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ON EQUIVALENT CHARACTERIZATIONS OF WEAKLY
COMPACTLY GENERATED BANACH SPACES

M. FABIAN AND J.H.M. WHITFIELD

1. Introduction. Let us consider the following nice

Theorem. For a Banach space V the following assertions are
equivalent

(a) V is weakly compactly generated (w.c.g.),

(b) V is GSG and simultaneously a Vasdk (i.e., weakly K -countable
determined) space, and

(¢) V is GSG and moreover (V*,w*) continuously injects into X(T")
for some set T'.

Recall that it has, according to [18, Theorem [S8], 20 and 14, proof
of Theorem A, Proposition 4.1], an even nicer, topological counterpart

Theorem’. The following assertions are equivalent
() K is an Eberlein compact,

(8) K is simultaneously a Radon Nikodym compact and a Gul’ko
compact, and

(v) K is simultaneously a Radon Nikodgm compact and a Corson
compact.

In the theorem, the implications (a) — (b) — (c) are not quite new.
In fact, according to the interpolation theorem [12, p. 163], every
w.c.g. space contains a dense continuous image of a reflexive space and
hence is GSG. An observation that every w.c.g. space is Vasdk is due
to Talagrand [19]. Finally, the fact that the dual of a Vasik space
endowed with the weak* topology continuously injects into X(I") is due
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to Gul’ko [9], see also [13] an [6].

A proof of (¢) — (a), which also works for the proof of (b) — (a), is
quite recent and is due to Orihuela, Schachermayer and Valdivia [14]
and to Stegall [18]. The proof proceeds in two steps. First, with the
help of interpolation [17], an Asplund space Y is constructed in such
a way that Y continuously and densely embeds into V' and that either
Y is Vasak or (Y*,w*) continuously injects into X(A) for some set A.
Then, secondly, by a result from [3] and [21], respectively, it follows
that Y is w.c.g. Therefore, so is V.

A main aim of this paper is to present a more direct proof that (b)
or (c) implies (a). We shall avoid interpolation as well as gymnastics
involving Gul’ko and Corson compacta that can be found in [14] and
[18]. In particular, we shall no longer need a result of Gul’ko [8] that
a continuous image of a Corson compact is a Corson compact.

A central concept we shall use in our proof will be a slight variant of
a projectional generator introduced recently by Orihuela and Valdivia
[15]: A projectional generator on a Banach space V is any at most
countable valued mapping ®: V* — 2V such that ®(B)- NB" = {0}
whenever B C V* and B is linear. Using this concept we can even
obtain a slightly more general equivalence

Proposition. A Banach space is w.c.g. if (and only if) it is GSG and
each of its complemented subspaces admits a projectional generator.

Let us recall that a projectional generator on V exists if V is a Vasak
space [15, Example after Theorem 1] or if (V*, w*) continuously injects
into 3(T'), see the proof of [21, Theorem 1]. This means that the
theorem is included in the above proposition.

Let us mention a few words about the organization of the paper. Sec-
tion 2 provides some preliminaries. In Section 3 we carefully construct,
for our subsequent needs, “long sequences” of nice projections from a
projectional generator. Section 4 is devoted to the proof of the proposi-
tion. A main idea here is to imitate a proof of the fact that V' is w.c.g.
if it is Asplund and admits a projectional generator, see [3, 15, 21].
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2. Preliminaries. The cardinality for a set M is denoted by
#M. Ordinal numbers are denoted by «, 3, ... . The cardinal number
corresponding to « is denoted by #a. The letter w is reserved for
the first infinite ordinal. Symbols Ng,N; are the first infinite and
uncountable cardinals, respectively.

The reals are denoted by R. The symbol N means the set of positive
integers. NV is considered with the product topology.

Let V be a Banach space. V* and V** denote the first and the second
dual of V, respectively. The closed unit ball of V is denoted by By .
For v € V and v* € V* the symbol (v*,v) means the value of v* at v. If
M C V then M, 5p M and dens M are used to denote the closure, the
closed linear span and the density of M, respectively. Also, for M C Y
we put M° = {v* € V* : sup(v*, M) < 1}. If MCV*, then the weak*
closure of M is denoted by M". If Y is another Banach space such that
Y CV,and M CY, then M and 5p ¥ M mean the Y-closure and the
Y-closed linear span of M respectively. If M C V, then M+ denotes
the annihilator of M in V*. Similarly, for M C V*, the symbol M is
reserved for the annihilator of M in V. Letters w and w* denote the
weak and weak* topologies, respectively.

A Banach space is called weakly compactly generated (w.c.g.) if there
is a weakly compact set K in V such that Sp K = V. V is called a Vasdak
space if there exist ¥’ C NN and a multivalued upper semicontinuous
mapping ¢ : ¥’ — (V,w) such that ¢(o) is a nonempty weakly compact
set for each 0 € ¥’ and U{p(0) : 0 € £’} = V. A Banach space is called
an Asplund space if each of its separable subspaces has a separable
dual. V is said to be GSG if there exists an Asplund space Y such that
Y CV,Y =V, and By C By.

For a set I we put

() ={z e R : #{y €T : 2(7) # 0} <No}

and we consider on this space the coordinatewise topology that is
inherited from the product topology of RT.

Let K be a compact space. K is called an Eberlein compact if K is
homeomorphic to a weakly compact set of a Banach space. Recall that
K is Eberlein if and only if C(K) is w.c.g. [2, p. 152]. K is called a
Gul’ko compact if C'(K) is Vasdk. It is well known that V is Vasdk
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if and only if (By~,w*) is a Gul’ko compact [20]. K is said to be a
Radon Nikodym compact if it can be found, up to a homeomorphism,
in (V*,w*) where V is an Asplund space. Finally, K is called a Corson
compact if it is homeomorphic to a compact subset of X(T") for some
set I'.

3. Long sequences of “nice projections” constructed via a
projectional generator.

Lemma 1. Let V,Y be two Banach spaces such that Y C V and
Y = V. Assume we have two at most countable valued mappings
®:V* =2V and ¥ : V — 2V, Finally, let an infinite cardinal N
be given and consider two sets A9y C Y, By C V*, with #A4, < N,
#Bo < R.

Then there ezist sets Ag CACY, By C B C V* such that #A <N,
#B <X, AD ®(B), B D ¥(A), and that ZY, B are linear.

Proof. We shall use an old gluing argument due to Mazur. By
induction we shall construct two sequences of sets Ag C A1 C Ay C
C Y and By C By C By C --- C V* as follows. Since
#®(By) < max(Ng,#Bo) < N, there is a set A9 C A; C Y, such
that #4; < X, 4; D ®(B), and Zf is linear. Similarly, there is a
set By C By C V* satisfying #B; < XN, By D V¥(4y) and with B;
linear. Further, there are sets Ay C Ay C Y, By C By C V* such
that #4; < N, #By <N, ZQ D @(Bl), By D \I’(Al) and that Z;/, Eg
are linear. Continuing this process, we obtain nondecreasing sequences
{A,}, {Bn} of sets in Y and V*, respectively, such that for every
n=12,...
#An S Na #Bn S Na m D) Q(Bn)a Bn+1 D \P(An)a
and with 4., B, linear. Now put A = U | A,, B = U, B,. Then
#A <R, #B <R, AD ®(B), B D ¥(A), and it is easy to verify that

Yy — .
A", B are linear.

Lemma 2. Let (V.| ||) be a Banach space having a projectional
generator ®, and let Y be another Banach space such thatY C V,Y =
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V, and By C By. Forn =1,2,..., let || ||n denote the (equivalent)

norm on V whose unit ball is By + (1/n)By. Let ¥ :V — 2V be an
at most countable valued mapping such that

ol = sup{(v*,v) : v" € W(v), ||[v"[| = 1},
[[olln = sup{(v”, v) : v* € ¥(v), [[v*|]n =1},

n=1,2,.... Finally, let X be an infinite cardinal and consider two
sets Ag C Y, By C V* with #Ao < N, #BO <N,

Then there exist sets Ay C A C Y, B € B C V* such that
#A RN, #B <R, AD ®(B), B D ¥(A), and that ZY, B are linear,
and moreover, there exists a linear projection P : V. — V satisfying

||P||=1, PV =4, P*V* =B", and P(By) C By.

Proof. By applying Lemma 1 we obtain the sets 49 C A C Y,
By C B C V*. It remains to find the projection P. Let us remark that
A+ B, is closed since we have for alla € A and all b € B

[la + b|| > sup{(v*,a +b): v* € B,||v*|| = 1}
= sup{(v*,a) : v* € B, [|v*|| =1}
> sup{(v*, @) : v* € ¥(a), [|[v*|| = 1}

= lall-

Further, if A+ B, # V, then by the Hahn Banach theorem there is
0 # ¢ € V* which is identically zero on A+ B, . But then £ € A+ NB"
whence £ € ®(B)L N B" because A D ®(B). Now @ is a projectional
generator, so £ = 0, a contradiction. We have thus shown that V is a
direct sum of 4 and B .

Define P: V — V by
P(a+b) =a, acAbeB,.

Then P is a linear projection with ||P|| = 1, PV = A, and P~1(0) =
B, . We shall show that P*V* = B". If £ € B, then for all v € V we
have (P*¢,v) = (£, Pv) = (§,v) as Pv—v € By ; so £ € P*V*. Hence
B" ¢ P*V*. Assume now there is £ € P*V*\E*. Then there exists
v € V with (¢,v) # 0 and sup(B,v) = 0 since B is linear. It follows
that v € By, and so Pv = 0. But 0 # (£, v) = (¢, Pv), a contradiction.
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It remains to show that P(By) C By. We realize that not only
[|P|| = 1 but also ||P||, = 1 for each n = 1,2,.... Thus P(By) C

P(By + (1/n)By) C By 4+ (1/n)By C By + (2/n)By for each n and

so P(By) C By. O

The next improvement of Lemma 2 will be crucial in the proof of our
proposition.

Lemma 3. The inclusion P(By) C By in Lemma 2 may be replaced
by P(By) C ANBy.

Proof. We shall proceed by induction. Let A;, By and P; denote,
respectively, the A, B, and P found in Lemma 2. Then ||P|| = 1,
PV = A—l, Pl*V* = B—l*, (I)(Bl) C Zl, \IJ(Al) C B7 and Pl(By) - B_y
Since dens P;(By) < dens P,V < #A; < X, it follows that there is a
set M C By, with #M < R, such that P;(By) C M. In Lemma 2, set
Ap := A1 UM and By := B;. We obtain, then, new A, B, P, denoted
by Ay, By, P», respectively. Then, besides the facts stated in Lemma 2,
we have P;(By) C As N By. Continuing this process, we can construct
sequences of sets

A()CA1CA2C"'YV, BoC31CBQC"'V*

and norm one projections P, : V — V, n =1,2,..., such that for all
n we have

N,
PV =4,  PV*=B,, and P,(By)C An1NBy.

Now put A = U5 Ay, B = U2 By,. Then all the properties claimed
for A and B in Lemma 2 are checked easily. Further, since A O ®(B)
and B D V¥(A), we can construct, as in Lemma 2, a linear projection
P :V — V satistying ||P|| = 1, PV = A, and P*V* = B". Moreover,
as A, C Ap41 C A, B,, C Bpy1 C B, we have

PnPn+1:Pn+1Pn:Pna P,P = PP, = P,.

From this it easily follows that ||P,v — Pv|| — 0 for each v € V.
Therefore, because Py(By) C A,+1 N By C AN By, we can conclude
that P(By) C AN By. )
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Lemma 4. Let V,W,®, and ¥ be as in Lemma 3, and let p be the
first ordinal with cardinality dens V.

Then there ezxist long sequences {4, : w < a < u} and {B,
a < u} of subsets in' Y and V*, respectively, and a long sequence
{P tw < a < p}oof linear projections on V- such that A, =V,
=V*, P, is the identity mapping and that for all w < o < p the
followmg hold

(1) #A < #OZ, #Ba S #O[,
(ii) 4, D <I>(Ba), Ba D ¥(Aq),

(iii , By, are linear,

) Ao
(iv) HP =1,
(v) PyPg = PgP, = Pg, if 3 < a,
(vi) dens P,V < #a,
(vii) PoV = mv
(viii) P,V =4, P:V* =B, , and
(ix) P.(By) C A, N By.

Proof. Since Y = V, there is a set {y, : w < a < u} in Y which
is dense in V. We shall proceed by transfinite induction on a. Let
A, = 9, B, = 9, P, =0, w < v < u fixed, and assume we
have constructed sets A, C V, B, C W and projections P, with
the properties stated in the lemma for every w < o < «. First, if ~
is a limit ordinal, simply put Ay, = Us<yAq, By = UacyBa. Then
A, D ®(B,), B, D ¥(A4,). And, as in the proof of Lemma 2, we
can assign to the couple A,, B, a linear projection P, : V — V.
Then (i)—(iv) and (vi)—(viii) hold trivially. Conditions (v) and (ix) are
also satisfied since it follows from (vii) that the mapping o — Pyv
is norm continuous at o = 7. Second, when « is a nonlimit ordinal,
let Ap = A1 U{yy-1}, Bo = B,_1. Applying Lemma 3 we get
A,,B,, Py, and it is straightforward to verify that (i)—(ix) hold.

Finally, if v = p, then P,V = A—u D{ya:w<a<put=V.So P, is
the identity and B, = P;V*=V*. O
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We recall that a “long sequence” {P, : w < a < p} having the
properties (iv)—(vii) is called a projectional resolution of the identity
(PR.I)on V.

4. Proof of the proposition. The proof of the proposition will be
preceded by two lemmas. The first one is a deep result of Simons [16,
Lemma 2] while the second lemma is its consequence.

Lemma 5 (Simons). Let I' be a set, {f.} a sequence in the unit
ball of lo(T'), and A C T'. Assume that, for every Ay, Aa,... > 0, with
A+ Ao+ =1, there is v € A such that M\ fi(y) + Xafa(y) +--- =
sup [[A1f1 + Aafa + -+ ||. Then sup,ca limsup; ., fi(y) = inf{]|g|| :
g is in the convex hull of {fi}}.

Lemma 6. Let Y,V be two separable Banach spaces such that'Y is
Asplund, Y C V,Y =V, By C By, and let p be a metric defined on
V* by p(&,m) = sup(€ — n, By ), &,n € V*. Let F be any boundary of
By, that is, F C By~ and for each v € V there is a £ € F such that
(& v) = [[vll.

Then the p-closed span of F' is equal to V'*.

Proof. Assume the claim is false. Then there exists £y € By« and a
linear continuous functional ¢ on (V*, p) such that

o(&) >0=p(¢) forall{eF.

As ¢ is p-continuous, we have p(BY) < +00. We may and do assume
that p(BY.) < 1. Since By C By, it follows that BY > BY, (= By-)
and so ¢ must belong to V**. Define R : V* — Y* by R¢ = £ly,
e V*and ¢: R(V*) —» R by ¢g(R{) = ¢(§), £ € V*. This ¢ is well
defined since Y = V. Moreover, if £ € V* is such that sup(¢, By) < 1,
then £ € BY and so p(£) < 1. Therefore for every £ € V* we have
QD(&) < Sup(&aBY>7 i'e'a
B(Re) < |Re].

Here, and later, | - | denotes the norm on Y and its dual norm on Y*.
Let ¢ € By«+ be any Hahn Banach extension of ¢ from R(V*) to Y*.
Recall that, by Goldstine’s theorem, By is weak® dense in By««. Since
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Y is Asplund, Y* is separable. Hence, there is a sequence {yx} C By
such that y, — ¥ weak® in Y**. Then, especially for each £ € V*, we
have

(& yr) = (R& yk) = (¥, RE) = G(RE) = ¢(¢).

This means that yx — ¢ weak® in V**. Hence we may assume that
(€0, yk) > (1/2)p(&) for all k = 1,2,... . Now Lemma 5 applies and
so we have

0 = sup(p, ') = sup{lim(¢, yx) : £ € F'}

>inf{[|y|| : y € co{y1,92,...}}
> {{&o,y) : y is in the convex hull of {y1y2,...}}

> (1/2)¢(é0) > 0,

a contradiction. Hence the result. O

Proof of proposition. The proof is divided into several steps.

1°. Let ||.|| denote the norm on V. Find an Asplund space Y such
that Y CV,Y =V, and By C By. Define a metric p on V* by

P(faﬁ):SUP<§—7laBY>a f,nEV*.

It is easy to check that p fragments the weak* topology of V*, that is,
that for every nonempty bounded set M in V* and every € > 0 there
is a weak* open set (even a weak* open half-space) W C V* such that
W N M is nonempty and has p-diameter less than €. Let us consider a
multivalued mapping D from V into By« defined by

Dv = {v* € By~ : (v*,v) = |[v||}, veV.

It is well known, and easy to verify, that D is norm to weak® upper
semicontinuous and compact valued. Thus, according to a selection
theorem of Jayne-Rogers type [7, the desert selection Theorem (A) d)],
there are norm to p continuous (single-valued) mappings D; : V —
By«, i =1,2,..., such that for every v € V there is Dyv € Dv such
that p(D;v, Dyv) — 0 (it suffices for our purposes that inf {p(D;, Dgv) :
ie N} =0.)
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20, Claim. Given a separable subspace Z of Y, for every £ € (Z)*
and every € > 0 there are vy,...,vy, € Z, a1,...,a;, € R, and
11,--+ ,%m € N such that

(1) sup <§ - ZajDi].vj |Z, BZ> <e.

j=1
Proof. Take a separable subspace Z C Y and let ¢ € (Z)*, ¢ > 0 be
given. Let us remark that the set
F = {DOU‘E RS 7}

is a boundary of B(Z)*' Recalling that Z is Asplund, it then follows,
by applying Lemma 6 for V := Z and Y := Z, that there are

V1,...,Uyn € Z and ay,...,a, € R such that
m
sup <f — ZajDovj|7, BZ> < €.
j=1
And, as

inf{p(D;, Dyv) : i € N} =0, j=1,...,m,

there are 71, ... ,%, € N such that (1) holds. u]
3%. Claim. The claim from 2° holds for any subspace Z of Y.

Proof. Let Z be a (nonseparable) subspace of ¥ and fix some
¢ € (Z)*, ¢ > 0. We shall try to convert our situation to the case
of a separable subspace of Y and thus 2° will be of use. Let A denote
the set of all infinite matrices a = {a;; : 4,7 € N} with rational
entries and such that a;; = 0 for all but finitely many of (4,5) € N2.
Let Z; # {0} be any separable subspace of Z. By induction we
shall construct separable subspaces Z; C Zy C --- C Z, sequences
{zj}:{z3},..., where {2} : j € N} is a Z-dense subset of Z,, and
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elements z(n,a) € Bz, n € N, a € A, such that foralln =1,2,... and
allae A

oo o0 1
sup <§ - aiiDiz}l5, Bz> < <§ -> aijDiZ]T'L|77z(naa')> + -
ij=1 ij=1 "
and
Zny1 =2 [ZnU{z(n,a) :a € Z}], n=12....
Finally, put
Z0:Z1UZ2U"'Z;

then, clearly, Zy will be separable. By 2°, there are vy, ... , v, in Z,
ai,---,am € R, and iy,...,%, € N such that

- €

sup <§Z_o — Zkaikvk|Z_o’ BZ0> < 5

k=1
The continuity of D;, and the construction of Z, ensure that there are
n €N, n>e¢/2 and ji,...,j, € N such that |[vx — 27 || are so small
that

m . c
sup <£|Z_0 - Z b D, 25, |Z_o’ Bzo> < 3
k=1

Also, we may assume here that all the b, are rational. Now put

a = {a;;}, where a;,;, = b1,...,a;, ., = by and a;; = 0 otherwise.
Thus o
€
sup <§|Z—O— Z aijDiZ;L|Z_Oa BZ0> < 5
ij=1
Therefore

sup <§ - Z aijDiz} |7, Bz>

i,j=1
— E D;z" 7, 2(n + —1
< (& ai;D;z; | ,z( ,a) -

ij=1
> 1
< sup <£|Z—0 - Z aijDiz}| 7, Bzo> +
ij=1
<S4t
2 2 7
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which means that (1) holds. O

4% Claim. There erist a PRI {P, : w < a < u} on V and a
long sequence {Y, : w < a < u} of subspaces of Y such that for each
w < a < p the following hold

(2) PaV:?aa Pa(BY) CB—Yaa
(3) PV* > | Da(PaV).
n=1

Proof. Define ¥y : V — 2" by ¥y (v) = {D;(v), D2(v),...}, v €V,
and enlarge each ¥y(v) to some countable set ¥(v) such that the
assumptions of Lemma 3 are satisfied. Let {4, : w < a < u},
{By : w < a < p}, and {Py : w < a < p} correspond to our
V,Y,®, ¥ by Lemma 4. For each a put Y, = A—ay. Then trivially
P, V=A4,=Y, and

Pa(By) CA,NBy CY,NBy = Byﬂ.

Further, we know that
Ba D ¥(4a) D | Dn(4a).

Now the D,, are norm to p continuous and P,V = A,. So

Dn(PyV) C D, (As) € Du(Ad) € B
as D,(V) C By-. But we know that B, = P:V*. This finishes the
proof of the claim. a
59. Claim. For each limit w < a < 7
(4) PXV* = UpaPsV*.

Proof. Fix one such «, take any v* € P;V*, and let € > 0. Recall

that, by (2), P,V = Y,. Then using Claim 3° with Z := Y, there
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are vi,... ,Um € PV, ay,...,a,m € R and iy,...,%, € N such that
sup(v*—>_"", a;Di;vj, By, ) = sup(v*|p,v —>_7" a; D vi|p,v, By,) <
e. Since P,V = Ug<oP3V and D;; are norm to p continuous, we can

find v < o and uy, ... ,uy, € PyV so that
m
sup <’U* — ZajDijuj, BYQ> <E€.
j=1

Now, v* € P;V* and we know by (3) that D;u; € PyV* C PyV*.
Hence it follows with the help of (2) that

( ZaJD uj> = sup

And, as € > 0 was arbitrary and v < «, we can conclude that
v* € Ug<a P3V*p. o

6°. Claim. For each limit w < o < p and each v* € V*

P(P3E,PLE) =0 as A1 a.

Proof. Fix one such o and &, and let any € > 0 be given. By 5° there
are v < a and n € V* such that

p(Pat, Pin) < e/2.

Then for v < 8 < o we have
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p(P3&, Pyn) = sup(Pz& — Pyn, By)

= sup(Pj(P;¢ — Pyn, By)
sup(Py¢ — Pyn, Ps(By))

sup(Py¢ — Pyn, By)

= p(P;¢, Pyn)

<eg/2

IN

because of (2), P3(By) C By. Hence, for these 3

p(PyE, P3E) < p(Pa&, Pyn) + p(Pyn, P3€) <e. O

79. Now we are prepared to conclude the proof of our proposition,
that is, to find a weakly compact subset of V' which would generate
the whole V. We shall proceed by transfinite induction and show the
following statement.

If every complemented subspace of a Banach space V admits a projec-
tional generator and Y is an Asplund space such thatY C V,Y =V,
and By C By, then there exists a weakly compact set K in By such
thatspK =V.

Proof. If V is separable, then there is almost nothing to prove.
Otherwise, let an uncountable cardinal N be given and assume the
statement holds whenever dens V' < N. Now suppose that V has density
equal toX. Let {P, : w < a < u} beaP.R.I on V constructed in Claim
4%, Then, for every w < a < p we have

dens P,V < #a < #p =X, P,V =Y,, By, C Bp,v,

and Y, is Asplund. So, by the induction assumption, for each w <
a < p there is a weakly compact set K,y1 in Byq41 such that
5p Kat1 = Pa+1V. Consider the set

K= U (Pa+1 - Pa)(Ka+1) u {O}

a<p
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Then spK = V. In fact, it follows from the properties of P.R.I. that
V = @Ua<u (Pa+1 — Pa)(V) and

(Pa-i-l - Pa)(v) = (Pa+1 - Pa)(Pa+1V)
= (Pa+1 - Pa)(ﬁKOHI)
C W(PaJrl - Pa)(KaJrl)-

Finally, we shall show that K is weakly compact. So, let there be
a sequence {a;} C [w,pu) and k; € Ko,q1, ¢ = 1,2,.... If oy = «
for infinitely many 4, then we are done since K, ; is weakly compact.
Second, assume {e;} forms an infinite set and, for brevity, suppose that

a1 < ag < -+ < a|A. Fix £ € V*. Then

(€ (Po;+1 — Pa)ki)| = (P2, 41 — Pa,)& ki)
sup((Py,+1 — Px,)€ Bya, 1)
sup((Py, 11 — Pa,)é By)
o( ;i+1£7pa*,-£)
< p(Pa, 116, PX6)

+p(PXE, Py,€) — 0

IN A

by 6°. This shows that (P, 11 — Py, )ki — 0 weakly and, consequently,
K is weakly compact. Moreover, by (2) we know that K C 2By, so
K /2 is the desired weakly compact set. ]
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