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ON THE BLOW-UP OF SOLUTIONS TO
SOME SEMILINEAR AND QUASILINEAR
REACTION-DIFFUSION SYSTEMS

S.L. HOLLIS AND J.J. MORGAN

ABSTRACT. After a brief discussion of known global well-
posedness results for semilinear systems, we introduce a class
of quasilinear systems and obtain spatially local estimates
which allow us to prove that if one component of the system
blows up in finite time at a point z* in space then at least one
other component must also blow up at the same point. For a
broad class of systems modelling one-step reversible chemical
reactions, we show that blow-up in one component implies
blow-up in all components at the same point in space and
time.

1. Introduction. Considerable research has been done in the last
decade on the problem of global well-posedness of semilinear parabolic
systems of partial differential equations; i.e., reaction-diffusion systems.
See, e.g., [1-7, 9-13]. A system is said to be globally well-posed if
classical solutions continue for all time ¢ > 0 given any nonnegative L>°
initial data. Perhaps the greatest source of interesting problems in this
area is the modelling of multi-species chemical reactions. For example,
let us consider the following, seemingly simple, reversible reaction in
which sulphur dioxide reacts with oxygen to form sulphur trioxide:

(1.1) 250, + 0y = 250s.

If we set A = [SO3], B = [Os], and C = [SOj], then this reaction,
assuming mass action kinetics, may be modelled by the reaction-
diffusion system:

Ay — dyAA = 2(k,.C* — k;A’B)
(1.2) By — d2AB = k,.C* — k;A*B
Ci — dsAC = 2(k}B — k,C?)
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together with nonnegative L initial data and, say, homogeneous
Neumann boundary conditions. Here the d; are positive diffusivities
and kg, k, are positive forward and reverse reaction rates, respectively,
and we assume that the reaction takes place within a bounded domain
Q with smooth boundary. Even the most casual observer will note that
the total concentration [,(A 4+ B + C)dx remains bounded since the
reaction functions sum to zero with appropriate positive scaling factors.
However, pointwise bounds, which are necessary to prove continuability
of classical solutions, are quite difficult to come by (unless d; = dp = d3)
and, in fact, currently constitute an open question for this “simple”
system if ) has spatial dimension greater than two. It is, however,
not difficult to show that if a pointwise bound were available for any
one component of this system, then pointwise bounds for all other
components would follow. This essentially says that if one component
blows up at time 7™, then all components do likewise. In a subsequent
section we will localize this result to show that if blow-up occurs, then
it must occur in all components at the same point in space and time.

2. Global well-posedness of semilinear systems. Let us now
consider the following, somewhat general, reaction-diffusion system:

%Zi*diAuiZfi(u) inQx{t>0}, i=1,...,m
21 %uiZP('vﬁui) on 0 x{t>0}, i=1,...,m
n
ui(-,O):uoi(-) OnQ, i:l’_‘_’m
where u = (u;)!",, the d; are positive constants, the p;, ; are

nonnegative constants, and €2 is a bounded domain in R™ with smooth
boundary 0. (Here and in the remainder of this paper we mean by
this that 0 is an n — 1-dimensional C?*® manifold of which Q lies
locally on one side.) We assume that the initial data uo, are bounded,
measurable, and nonnegative, that the reaction functions f; are locally
Lipschitz, and that f is quasi-positive; i.e., for each ¢ = 1,... ,m, we
have f;(§) > 0 for all £ > 0 with & = 0. These conditions on f
guarantee local existence of unique, nonnegative, classical solutions on
a maximum time interval 0 < ¢t < 7™ < oo [4, 10, 13]. An additional
natural condition to place on f is that there are constants a; > 0,
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i =1,...,m, such that
(2.2) D aifi(§) <0 forall£ >0.
i=1

This condition is tantamount to requiring conservation of total mass in
the system. From a mathematical point of view, it allows one to obtain
a priori bounds on solutions in the space L'(£2). To be specific we state
the following lemma, which is a simple consequence of the divergence
theorem.

Lemma 2.3. If (2.2) holds, then

/Qiui(-,t) < a*(/ﬂiuoi(-) +Bt> for allt €10,T%),

where 3 = |0Q >, dipiyi and o* = max{e;}/ min{e;}. In particu-
lar, if p;v; =0 for each i =1,... ,m, then 8 = 0.

We remark that in the case where each p; = 00, i.e., each u; =; >0
on 90 x {t > 0}, one can obtain a similar bound on solutions in
LY (2% (0,7)) for all T < T*. Moreover, if each u; = 0 on 9Q x {t > 0},
one can obtain the result of Lemma 2.3 with 8 = 0. More general
conditions than (2.2) on the f; also allow similar results. See [4, 10,
11].

Another condition which is natural in the context of chemical reaction
modelling (cf. (1.2)) is that

(2.4) each |f;(€)] is bounded above by a polynomial of degree r;.

While much progress has been made in recent years on the global
well-posedness of such systems, it remains an open question as to
whether the preceding conditions on f are enough to guarantee the
global existence of nonnegative, classical solutions of (2.1).

Work in this area typically centers on establishing first an a priori
bound on solutions in some L? space with small p (usually an L! space)
and bootstrapping the estimates into LP with p sufficiently large to
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allow the use of condition (2.4) and classical parabolic regularity to
obtain pointwise bounds. A pointwise bound allows one to contradict
nonglobal existence via the standard result [13] that a classical solution
either exists for all time or else blows up in the sup-norm in finite time.

Almost all progress in this area has required additional assumptions
on the structure of f. In [4], Hollis, Martin and Pierre considered
(2.1) under assumptions (2.2) and (2.4) with m = 2 components and
proved global existence in any spatial dimension provided that an
a priori L bound is available for one component. (Condition (2.2)
was actually replaced with a similar one with a constant M majorizing
>~ fi-) This was sufficient to handle such models as the two-component
“Brusselator,” for example, in which fi, fo in (2.1) take the form:
fi(u) = —ugud + bug, fou) = uyul — (b + 1)us + a.

Subsequent work by Morgan [10, 11, 12] extended these results to
handle m-component systems of the form (2.1) under condition (2.4)
and with (2.2) replaced by the following “intermediate sums” condition.

There exist r € [1,7max(n)), K > 0, and, for each i = 1,... ,m,
nonnegative constants «; j, 7 =1,... ,4, with a;; > 0 such that

(2.5) Zl:am-fj(g) < K<1 + i@-)r for all £ > 0in R™.
=1 =1

The form of the upper bound 7max(n) on r depends upon the type of
available a priori estimate, and in most cases one has rpy.x(n) < 2,
which restricts r, for the models under consideration here, to be 1,
except for the case when n = 1, which allows r = 2 < 7pax(1).
Note that (2.5) does not require (except when ¢ = 1) that each
reaction function f; be bounded above by a polynomial of degree less
than rpax(n). It does, however, require some cancellation of higher
order terms in the “intermediate sums.” The reader should note the
manner in which (2.5) is satisfied, with » = 1, by the aforementioned
Brusselator. For more details on the form of 7,,x(n) and its connection
with the a priori estimate, we refer to Morgan [10]. More recent work
of Morgan [12] has extended the results to r = 2 if n = 2.

Note also that if d; = d; for all 7, j, then condition (2.2) is sufficient
for the global well-posedness of (2.1), since then Y a;u; is bounded
above by a solution of the heat equation.
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All of the preceding remarks are also valid if the boundary conditions
are nonnegative Dirichlet type (i.e., each p; = oo in (2.1)). It is
important that either all of the p; be oo of else all finite. Serious
difficulties can arise from mixed boundary condition types, and, indeed,
finite-time blow-up has been demonstrated for such a system; see
Bebernes and Lacey [2]. It is interesting to note that the usual
L' estimate does not follow from (2.2) if both Robin/Neumann and
positive Dirichlet boundary conditions appear in (2.1).

Unfortunately, many models, while satisfying conditions (2.2) and
(2.4) and possessing an intermediate sums-type structure, have in-
termediate sums of order r > 2; for example, (1.2), which possesses
quadratic intermediate sums. (In fact, any f satisfying (2.4) trivially
satisfies (2.5) with » = max{r;}.) Global existence for such systems
remains, in general, an open problem. It is the purpose of this paper to
discuss some interesting facets of these problems and prove some facts
concerning problem (2.1) with only conditions (2.2) and (2.4).

We should make note of some results on related problems obtained
without the intermediate sum condition. Kanel [6, 7] has proved that
solutions of (2.1) with Q = R™ exist globally provided that, in addition
to (2.2) and (2.4), each f; is at most quadratic if n > 2 and at most
cubic if n = 1. This last result for cubic f;’s and n = 1 is also proved
on the bounded domain Q = (0, L) with each wu; satisfying Neumann
conditions at the endpoints (i.e., each p; = 0 in (2.1)).

3. A question concerning linear, scalar equations. The work of
Hollis, Martin, and Pierre [4], Morgan [10], and Hollis and Morgan [5]
has relied upon a duality argument for bootstrapping a priori estimates
into LP estimates for all p < co. A simple modification of this duality
argument shows a close connection between the question of global
existence for (2.1) without Morgan’s intermediate sums condition (i.e.,
only (2.2), (2.4)) and a question on estimates for solutions of certain
linear, scalar, parabolic equations.

Let us assume for simplicity that each p; = 0 in (2.1). Consider
the (local) solution w of (2.1), and define w = Y ", a;u; and @ =
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>, diciu;. Now note that due to (2.2) we have

(3.1) %—f—Awgo in Q x {t >0}
ow
(3.2) B =0 on 9Q x {t > 0}.

Now if ¢ is a function in C*1(Qx[0,77]) with ¢(-,7) = 0 and 8¢ /0n = 0
on 9Q x (0,7), then multiplying (3.1) by ¢ and integrating by parts
result in

(3.3) / / < + Aga) /Q o, 0)w(, 0) da.

Upon setting X(-, ¢ -, T —t), (3.3) becomes
(3.4) //wﬁ</ (2, T)w(=,0) dx,
where

(3.5) ‘Z—’; - gAX 9 inQx(0,T).

Now, with the aid of duality, (3.4) would yield a bound on w in
LP/®=1)(Qx (0,T)) provided that one had an estimate on [, X(z,T') dz
in the form C||9||, ax0r). (Note that we may restrict ourselves to
nonnegative ¥, which implies that X > 0.) Moreover, one would think
that this would be possible due to the facts that the coefficient w/w
is continuous (so long as the solution u of (2.1) exists) and that it
satisfies dpmin < W/w < dpax Where dmax,dmin are the largest and
smallest of the diffusion coefficients in (2.1). In summary, the question
of global existence for solutions of (2.1), with only assumptions (2.2),
(2.4), comes down to the following question:

Suppose that o € C(2x(0,T)), o is uniformly continuous on Q2x (0, T)
for any 7 € (0,T), and 0 < ¢y < o(z,t) < ¢; < 00 for all z € Q and
0 <t <T. Suppose further that 1 < p < 2, 9 € LY (Q x (0,T)) and
that X 1is the solution in W' (Q x (0,7)) of

(3.6a) ox/0t —oAX =19 inQx(0,7)
(3.6b) oxX/On=0 ondQx(0,7)
(3.6¢) X(+,0)=0 onQ
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where 0 < 7 < T'. Does there exist a constant C = C(p,T), depending
upon ¢y and ¢, but otherwise independent of o, such that

(37) AX(I,T) dﬂ? S CH’ﬂHp,QX(O,T)
for all T € (0,T)7

At first glance, it would appear that an answer in the affirmative (and
much more) follows from well-known estimates in LadyZenskaja, et al.
[8, IV.9.1, 11.3.3, I1.3.4]; namely,

(3.8) IXITw21@x 0, < ClIYllpaxom),
from which follows
(3.9) X, D)llp,e < ClI|lpax0,1)-

However, the proof of the first of these estimates in [8] clearly requires
that o be uniformly continuous on Q x (0,7) (i.e., C depends on the
modulus of continuity of o), in spite of the statement of the theorem,
which indicates that o need only be continuous on Q x (0,7'). Note
that we do not require this regularity of X, only the estimate (3.7). We
challenge those who are more talented than ourselves in this area to
address the preceding question.

We should note, however, that (3.8) and (3.9) are valid for the solution
of (3.6) provided that ¢; —¢g is sufficiently small; that is, provided that
o is sufficiently close to a positive constant. To see this, suppose that
o(z,t) =d* +e(z,t) for (z,t) € Q x (0,T). Then rewrite (3.6a) as

0X/0t —d*AX =9 +eAX in Qx (0,T).
Now (3.8) formally yields
Xl w21 xo,my) < ClIP +eAXlpax0,1);
from which the desired estimate follows by the triangle inequality

provided that C|le||o,0x(0,r) < 1. (A simple iteration argument shows
that the solution X of this problem does indeed exist under the same
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condition on €. See the proof of Lemma 4.7.) One simple upshot of
this result is that if all of the diffusion coefficients in (2.1) lie within a
sufficiently small interval, then global existence follows. We will also
take advantage of this idea in the next section to obtain spatially local
estimates for a class of quasilinear perturbations of (2.1).

4. A class of quasilinear systems. Let us now introduce the
following quasilinear perturbation of (2.1):

(4.1)
8ui/8t -V (§Z(uz)Vuz) = fl(u) in  x {t > 0},’L =1,...,m
6i(ui)8ui/8n:pi(%—ui) on 6QX{t>0},i:1,... ,m
ui(+,0) = ug, () onQ,i=1,...,m.

Everything here is as in (2.1) with the exception of the nonlinear diffu-
sivities 6;(-), which we will assume are members of C1([0,0); [a;, bi]),
where 0 < a; < b; < co.

Local existence of classical, nonnegative solutions to (4.1) is well
established; see, e.g., [1]. We denote henceforth the maximal interval of
existence by [0, 7*) where 0 < T* < oo. Moreover, it is easily verified
that Lemma 2.3 remains valid for (4.1) if d; in the expression for f is
replaced with b;.

We assume further the following property for each §;, i =1,... ,m:
(4.2) lim w™! / 8;(€) d¢ = d;.
w—r 00 0

Note that this condition does not imply that §; is asymptotically
constant; e.g., it is satisfied by §;(w) = a; + (b; — a;)(1 + cosw)/2
with d; = (a; + b;)/2. The reason for this condition is that in what
follows we shall make use of auxiliary functions o; : Q@ x (0,7%) — R
defined by

(43)  oilwt) = (wilz, ) + K)! ( / M e de + diK)

where K > 0. The important properties of these functions are given in
the following technical lemma.
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Lemma 4.4. The functions o; defined by (4.3) satisfy V((u; +
K)o;) = 6;(u;)Vu; and, because of (4.2), for any € > 0 there exists
K > 0 such that |o;(z,t) — d;| < e for all (z,t) € Q x (0,17).

Proof. The first assertion concerning the gradient of (u; + K)o; is a
routine calculation. To see the second assertion, let € > 0 and consider
the function ( : R%r — R defined by

C(u, K) = (u+ K)*( [ steae + diK>

and note that for all u, K >0

u
u+ K

)

C(u, K) — di| =

1 u
E/o 8;(&) d§ — d;

from which it is easily seen that there is some @ > 0, independent of
K, such that |((u, K) —d;| < € for all K > 0 and u > 4. Now suppose
that 0 < u < %. Then

1 u
U+K /0 6,(§)d§—d,u

%(/Oﬁé(s)dudm),

and thus |¢(u, K) — d;| < & for allu > 0if K > (1/)( [y 8(€) d€ + d;@).
The second assertion of the lemma follows. O

|C(U,, K) - dl| =

IA

In this section we will prove for the system (4.1) under conditions
(2.2), (2.4) and (4.2) that if one component of the solution blows
up in finite time at a point z*, then at least one other component
of the solution must also blow up at the same point. Moreover, the
same is true for infinite time blow-up if the boundary conditions are
homogeneous. More precisely, we will prove the following theorem.

Theorem 4.5. Let conditions (2.2), (2.4) and (4.2) be satisfied, and
let u be the solution of (4.1) on Qx(0,T*). Suppose that T* < oo so that
there exist i € {1,... ,m} and a sequence {(xg,tx)}5>, C Q x (0,T*)
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with limz, = x* € Q and limt, = T* such that lim u;(xy, ;) = oo.
Then there is at least one j € {1,...,m}, j # i, and a corresponding
sequence {(Zk,tx)}52, C Q x (0,T*) converging to the same limit
(z*,T*) such that limu;(Zy,t) = co. If T* = co and such an i and a
sequence {(zk, ty) 52, exist, then the same conclusion is true provided
that pjy; =0 for each j € {1,... ,m}.

We remark that what is new here (in the semilinear case) is the fact
that simultaneous blow-up of two components must occur at the same
point z*. It has been known for some time (and this follows form
the methods in Hollis, Martin and Pierre [4]) that, for the semilinear
system (2.1) satisfying (2.2) and (2.3), blow-up in the sup-norm of one
component in time 7™ < oo implies blow-up in the sup-norm of at least
one other component in time 7.

A central role in our proofs is played by the solution of the scalar
equation

OX/0t —sAx =9 in G x (0,T)
(4.6) o(0x/0n) +Bx =0 ondG x (0,T)
X(-,0)=0 onG

where G is a bounded domain in R™ with smooth boundary 0G, S is
a nonnegative constant, and o : G x (0,7) — [a,b] C (0,00). We now
state some well-known LP regularity results for (4.6).

Lemma 4.7. Let 1 < p < 0o, and suppose that ¥ € L% (G x (0,T)).
There exists an € > 0 such that if 0 < d — ¢ < o(z,t) < d + ¢ for
all (z,t) € G x (0,T), where d is a positive constant, then (4.6) has a
unique solution X € W2'(G x (0,T)) with X > 0. If [|9||,.cx 1) =1,
then there exists a constant C = C(p,T), independent of ¥, such that
X2 (G 0,1y < C- Furthermore, C' can be chosen so that:

(i) ifp>1, then |IX(-,T)llpc < C;

(ii) ifp>n+2, then |[|VX]|||e,ax(0,1) < Cj
iii) ifp> (n+2)/2, then ||X||oo,G><(0,T) C;

v) ifl1l < p<n+1landp < g np/(n + 1 — p), then

<
i <
(5 T)[lqc < C;

(
[Ix
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(v) fl<p<n+2andp < q< (n+2)p/(n+2—p), then
IXllwzoGx o1y < s
(vi) ifp>1, then ||X||W1}’°(acx(0,T)) <C.

Proof. Let us assume first that o(z,t) = d > 0 for all (z,t) €
G x (0,T). In this case we refer to section IV.9 of LadyZenskaja et al.
8] for the proof of the existence of the solution X € W2 (G x (0,T))

of
ox/ot —oAx =9 in G x (0,T)

a(0x/0n)+BXx =@ on dG x (0,T)
X(0)=0 onG

satisfying the estimate
(4.8) ||X||W§’1(G><(O,T)) < C(HﬂHPYGX(OvT) + Hq)HWé’l/z(c’)Gx(O,T)))

wherel = (2p—1)/p. Now we assume that 0 < d—e < o(z,t) < d+¢ for
all (z,t) € G x(0,T). Define the sequence {X;}z>, C W2 (G x (0,T))
by Xo =0 and for £k =0,1,2,....
OXg41/0t —dAXp+1 =+ (0 —d)Xx in G x (0,T)
OXk11/0n + (B/d)Xkt1 = (B/d — B/o)Xx  on 0G x (0,T)
Xk+1(-,0) =0 on G.

With Y11 = Xg+1 — Xk, it is easily seen by applying (4.8) and the
inequality [8, Lemma I1.3.4]

||wHW[;”2(an(o,T)) = c0|‘w”WS’l(GX(O,T))
that

||"/}k+1||W3’1(G><(O,T)) < 6H'¢'kHW§’1(G><(O,T))

where

¢ = C max{||d — UHOO,GX(O,T)7 col|B/d — ﬂ/UHoo,Gx(o,T)}-

If ¢ < 1, which clearly may be achieved by choosing ¢ sufficiently
small, then it follows that the sequence {X;};>, converges to a limit
X € WG x (0,T)) satisfying the estimate

IXI w21 (@ xo,ry) < (C/ = ENNDlp,ax(0,1)-
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Assertions (i)—(vi) now follow via embedding theorems in Section II.3 of
LadyZenskaja et al. [8]. Finally, the nonnegativity of X is a consequence
of the maximum principle. ]

The localized estimates needed for the proof of Theorem 4.5 are
provided by the following lemmas. The proofs are essentially variations
on methods applied in more general settings in Hollis and Morgan
[4] and in Morgan [12], where global existence is established for such
systems under an intermediate sums condition that allows for the first
time quadratic intermediate sums when n = 2. The first of these
lemmas is concerned with boundedness of solutions on the time interval
(0,T) with T < 0.

Lemma 4.9. Suppose that Qo C Q1 C Q, where each Q is a
subdomain with smooth boundary 0, and dist (Qg, Q\Q1) > 0. Let u
be a solution of (4.1) on Q x (0,T), T < oo, subject to conditions (2.2),
(2.4), (4.2). If there exist a constant K1(T) and an i € {1,...,m}
such that 3, ,;uj < Ki(T) on Q% (0,T), then there exists a constant
Ko(T) such that u; < Ko(T) on Qo x (0,T). The constant Ko(T) tends
to infinity as dist (Qo, 2\Q1) — 0 but is bounded as diam (Qp) — 0 if
dist (20, 2\Q4) is bounded away from 0.

Proof. For simplicity we assume that each o; = 1 in (2.2); trivial
modifications of what follows handle the more general case. Now let
us assume the hypotheses of the lemma and let {G}ren be a nested
sequence of smooth subdomains of €2; satisfying Q¢ C G, C Gx_1 C
and dist (Qg, Q\Gg_1), dist (G, Q\Gk_1) > 0 for each k > 2. Then
construct, for each natural number k£ > 2, a smooth function g; : R™ —
[0,1] such that g =0 on Q\Gk_1, gr = 1 on Gj, and dgr/On = 0 on
0NN OGE_1 if 02 NOGE_1 # @. Now with p a nonnegative member
of W2(Q x (0,T)) that satisfies 0;0¢/0n + p;p = 0 on 0 x (0,T),
an elementary but tedious integration by parts exercise gives

(4.10)
T m
*/0 /GH Z(uj + K)(pt + 0iAp) g
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S/ Saogkz (uo; + K)
/ / Agagkz )(u; + K)
Gr-1

m

+/ / (pAgr +2Ve - Vi) Z (uj + K)
0 Gr—1 —

T m
L Lo (S

0 OQNOG K _1 Z s

Jj=1

22 (it + (20 =0+ 1) o

j#i

Now if we set oy + 08¢ = —19 < 0 where |[¥]|,0,x0r) =1, 1 <
p < oo, and assume that ¢(-,7) = 0 on 2, then Holder’s inequality,
the nonnegativity of v and 9, and Lemma 4.7 with X(-,t) = ¢(-, T — )

imply that
(4.11)
// ZU]+K19<C <Zu0 H uy
Gr j=1 00,Gr—1 I j=#4 00,G-1%(0,T)

m

DU

+Zpﬂj+1>

a,Gk_lx(O,T) j:1

holds provided that K is sufficiently large (see (4.3) and Lemma 4.4)
and that either p > n + 2 with a = 1 (cf. (ii) and (iii) in Lemma 4.7)
orelse l<p<n+2withp<a/(a—1) <((n+2)p)/(n+2—p) (cf.
(v) in Lemma 4.7). Thus, if p > n +2 and a = 1, then (4.11), together
with the L' bound given by Lemma 2.3, puts u; € LP/(?=1) (G5 x (0, T))
forall p/(p—1) € (1,(n+2)/(n + 1)). Now we can take p/(p — 1) €
[(n+2)/(n+1),(n+2)/n) and a = ((n +2)p)/((p — 1)(n +2) + p) so
that (n+2)/2 <p<n+2,a/(a—1)=((n+2)p)/(n+2—p), and
1< a < (n+2)/(n+1) and thus deduce from (4.11) and Lemma 4.7 that
u; € LP/(P=1 (G5 % (0,T)) for all p/(p—1) € [(n+2)/(n+1), (n+2)/n).
In a similar manner, one can now proceed by induction to show that
u;i € L+D/m* (G0 % (0,T)) for all k € N by taking a = ((n+1)/n)*
and (np)/(n+1—-p) =a/(a—1) so that p/(p — 1) = a(n+1)/n =
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((n + 1)/n)**1. Note here that if k& > 2 then p/(p — 1) > (n + 2)/n
and 1 <p < (n+2)/2,s0 (np)/(n+1—p) < ((n+2)p)/(n+2—p).
Now with ((n+ 1)/n)* sufficiently large, classical interior estimates [8,
Chapter III, Section 8] and condition (2.4) put u; € L (Qq x (tg,T')) for
any to > 0. Finally, close inspection of the dependence of C(T") upon
the functions gy reveals the nature of the dependence of the bounding
constant Ko(T") upon dist (29, Q2\1). O

The next lemma is concerned with boundedness of solutions on the
time interval (0, 00).

Lemma 4.12. Suppose that Q¢ C Q; C Q, where each Qf is a
subdomain with smooth boundary 0, and dist (Qg, Q\Qy) > 0. Let u
be a solution of (4.1) on Q x (0,00) subject to conditions (2.2), (2.4)
and (4.2) and suppose further that pjv; = 0 for each j € {1,... ,m}. If
there exist a constant Ky and an i € {1,... ,m} such that 3, u; <
K7 onQy x(0,00), then there exists a constant Ky such that u; < Ky on
Qo x (0,00). The constant Ky tends to infinity as dist (Qo, Q\Qy) — 0
but is bounded as diam (p) — 0 if dist (R0, 2\ Q1) is bounded away
from 0.

Proof. Assume the hypotheses of the lemma, and let {G}ren and ¢
be as in the proof of Lemma 4.9. A slight modification of the argument
there produces

m

t,+2 m
i [ f Z(uj+K)19SC’(1+ S w5t
ty G j=1 j=1 a,Gr_1
+ Zu]' + Uj >
i 00,Gr—1 X (ty,t,+2) j=1 a,Gl—1 X (ty,t,+2)

for any sequence {t,}52, C [0,00), where C is independent of v,
provided that either p > n+2 witha =1 orelse (n+2)/2 <p <n+2
withp < a/(a—1) < ((n+2)p)/(n+2—p). Taking a =1 and ¢, = v, we
thus obtain a t-independent bound on u; in L/ ®~1(Gy x (t,t+1)) for
1<p/(p—1) < (n+2)/(n+1). (Note that the second and last terms in
the parentheses on the right side of (4.13) are bounded independent of
v when a = 1 because boundary conditions are homogeneous.) Now by
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choosing (n+2)/2<p<n+2anda=(n+2)p)/((p—1)(n+2)+p)
we have that a/(a —1) = (n+2)p)/(n+2—p) < (pn)/(n+1—p) and
l1<a< (n+2)/(n+1). So if we choose the sequence {¢,}22; such
that v—1 <t, <wvand || 3270, u;( to)llac. < |1 22700 willa,Gax@w—1)
and bring into play item (ivs of Lemma 4.7, we obtain a t-independent
bound on u; in LP/(P=Y(Gy x (t,t +1)) for 1 < p/(p —1) < (n +2)/n.
Proceeding inductively as in the proof of Lemma 4.9, we eventually
obtain via classical interior estimates a t-independent bound on u; in

L®(Qy x (t,t+1)). o

In conclusion of this section, we now give the

Proof of Theorem 4.5. Assume the hypotheses of the theorem and,
for the sake of contradiction, that there are a constant K;(T™*) and an
open ball B,(z*) with radius p and centered at z*, such that 3, u; <
K1(T*) on (B,y(z*) N Q) x (0,7*). Now choose smooth subdomains
Qo and Q; so that € contains a tail of the sequence {z}}2,, Qo C

(Byj2(z*) N Q) C Qy C (By(z*) NN, and dist (29, A\Q1) > p/4. By
Lemma 4.9 if T* < oo and by Lemma 4.12 if T* = oo, it follows that
u; is also bounded on Qg x (0,7*), contradicting the assumption that

limg—y 00 i (g, tr) = oo. ]

Remark. For the sake of emphasis, we point out that in each
of Lemmas 4.9 and 4.12 it is possible for Qy,; and  to share a
portion of their boundaries—it is only required that dist (2o, 2\Q1) > 0.
Consequently, the blow-up point z* in Theorem 4.5 is indeed allowed
to lie on 9N2. This does not conflict with the boundary point blow-up
of a single component of a two-component system demonstrated in [2],
which resulted from imposing both Neumann and Dirichlet boundary
condition types within the system. This situation is precluded here
by the assumption of compatible boundary condition types throughout
the system.

5. One-step reversible reactions. In this section we consider a
general reaction mechanism of the form

(5.1) PRy + poRy + -+ pp Ry = 1Py +va P + - - + 1 P,

of which (1.1) is a special case. Here the R; and P; represent reactant
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and product species, respectively, and u;,v; € N for each ¢. Now, if we
set u; = [R;] and v; = [P;] and let k¢, k, be the (nonnegative) forward
and reverse reaction rates, respectively, then we may model the process
with the following reaction-diffusion system (cf. (1.2)):

(5.2a)

l m
Ou; vj i
ot =V (6;(u;)Vu;) :ui<kTij —kau? >,
j=1 j=1
1=1,...,m
(5.2b)
v, m l
8; =V (Omti(vi) Vi) = v <kf H ul? — k. H v?’),
j=1 j=1
i=1,...,1L

We assume that the reaction takes place in a bounded domain 2 with
smooth boundary 92, that the §; are as in the preceding section, and
that boundary and initial conditions of the form in (2.1) are satisfied
by all components u;, v;.

At this point, let us make some routine observations concerning
the global well-posedness of this system in the semilinear case; e.g.,
where each 0;(-) = d; > 0. First, note that condition (2.2) is sat-
isfied, and as a result Lemma 2.3 provides a bound on the quantity
Jo((U/m) S wi /i + (L)1) X, vi/vi) dz. If the reaction is irre-
versible, i.e., k., = 0, then the u; are bounded a priori in L*(Q)
by the maximum principle, and the methods of [4] then put each v;
in LP(Q x (0,77*)) for all p < oo if T* < oo. Consequently, Sobolev
embedding then puts each v; in L>°(Q x (0,7*)), thus implying global
existence. However, in the reversible case, the order of the intermediate
sums in (2.5) is r = min{> 1" p,, 22:1 v; }, and hence (2.5) is satisfied
if 7 < Tmax(n). Consequently, the results of Morgan [10,12] referred to
in Section 2 yield global existence for the system provided that r =1 or
that » < 2 with n < 2. The results of Kanel [7] imply global existence
when n = 1 provided that max{} ;" u;, 22:1 v;} < 3. This is indica-
tive of the very restrictive nature of the intermediate sums condition
and the limited scope of the known results in this area.

A recent result of Fitzgibbon, Hollis, and Morgan [3] shows, in the
case where all components satisfy homogeneous Neumann boundary
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conditions, that the zero equilibrium point is locally stable for (5.2).
This shows that solutions exist globally, provided that the initial
data are sufficiently near zero in L*°(2). Moreover, this new local
stability result also applies to (2.1) (if f(0) = 0) assuming only
(2.2) and that the f; are locally Lipschitz; i.e., without the usual
polynomial growth assumptions. Local (asymptotic) stability follows
from standard linearized stability theory if the boundary conditions are
homogeneous Dirichlet or Robin type, but it is quite nontrivial in the
Neumann case.

We now return our attention to the quasilinear system (5.2) subject
to condition (4.2). As previously noted, our primary interest here is in
what can be said about these systems when the only conditions placed
on the reaction functions are (2.2), (2.4) and quasipositivity. Hence, in
what follows, we make no further assumptions on the coefficients u;, v;
in (5.2). Theorem 4.5 states that if one component of the solution to
(5.2) blows up in time T* < co at a point z*, then so does at least
one other component. We will show, moreover, that due to the special
structure of (5.2), if one component of the solution blows up in time
T* < oo at a point z*, then so does every component. Toward this
end, we need the following lemma.

Lemma 5.3. Assume that condition (4.2) holds and let (u,v) be a
solution of (5.2) for 0 <t < T < oco. Let xop € Q and suppose that
there existe > 0, somei € {1,... ,m}, and a constant C1(T) such that
u; < C1(T) on (Be(xg) N Q) x (0,T), where Be(xg) is the open ball of
radius € centered at xy. If T = oo, suppose further that the boundary
condition for each u; and v; is homogeneous. Then there is a constant
Co(T) such that YT uj+Y7_ v < Co(T) on (Bea(w0)NQ2) % (0,T).
The same result is true if u; s replaced with v; for somei € {1,...,1}.

Proof. First consider the case T' < oo. Suppose that i € {1,...,m}
and u; < C1(T) on (Be(zo) N Q) x (0,T). For any j € {1,...,1l}, we
have

0
a(ujui + /J,,"Uj) -V- (Vjéi(ui)Vui + ui5m+j(vj)ij) =0.

Hence, arguments similar to those in the proof of Lemma 4.9 show
that v; € LP((Bse/6(wo) N §2) x (0,7)) for all p < co. Now, by the
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same argument, all of the u;’s are in LP((Ba./3(x0) NQ2) x (0, 7)) for all
p < co. Hence the same is true for each of the reaction functions on the
right side of (5.2). Classical interior estimates for parabolic equations
(8] now put each u; and v; in L*((B./2(xo) N Q) x (0,T)). For the
case T = oo, proceeding in a manner similar to that in the proof of
Lemma 4.12 produces t-independent bounds on each of the u; and v;
in L((Bej2(wo) NQ) x (¢,t+1)). o

From this lemma follows

Theorem 5.4. Suppose that (u,v) is a solution of (5.2) for 0 <t <
T* < oo and that there exists a sequence {(zk,tr)}7>, C Q x (0,77)
with limz, = z* € Q and limt, = T* along which some component
of the solution tends to infinity. Then every component of the solution
tends to infinity along some sequence in Q x (0,T*) that converges to
the same point (z*,T*). The same is true with T* = co provided that
all boundary conditions are homogeneous.

We should remark here that we know of no one who believes that it is
possible for solutions of these systems to blow up in finite time. Indeed,
we believe that conditions (2.2) and (2.4) should imply global existence
of solutions in the semilinear case. The results of this section should
be taken as evidence of the extreme pathology inherent in finite time
blow-up for such systems rather than indications of possible behavior.

REFERENCES

1. H. Amann, Dynamic theory of quasilinear parabolic equations I1. Reaction-
diffusion systems, Differential Integral Equations 3 (1990), 13-30.

2. J. Bebernes and A. Lacey, Finite time blowup for semilinear reactive-diffusive
systems, J. Differential Equations 95 (1992), 105-129.

3. W.E. Fitzgibbon, S. Hollis and J. Morgan, Stability and Lyapunov functions
for reaction-diffusion systems, preprint.

4. S. Hollis, R.H. Martin and M. Pierre, Global ezistence and boundedness in
reaction-diffusion systems, SIAM J. Math. Anal. 18 (1987), 744-761.

5. S. Hollis and J. Morgan, Interior estimates for a class of reaction-diffusion
systems from L' a priori estimates, J. Differential Equations 98 (1991), 260-276.

6. Ya.l. Kanel’, Cauchy’s problem for semilinear parabolic equations with balance
conditions, English Translation: Differentsial’nye Uravneniya 20 (1984), 1753-1760.



REACTION-DIFFUSION SYSTEMS 1465

7. , Solvability in the large of a reaction-diffusion equation system with
a balance condition, English Translation: Differentsial’'nye Uravneniya 26 (1990),
448-458.

8. O.A. LadyZenskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilin-
ear equations of parabolic type, Amer. Math. Soc., Providence, RI 1968.

9. K. Masuda, On the global existence and asymptotic behavior of solutions of
reaction diffusion equations, Hokkaido Math. J. 12 (1982), 360-370.

10. J. Morgan, Global ezistence for semilinear parabolic systems, SIAM J. Math.
Anal. 20 (1989), 1128-1144.

11. , Boundedness and decay results for reaction-diffusion systems, STAM
J. Math. Anal. 21 (1990), 1172-1189.

12.
preprint.

, Global existence for a class of quasilinear reaction-diffusion systems,

13. F. Rothe, Global solutions of reaction-diffusion systems, Lecture Notes in
Math. 1072, Springer-Verlag, Berlin, 1980.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, ARMSTRONG STATE
COLLEGE, SAVANNAH, GA 31419

DEPARTMENT OF MATHEMATICS, TEXAS A&M UNIVERSITY, COLLEGE STATION,
TX 77843



