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AN INTERPOLATION SCHEME WITH RADIAL
BASIS IN SOBOLEV SPACES H*(R")

JULIO G. DIX AND ROBERT D. OGDEN

ABSTRACT. This article concerns a global interpolation
scheme that uses the radial basis exp(—|z — z;|)P(|z — z;|),
where P(-) is a polynomial. These basis functions belong to
a Sobolev space H*(R™) and correspond to evaluations of
reproducing kernels at data points. To balance the visual
smoothness of interpolating graphs and the condition number
of a resulting linear system, we use a distance scaling factor
that depends on the data. We find a rate of convergence for
approximations and show results of numerical experiments.

0. Introduction. The interpolation problem that we are interested
in consists of finding a function f that assumes given real values at
given points {x;} of R™. This problem has many applications in real
life. The intended use of interpolants determines the properties that
f should have. For instance, it should have continuous derivatives, or
should be easily computable, or should be continuously dependent on
the data, etc. A summary of desirable properties of interpolants is
found in Grosse [12]. A list of interpolation methods is found in Afeld
[1], and a comparison of methods is found in Franke [6].

An interpolation scheme can be global or local. It is global if the
interpolant at any given point depends on all the data and local if it
depends only on data “near” the given point. Each type of interpolation
is suitable for some applications. But no one scheme is best for all
applications. The scheme here is global but its basis can be truncated
to have a local character.

An interpolation method is called radial if its basis functions depend
on z only through the distance to data points, |z — x;|. The general
form of radial interpolants is

(0.1) flz) = ZW@(W*MD,
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where ¢;’s are the basis functions and w;’s are constants to be found.
The main feature of radial interpolation is that it does not become
more elaborate as the dimension of the domain increases. Well known
cases are ¢(r) =r, r2logr, Vr2 +c2, 1//r2 + 2, r®, exp(—r?), which
are called linear, thin plate spline, multiquadric, inverse quadric, cubic
and Gaussian basis respectively. ¢(r) = r and 73 also have been called
multiconic and pseudocubic, respectively, by Duchon [9].

In order to facilitate the calculation of w;’s, equation (0.1) can be
transformed into the cardinal form

f&) =X fle)Cite),

where C;(z;) = 0; ; is the delta Kronecker. In this case the constants
are the same as the data given, but cardinal bases may be unpractical
for computations, see, e.g., [1, 5].

We show that when ¢(r) = exp(—r)P(r), scheme (0.1) is suitable
for interpolating scattered data that decays to zero at infinity, that
it is computable, and that it has adequate theoretical foundations.
Although this basis function appeared in the meteorological literature
as early as 1972, Franke [10] did not test this interpolation scheme in
his report, and to the best of our knowledge they have not appeared in
the interpolation literature.

The reviewer has brought the work of Madych and Nelson to our
attention [14]. Many of the ideas independently developed by us were
developed by Madych and Nelson in a more general setting. Kernels
here are conditionally positive definite functions of order zero in [14].
However, the examples that we have in mind are different from their
primary examples, although they are in a sense dual to them. Thus,
our interpolants are rapidly decaying and belong to ordinary L?(R™),
but they are of limited smoothness, whereas primary examples in [14]
are infinitely differentiable but of polynomial order at infinity.

In Section 1 we state well-known properties of reproducing kernel
Hilbert spaces and of Sobolev spaces. In Section 2 we calculate the
reproducing kernel for the Sobolev space H®(R™) when s = m +
(n 4+ 1)/2. In Section 3 we reduce the problem of calculating the
approximation f to a linear least-squares problem. Then we estimate
the rate at which approximations converge. In Section 4 we discuss
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computational aspects and derive formulas for the derivatives and the
Fourier transform of approximations. We also discuss the role of a
distance scaling factor and show some computer experiments.

1. Reproducing kernel Hilbert spaces (RKHS). A linear space
H of functions defined on a set €2 is said to be an RKHS under the
inner product (-,-)p if the following is true. There exists a function
called reproducing kernel k : 2 x 2 — R such that for each x in Q and
f in H we have k,(t) := k(z,t) is in H and

Given an RKHS it is known that k,(-) is unique, that for each
t € Q the evaluation functional f — f(¢) is continuous, that norm
convergence implies pointwise convergence, that reproducing kernels
are symmetric and nonnegative definite. See, for example, [2, 7, 17,
18].

Some reproducing kernels are constructed from Green functions. For
examples on finite domains see [17], and for an infinite domain consider
the next example [personal communication with John Walsh]. The

space H'(R) consisting of L%(R) functions whose first derivative is also
in L2(R) is an RKHS with

1
ko (t) = 5 exp(=[t —z|).
This statement is proved using the fact that k. (¢) = k. (¢) for ¢t < z,
that k. (t) = —k,(t) for z < t, and that lim, ,o e *f(z) = 0. In fact

<kwaf>H1 = <kwaf>L2 + <k;afl>L2
T +oo
- % / erf(t) dt + % / "7 f(t) dt

— 00

+ %/; e f(t) dt — %/:w ==t F (1) dt
L 1
= 3 Jm @] - 5 lim [P = f(a).

Note that k,(t) is the Green’s function for the operator (I — d*/dt?),
in that
d2

ke () = ka(t) = 8(t - ).
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Before defining Sobolev spaces we set some notation. The complex
conjugate of a function f is denoted by f. The inner product and norm
in R" are denoted by y”'z and |y|, respectively. The set of tempered
distributions on R™ is denoted by S’'(R™), and function spaces are
considered to be vector subspaces of this space. The Fourier transform
of a test function ¢ in S(R™) is defined by

n

Foy) = dly) = / 2721 das

The Fourier transform inverse is denoted by
F o) = [ () dy,

and the Fourier transform for a tempered distribution f by

~

£(8) = f(9).

The space L? can be defined as all tempered distributions f such
that |f(¢)| < Cfl||¢||r2, where for a measurable function the L2
norm is defined as usual, and C¢ is a constant that depends on f.
This definition is equivalent to the usual one of L? as equivalence
classes of square-summable functions. The Fourier transform defines an
automorphism of S(R™) and therefore of S’(R™), and when restricted
to L? it is a unitary automorphism. Let s be a real number, and put

(1.1) n(y) = (1 + [2my|*)*.

Then the multiplication by 7, f — nf, is an automorphism of S(R™)
and the adjoint operation on §’(R"™) defines an automorphism there
on. Let A be the Laplacian defined in the usual way as a differential
operator on tempered distributions. Then the operator

(I - A)(f) =F *(nf),

can be extended to arbitrary real s, and this extension is always an
automorphism of S'(R™). For a general reference see Stein and Weiss
[16].
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Following Freidlander [11], we define the Sobolev space on R" of
arbitrary order s by

H* = {f €8 (1+ 2myP)"/2f(y) € L?}.
In this space for any A > 0 the inner product

(s = [ T @)1+ 2mx) dy

induces a Hilbert space structure on H?, that we denote by Hj.

Properties of the H; norm, as a function of A\. If s > 0 then H
is a subspace of L?, and so the distributions in H§ are induced by
ordinary functions. It is easy to see that all these norms are equivalent.
Furthermore, as A — +o00, the H§-norm increases to infinity with order
A%, and as A — 0, the norm reduces to the L? norm. We shall mainly
consider A = 1, in which case we omit the subscript in H3.

Proposition 1.1. The space H?® is invariant under translations and
orthogonal transformations, and these act as unitary automorphisms of
the spaces H3 .

Furthermore, H® admits an orthogonal decomposition into spherical
harmonics isomorphic to the classical decomposition of L?, see, e.g.,
[16, Lemma 2.18].

H3 is invariant under dilations, but the norm changes according to
the rule

17D = 11z, Jore>o0.

Proposition 1.2. Let f be in H® with s > 0 and q a multi-index
with |q| < s. Then the (distributional) derivative D(f) is in L?, and

IDI(f)]1pe < O£l

where C' is a constant independent of A and f.

Proof. Using properties of the Fourier transform we have
D)2 = [IDA(f)Iz> = [|(2miy)'! f(y)]] 2

ldl =l
<sup ———=A" s. O
=00 (1+v2)s/2 151l
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Proposition 1.3 (Sobolev embedding lemma). Let f be in H® with
s >m+n/2 and m a nonnegative integer. Then f is in C™(R™), and
if q is a multi-index with |q| < m, then

1Dz < CA=WHE2] £y,

where C is a constant independent of X and f. Furthermore, as |x|
approaches infinity, D(f)(x) approaches zero.

Proof. Properties of the Fourier transform, and the Cauchy-Schwarz
inequality give

—

IDU(f)l < [DA(f)l[z2 = |I2mig) f ()] 2
- H (2miy)'d
B H

iS22,
L2

where p(y) = (1 + [27Ay|?)*/2. And C is obtained as follows:

’ (2m[y])'4!

@miy)?
o =

I

Lt

o Q) 2m
< (area of n — 1 sphere) )\*Z\Q\/ (2mAr) ol

o (1+]2wAr|?)s
2m

o0
v
= (area of n — 1 sphere )\_2“1‘_"/ — "l dy,
( phere) o W+ oy
which is finite because |¢| < m and 2m 4+ n — 2s < 0. To conclude this
proof we see that the last statement in this proposition is a consequence
of the Riemann-Lebesgue lemma of Fourier analysis. o

2. The reproducing kernel for H°. For the rest of this article
we assume that s > n/2. From this assumption and Proposition 1.3 it
follows that functions in H® are continuous and vanish at infinity; that
the mapping f — f(x) is a continuous linear functional on H?®; and
that H® is an RKHS.

Theorem 2.1. If s > n/2, then H® has reproducing kernel k;(t) =
k(t — x), where k is the inverse Fourier transform of (1 + |2mwy|?)~*.
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Furthermore, k; is a Green’s function for the (possibly fractional)
differential operator (I — A)®. And the reproducing kernel for Hj is

kae(t) = A7"k((E - 2)/X).

Proof. Since (1 + [27y|?)~* is in L', its inverse Fourier transform
exists, and since |k|?(1 + |2my|?)® is integrable, k € H®. Using that
k. (y) = exp(—2mizTy)k(y), and the definition of k, we have

(o £y = [ Tl @)1+ f2yl?) dy
— [ emiwdy = 1)

Here we have applied the Fourier inversion formula for the L' function
I

The assertion about the role of k, as a Green’s function follows
trivially from the definition of (I — A)® given earlier and the fact that
y — exp(—2mizTy) is the Fourier transform of ¢t — §(t — ).

Finally, the formula for the reproducing kernel for H3 is a consequence
of the above and the fact that

(2.1) kxa(y) = exp(—2mizTy)(1+27y/?)"*. o

For calculating k we have the next lemma which is a special case of
statement (4) in [12, p. 88].

Lemma 2.1. If s > n/2, then the inverse Fourier transform of the
function (1 + |2my|?)~* is

B 2175(27'(')7”/2

k(x) I(s)

|w‘87n/2’Csfn/2(‘m|)v

where K is the MacDonald’s function, also known as a modified Bessel
function of the third kind.
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In the special case s = m+(n+1)/2, the MacDonald function reduces
to a polynomial times an exponential function. Specifically, we only
need to compute the MacDonald function of order m+1/2, (= s—n/2),
which is part of the more general formula (40) in [3, p. 10].

Theorem 2.2. In the case where s = m + (n+ 1)/2, where m is a
nonnegative integer, the reproducing kernel for H® has the form

ka (t) = k(0)um ([t — xI),

where |2 (1-m)/2
2- TS gl 2m)!
Ro) = 2T em),
L(s)m!
and where .
Um(z) =€ 7 Z C(m,1)z!
1=0
with

w2 (7)+ ()

We conclude this section by giving two recursion formulas for the
calculation of the reproducing kernel when s = m + (n + 1)/2. First,
for a given m we have

2(m —1)

Clm, i+ 1) = T @m -1

C(m,1).
And, second, if u;,(2) = € *pm(z) formula (25) in [3, IL, 7.11] gives
po(z) =1, p1(2) =1+ 2, and

2'2

2m —1)(2m —3

Pm(2) = pm-1(2) + ( )pm,g(z), for m > 1.

3. Approximation of functions. In this section we assume that
the data points z1,...,z, are distinct, and that y; = f(x;), where f
is a function in H® with s = m + (n + 1)/2, so that f has continuous
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derivatives up to order m. To simplify notation we shall denote the
reproducing kernel by

ki() == ko, (£) = E(O)A " um ([t — zi] /).

Since f(z;) = (ki, f)ms, the question of finding f becomes a least

squares problem, i.e., f is the H3-orthogonal projection of f onto the
span of {k;}?_;. Therefore, the interpolant can be written as

q q
~ n w;
(3.1) Ft) =Y wiwn (|t — @il /A) = A" k(o)ki(t)'
i=1 i=1
Let w and y denote the vectors of entries w; and y;, respectively. Then
(32) Aw = Y,
where A is the matrix of entries
)\’(L
aij = um(|zi —z5|/A) = m“ﬂi,kﬁH;-

Note that the matrix A is positive definite, symmetric, all its entries
are positive, and the diagonal entries are ones. From the formula for u,,
we see that the entries a; ; approach zero exponentially as the distance
|z; — x;| increases. We will investigate the condition number of the
matrix A in a later section.

Convergence of approzimations. We would hope that as the sampled
points {x;} exhaust R", the interpolants f would converge to f in the
H? norm. This is true, and we have

Theorem 3.1. Let By C Ex C --- be a sequence of finite sets
whose union is dense in R". Let f € H} with s > n/2 and fg be the
orthogonal projection of f onto span of {k, : v € E}. Then

lim ||fg, — fllm: =0.
71— 00

Proof. Let D = U2 E;. Since H3 is complete lim; fE exists
and equals the orthogonal projection of f onto the closure of the span
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{ky : € D}. If x € D, then there exists an i such that z € E; and
(kz, fB;) = (kz, f) for all j > i. Therefore,
fo(@) = (ko fo)Hs = jli%o(kmej)

= (ks f) = f (),

which implies that the continuous function f p — f vanishes on the dense
set D; hence, f = fp. ]

Rate of convergence for approximations. In this section we assume
that data comes from a known function f in H®. For positive numbers
m,p,T we define the interpolation nodes

x5 = (I(2m — 1) + j)h,

where h = 1/(p(2m — 1)), —pT <1 < pT and 0 < j < 2m — 1. When
holding m, T fixed as p — 0o, we note that h — 0 and that the set of
interpolation nodes is eventually dense in [T, T.

Theorem 3.2. Suppose that f € H*(R), with s = 1+ m, and
that f is the convolution k * v, where v in L>(R) N LY(R). If f is the
H?-projection of f onto span{ky, ;}, with x;; as above, then

1/ = Fllz= = O(R™).
Furthermore, by Proposition 1.3 we have ||(f — f)™)||sc = O(h™).

Proof. 1t suffices to show that || f — g||g= = O(h™) for some function
g in the span of {k;, ,}.

Since v is in L' there exists a positive T such that

(3.3) / lv(z)|dz < h2™.
R\[-T,T]

Now we define g and calculate its Fourier transform

N}
—

T
W) =k@) [ D e Ly (o) ds,
- l
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where L; j(z)’s are the Lagrange polynomials Hzml Z;J( —x;) /(2 —
x;;) on the interval [z; 0, Z141,0), and 0 elsewhere. From this definition
it follows that each real number z belongs to at most one interval
[*10,2141,0), and that the denominator of |L;;(z)| equals j!(2m —
1 — j)!h®™=! while the numerator is bounded by (2m — 1)!R2™~1;
consequently,

(3.4) > 20(a)] < 3 (2”"].‘ 1) —gme

Since ||f — gl|%: = (f, f — 9)us — {9, f — g)us, all we need to show
is that each of these terms is O(h*™). To estimate the first term, we
have

(3.5
<ff Y /f V(b0 — 8) () /He(y) dy

. < —2miyz ZC—ZT”?JEZJLI ( )>v(z) dz dy

+ / fw) [ e dady,
R R\[-T,T]

Since the sum in the above parenthesis is a polynomial interpolation
for exp(—2miyz), a standard error estimate, depending on the 2m-th
derivative with respect to z, gives [6, p. 132]

h2m ‘27Ty|2m

8Sm ’

6721'r1yz _ E 6727rzyzl,jL17j(Z) S

L,j

Vz € [-T,T].

From this inequality, (3.3) and (3.5), it follows that

T
< [ il g [ ld 1) dn

Since v € L! and f € H*(R) with s = 1 + m, the above integrals are
finite; therefore, (f, f — g)u= = O(h®™).

|<f7f 79>H5
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An argument analogous to the one above gives the estimate

T
<mf—mm|s#szmw(mmﬂmgngw&nw+4)@.

Using the formula for ¢ and (3.4), we find that
| ey < 2ol [ kwlze

Since this integral is finite because k(y) = (1+|27y|?)~* with s = m+1,
it follows that (g, f — g)g= = O(h®™). o

Remarks about Theorem 3.2. The nodes in the partition do not need
to be equally spaced. But it is required that the quotient maximum
over minimum distance between consecutive nodes be bounded as
min |z; — x| approaches zero, and that these nodes eventually become
dense in [-T,T]. The assumptions on f are satisfied by a large family
of functions. In fact convolutions of & with continuous functions of
compact support satisfy these conditions and are dense in L2.

A two-dimensional order of convergence can be proved as follows.
Define the interpolation nodes (xll’j,:cit) on a grid of squares whose
side is h = 1/(p(m — 1)). Define T as before, but for a double integral.
Modify the sum on the definition of g to be > L; j(2')Ls(2?). After
some computations we note that the bound (3.4) becomes 4™~! and
the bound for the polynomial interpolation in (3.5) becomes

h™ h2m
2 —[2my|™ + 5 2wy [P,
im

(4m)?

Then proceed as in Theorem 3.2 to conclude that |(f, f — g)| and that
l(g, f — g)| are O(h™); therefore, ||f — f|| = O(R™/?). By this same
argument we can show that in R™ the order of convergence is O(h™/™).

4. Applications of f. Since the linear operator f — Di(f), from
H? to Cy(R™) is continuous, it seems reasonable to approximate D(f)

by DI(f). Here Co(R"™) denotes the space of continuous functions
vanishing at infinity with the supremum norm topology.
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Proposition 4.1. Letm > 2 and let z = |z—t|/\. Then the mapping
t — un,(2) has gradient given by

1 e ?

Vum(z) = mum_l(z)(m —t) = mpm_l(z)zv

where um,(z) = e *py(2) and v is the unit vector in the direction from
t to x. The second partial derivatives are given by

2 —z
8—um(z) _ € pm72(z)
atiti’ X2(2m — 1) \ X2(2m — 3)

20907 — ppy 4 (z)éj,j,> .

From this proposition and the linearity of differentiation, with z; and
w; as in (3.1) it follows that

Z)\z 2m_'1 <)\I2)En2n2l(%2’,)22 NP — 1(zz)>

Here we note that the approximation A f can be computed in a parallel
environment, which makes A f valuable for applications.

Since the Fourier transform maps H® unitarily onto L?(R"™, u?,dy),
it seems reasonable to approximate the Fourier transform of f by the
Fourier transform of f. Here pu(y) = (1 + |27y|?)*/2.

Proposition 4.2. Let s =m + (n+1)/2 as before. Then

Fw) = 0+ o)™

; exp(—27rim?y).

Thus f is a linear combination of sinusoids modulated by p=2(-).

When the sampling points are not equally spaced, computations of f
cannot be simplified as in the fast Fourier transform algorithm.

Another application that follows from Proposition 4.2 is to approxi-
mate f(0) = [ e J(x) dz by

2 A" I
f(0) = f()dm_mzwi-

i=1
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True f

FIGURE 4.1.

As alast application, the least squares formulation (3.1) allows || f| |qu
being approximated by

- g
1 f 13y = #(0) > wif ().
im1

Choices for the parameter A. In this section we study the role of
the parameter A in providing a tradeoff between “visual smoothness of
interpolants” and easing of computations.

On the one hand, as A — 0, for any m and ¢t # t, un,(|t —
t'|/\) approaches 0. This improves the condition number of A, but
the interpolant will look like a string with lots of slack, leading to
sharp peaks near data values. On the other hand, as A — oo each
um (|t — ¢'|/\) approaches 1 and the matrix A becomes arbitrarily ill
conditioned.

A strategy that leads to a reasonable interpolant is to select A large,
but within a range where solutions to (3.2) have a certain number of
accurate digits. This is because inaccurate solutions to (3.2) would
lead to inaccurate interpolants. However, numerical solutions of any
accuracy can lead to f(z;) # f(z;) at some data point.

A way to measure accuracy in solving (3.2) is the condition number
of matrix A. For instance, if cond (A) is 10%, then the solution w to
(3.2) computed in v decimal digit arithmetic may have no more than
v — t accurate significant figures, see [8, p. 1.8].
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True f’

FIGURE 4.2.

Estimates for cond (A) can be done by the Gerschgorin theorem or
numerically when solving (3.2). Numerical experiments show that
cond (A) depends mostly on the minimum and in many cases is indepen-
dent of the maximum distance between consecutive points. Therefore,
an a priori choice for A is min |x; — x;| times a constant that depends
on the dimension of the domain. To find this constant we did the ex-
periments summarized below. First, on equally spaced nodes in [—1, 1],
and then with some points clustered around zero and some around 200.
In both cases we kept the minimum distance between points equal to
1/128, and estimated cond (A4). For this estimate we used the subrou-
tine DPPCO from Linpack [8].

When k(z) = exp(—=z), if A < .003, then cond (4) = 1. If A = 1,
then cond (A) = 120 with rate of increase A%2. If A\ = 10, then
cond (A) = 2.4 x 10* with rate of increase .

When k(z) = e *(1+ z) if A < .003, then cond (A) = 1. If A = .134,
then cond (4) = 8260 with rate of increase A*. If A = 3.05, then
cond (A) = 3.6 x 10° with rate of increase \3.

When k(z) = e *(1 + z + 22/3), if A < .003, then cond (A4) = 1.
If A\ = .107, then cond (4) = 2.78 x 10° with rate of increase \°. If
A = 1.95, then cond (A) = 1.85 x 10'? with rate of increase A°.

When k(z) = e *(1 + 2 + 22%)/5 + 23/15), if A < .0024, then
cond (A) = 1. If A = .134, then cond (A) = 1.22 x 10® with rate
of increase \7-8. If A = .8 then cond (A) = 7.14 x 10'3 with rate of
increase \7.
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True f£'’

Approx f’’

FIGURE 4.3.

FIGURE 4.4.
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FIGURE 4.5.

An a posteriori parameter choice that comes to our minds is based
on the cross validation principle, also known as “withheld data.” Omit
some data points, construct f for several values of A\ and select the
A for which the interpolant best predicts the data omitted. Cross
validation has been implemented for choosing a parameter in thin plate
splines interpolation, and it is available under the title GCVPACK and
RKPACK from netlib; for details see [4].

Visual test for interpolants. To this end we use data values from a
known function to construct f . Then graph the approximate and the
true functions, or their cross sections, on the same coordinate system.
Among the functions approximated we have

(4.1) ft) = Zf(ﬁ)Sinc (27”” (t B ﬁ))
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where sinc (z) = sin(z)/z, j is in a subset of integers, and w > 0.
It is known that these functions are dense in H® and that their
Fourier transform has compact support. By setting f(j/(2w)) to be
a standard normal distribution we are interpolating a “function chosen
at random,” which is a plausible and practical interpretation of white
noise functions [15, p. 86].

We conclude this article by showing some graphs of interpolants.
Figures 4.1-4.3 correspond to an approximation of (4.1) with w = 3
and j = —3,...,3. There are nine irregularly spaced sampling points.
The kernel is e7*(1 + z + 2?/3) and A = .05. The approximations f
and f' appear to fit f and f’ quite well considering the small number
of data points, but f” was poorly approximated.

Figure 4.4 shows an approximation of sin(zy)/(1 + |z| + |y|). There
are 81 sampling points on the domain [0, 5] x [0,5]. The kernel is e~*
and A = 1 that keeps cond (A) around 40.

Figure 4.5 shows an interpolant for Akima’s data, experimental data
provided by Richard Franke. There are 50 data points on the domain
[0,25] x [0, 20]. The kernel is e=#(1 + 2z + 2%/3) and A = 2.5 that keeps
Cond (A) around 10.
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