lan el

which in turn would imply that a, o =0 for all n > 1 and apt1,n4+1 =
vn +2a9,0. If B is to be bounded, one must have ago = 0 as well
and this shows that B cannot be one-to-one. The reader may similarly
consider any M (k,!) and M (kq!), p # q. The gist of the arguments here
seems to lie in the asymptotic behavior of the solutions of Equation (A)
(see [15]) and suggests that the questions related to the intertwining
of unbounded multiplication operators in functional Hilbert spaces
associated with positive definite kernels on C™ may be answered in
a meaningful way by some analogs of Theorem 4.6 in [8].

3. Subnormality of a tuple of operators. The positive definite
kernel exp(z1w1 + -+ + 2 Wy,) on C™ corresponding to at has the
coefficients {1/(ny!na!- - ny,!)} in its series expansion, the reciprocals
whereof form a multidimensional Stieltjes moment sequence in an
obvious way. More interestingly, one may consider {1/(ny+---+nm,)!}
and the associated kernel > -, ,c;c,, 2"@"/(n1 + - ny)! on C™.
Note that {(n1 + --- + n,)!} is a Stieltjes moment sequence; for
example, (n; + ny)! = f[o,oo)z zPrzy? exp(—(z1 + x2)/2) du(z1, z2),
where du(zy,z2) is the linear measure on the diagonal z; = z2 in
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the positive quadrant of R?. In view of our discussion in the preceding
section about the significance of the kernels k!, one would like to form
interesting subnormal tuples out of M (k,!) by means other than that
of simply tensoring M (k,!). In this context, Theorem 2 and Corollary
1 below are relevant. The proof of Theorem 2 combines a result of
Nussbaum [17] with the arguments in [22] and makes the content of
Theorem 10 in [21] more transparent for the case of a multivariable
weighted shift; it also relates the notion of joint subnormality for a
class of multivariable weighted shifts, of which at is prototypical, to
the (multidimensional) Stieltjes moment problem.

Lemma 1. For m > 1, let {a(n1,... ,nm)} be a multisequence of
real numbers satisfying

(B) Z 1/a(0,...,0,1:,0,...,0)Y%™ = oo for every i.
’(Li:1
Then {a(ni,... ,nm)} is a Stieltjes moment sequence if and only if

g alis + 1+ €15+ sbm + Jm + Em)Citsin,. im
(C)  0<ik,ju<pr,1<k<m
cj17j27"'7jm Z 0
for all possible choices of a finite sequence of complex numbers c;, i, ... ..

(0 <ix < pr, 1 <k <m) and for any choice € = (1,€2,... ,Em) in
{0,1}™.

Remark. Condition (C) may be described by saying that {a(nq, ...,
nm)} is a completely positive definite sequence (see [6]).

Proof of Lemma 1. If {a(ny,... ,ny,)} is a Stieltjes moment sequence
with a corresponding measure dp(x), then the left-hand side of (C) is
equal to

) . 2

o . t1+m ,t2+n2 G+

/ E Cityizyenn yim L1 Ty Ty dﬂ'(m)a
[0,20)™ " 0<ip, <pr,1<k<m

where 7; are some nonnegative integers (taking values 1/2 or 0), and is
clearly nonnegative.
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Conversely, suppose (C) is satisfied. We illustrate the proof for
the case m = 2. Define a new sequence {B(ni,nq)} as follows:
B(2n1,2n2) = a(ny,nz) for all (ny,ns) in N? and B(mi,my) = 0 if
(m1,mz) is not equal to (2ny,2ny) for any (ni,n2) in N2. We now
establish that {8(n1,n2)} is positive definite; that is, sums such as

g B(ll + J1, 02 +j2)ci1,i2éj1,j2
0<ig,jrk<my,1<k<2

are nonnegative (cf. [24, Theorem 13a, Chapter III]).

We treat here the case of m; being odd and mo being even. The
other three cases can be handled similarly. Thus, one has,

Z B('Ll + J1, 02 +j2)ci17i26j17j2
0<ig,jx <my,1<k<2
(m1—1)/2 m2/2
= Z Z B(2i1 + 241, 2i2 + 252)C24, 215 C2jy 2j0
i1,j1=0 i2,j2=0
(m1-1)/2 (m2/2)-1
+ Z Z B(2i1 + 251, 2i2 + 22 + 2)c2i; 21541825, ,2j2+1
i1,j1=0  i2,j2=0
(m1-1)/2 m2/2
+ Y Y B(2in + 21 + 2,205 + 2j2)
11,j1=0 i2,j2=0
C2i1+1,2i24+1C2j1 +1,2j2+1
(m1-1)/2 ma/2
= Z Z iy + J1, 92 + J2)C2i; 2i, Cojy 2
11,j1=0 i2,j2=0
(m1—-1)/2 (m2/2)—1
+ Z Z a(iy + ji, 92 + j2 + 1)€2i; 2i54+1C2j; 2j0+1
11,j1=0  i2,j2=0
(m1-1)/2 m2/2
+ Z Z a(in + j1 + 1,2 + 2)C2i,+1,2i5C2j1 +1,24
11,j1=0 i2,j2=0
(m1—1)/2 (mz/2)—1
+ Z Z a(iy + 1 + 1,42 + J2 + 1)c2i, +1,2i0+1C2j1 +1,2j2+15

i1,j1=0  i2,j2=0
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and the last expression is seen to be nonnegative in view of (C). The
generalization to the case m > 2 should now be obvious. Also, in view
of (B), we have

o0

> 1/8(0,...,0,2n;,0,...,0)/2"
n,;:l
=Y 1/a(0,...,0,n;,0,...,0)/*" = co.
nizl

But then it follows from a result of Nussbaum (see the remark preceding
Theorem 10 of [17]) that {B(ni,...,nn,)} is a Hamburger moment
sequence. Hence there exists a positive measure du(xz) on R™ such
that

B(ni, ... ,nm) :/ xPtag? - carmdu(ze, ..., Tm)
m

for all (ny,...,ny)in N™. Hence we have a(ny, ... ,ny) = 8(2ng, ...,
2Mpm) = [qm @i @2 dp(zy,. .., 2,) and, using the transforma-
tion (y1,... ,ym) = (z3,...,22), a(ni,... ,ny,) = f[o,oo)m Yyt ytm
dv(y1, ... ,Ym) for some positive measure dv(yi,... ,Ym)- O
Corollary 1. If for m > 1, {a(ni,... ,nm)} is a multisequence

satisfying (B) and (C), then
{B(nla s 7nm) = 06(0, v 707 k(Ll)a 07 v a07 k(L2)7
is a Stieltjes moment sequence, where k(Lj), occurring in the L;’th

coordinate place, is the sum ZieAj ni, {Ai,...,Ap} being a fized
partition of {1,2,... ,m}.

Proof. Let {a(ni,...,nn,)} satisfy (B) and (C). Then clearly
{B(n1,...,nm)} satisfies (B). By Lemma 1, {a(n1, ... ,nmn)} is a Stielt-
jes moment sequence so that

/B(nla v ,’l’lm) = /[0 ) x]szl)x]z(zL2) B 'xi(pr) d/'t(xla s ,l‘m)
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for some positive measure du(xy,...,Zn,), and it easily follows from
this that {8(nq,... ,nn,)} satisfies condition (C) as well. o

Theorem 2. Let T = (T1,...,Tn), m > 1, be a multivariable
weighted shift on the linear span L of an orthonormal basis {eq}aeNm
of H, such that e,... o 15 a quasi-analytic vector for T'; that is,

(D) > 1|7 eo... o7 = o0
n=1
for each i, where || - || denotes the norm of H. Then the following are

equivalent.
(a) T is subnormal.
(b) T satisfies the multidimensional Halmos-Bram conditions; that
is,
(E) > (T'f;, T f;) > 0
0<ig,jr <pr,1<k<m
for all possible choices of a finite sequence {f; = fj, ... j.} (0 < jr <

pr, 1 < k < m) of vectors in L, and where (-,-) denotes the inner
product of H.

() {llT"eo,.. 0
sequence.

|} nenm is a (multidimensional) Stieltjes moment

Proof. That (a) implies (b) is easy to verify. Suppose now that (b)
holds. Letting
Firviim = Cirpee i T T - T meq o,
where (e1,...,6m) C {0,1}™, and substituting in (E) we see that the
sequence {||T"ep,... o||*}nenm satisfies condition (C) of Lemma 1. In

view of hypothesis (D), condition (B) in Theorem 1 is also satisfied by
{l[T™eq,... o||*}- Hence (c) holds.

Now suppose (c) is true. Then, as in the proof of Theorem 4 in [22],
we can consider

(TPeq,... 0, T%:q,... 0)
=6(p1,91)0(p2,a2) * ** 6(Pm» @m) || TPe0.... ol |*

= 5(p1,01) - 5 (s ) / 2 du(z),

[0,00)™
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where 0(k,l) =1if k =1 and 0(k,l) =0 if k # [. Clearly, we have
(T"eq,... 0,T%:q,... 0)

=8(p1,q1) - (P, @) / xgpﬁql)/? g Pmtam) /2 gy ().

[0,00)™

Set
a(ng,... ,nm):/ w?l/z---x”m’"/zdu(x).
[0,00)™

Then it is easy to see that {a(ni,...,n,)} satisfies condition (C)
of Lemma 1. Note also that > 1/a(0,...,2n;,...,0)Y/2% = S°1/
[T e, of|'/™ = co. Hence it follows from the remark preceding
Theorem 10 of [17] that {&(n1,...,n,)} is a Hamburger moment
sequence. If dv(z) is the corresponding positive measure, then

(T"eq,... 0,1€0,... o)

= 51, 01) - 5 (P ) / 2012 4y ()

m

:/ mp+qdy(a:)/ 2P 1 dyp,

where T™ is the unit polycircle in C™, dy is the normalized product
arc-length measure (df; ® -+ ® db,,,)/(2m)™ on T™ and p — q denotes
(p1 — q1,--- sPm — Gm)- Thus, one has

(T*eq,... 0, T%o,... 0) = <M£+qlm L) u(ME 114y, 14) 0,

where M, denotes the multiplication tuple in L?(R™,pu),(.,.), the
inner product of L?(R?, 1) and 1,, the constant function 1 in L?(R?, p);
similar interpretations holding for M., (.,.), and 1, with reference to
L?(T™, ). This leads to

(Teq,... 0,T%q,... 0)

= < (sz ® Mzz-)pi(lu ® 190):

=

ﬁ
Il
-

(Miﬂz ® Mzi)qi(ll't ® 1¢)>M®4pa

—

@
Il
-
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where ® denotes the tensor product and allows us to identify each T;
with M, ® M., /S, where S is the linear space generated by 1, ® 1, in
LAR™®T™, p®¢p). Since (M,, ® M,,,... ,M,, &M, ) isa normal
tuple of operators in L2(R™®T™, u®), the desired conclusion follows.
mi

Using Corollary 1 and Theorem 2 above, one can easily build new
Stieltjes moment sequences out of the ones associated with M (k,!) of
Section 1. Thus, {(ny + -+ np)!'}, {(n1 + -+ np)!/(ny + -+ +
N+ 1)} {(n1 +n2)!(n3 +n4)!/(ng +na+1)} are examples of Stieltjes
moment sequences associated with M (k;!) and M (ke!). The study
of multivariable weighted shifts associated with such multisequences
will hopefully shed more light on the structure theory of unbounded
subnormals.
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