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THE EFFECT OF DELAY AND DIFFUSION
ON SPONTANEOUS SYMMETRY BREAKING

IN FUNCTIONAL DIFFERENTIAL EQUATIONS

JIANHONG WU

ABSTRACT. We generalize a local Hopf bifurcation theo-
rem of Golubitsky and Stewart to retarded functional differen-
tial equations in the presence of symmetry and illustrate this
generalization by discrete waves (phase-locked oscillations) in
Turing rings with retarded diffusion along the sides of a poly-
gon. The effect of delay and diffusion on the occurrence of
spontaneous symmetry breaking will be demonstrated.

1. Introduction. One of the purposes of this paper is to report a
result on the existence of a smooth branch of periodic solutions with
prescribed symmetries bifurcating from equilibria of retarded functional
differential equations in the presence of symmetry. Such an existence
result was established for ordinary differential equations by Golubitsky
and Stewart [5]. However, a proof of the analogue for functional differ-
ential equations is not an elementary exercise as the precise statement
and verification of the hypotheses of this analogue require nontrivial
applications of some important facts of the generalized eigenspaces of
the infinitesimal generators of solution semigroups and the decompo-
sition theory of linear retarded functional differential equations. An-
other purpose of this paper is to illustrate the effect of temporal delay
and spatial diffusion in symmetric dynamical systems on the process
of spontaneous symmetry breaking and the occurrence of various types
of oscillations. In particular, we will show that in a ring of identical
cells coupled by diffusion along the sides of a polygon where the state
of each cell is described by one single variable, large temporal delay in
the diffusion process may cause phase-locked oscillations, though such
an oscillation cannot occur if the delay is ignored (see, cf., [4, 5]).
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2. The existence of smooth branches of periodic solutions
of equivariant delay differential equations. Let r ≥ 0 be a
given real number and C denote the Banach space of continuous
mappings from [−r, 0] into Rn equipped with the supremum norm
||ϕ|| = sup−r≤θ≤0 |ϕ(θ)| for ϕ ∈ C. In what follows, if σ ∈ R, A ≥ 0
and x : [σ − r, σ + A] → Rn is a continuous mapping, then xt ∈ C,
t ∈ [σ, σ +A], is defined by xt(θ) = x(t+ θ) for −r ≤ θ ≤ 0.

Consider the following one parameter family of retarded functional
differential equations

(2.1) ẋ(t) = f(xt, α)

where f : C×R → Rn is continuously differentiable and f(0, α) = 0 for
all α ∈ R. Denote by Dϕf(0, α) the derivative of f(ϕ, α) with respect
to ϕ, evaluated at (0, α). Then there exists an n× n matrix η(α, θ) of
bounded variation in θ ∈ [−r, 0] such that

Dϕf(0, α)ψ =
∫ 0

−r

[dη(α, θ)]ψ(θ), ψ ∈ C.

It is well known that (see [7]) the linear equation

(2.2) ẋ(t) =
∫ 0

−r

[dη(α, θ)]x(t+ θ)

generates a strongly continuous semigroup of linear operators with the
infinitesimal generator A(α) : D(A(α)) ⊆ C → C given by

A(α)ϕ = ϕ̇, ϕ ∈ D(A(α)),
D(A(α)) := {ϕ ∈ C; ϕ̇ ∈ C, ϕ̇(0) = Dϕf(0, α)ϕ}.

The spectrum σ(A(α)) of A(α) consists of eigenvalues which are solu-
tions of the following characteristic equation

(2.3) det∆(α, λ) = 0

where

∆(α, λ) = λId−
∫ 0

−r

eλθ[dη(α, θ)].
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We also assume that there exists a compact Lie group Γ acting on
Rn such that (2.1) is Γ-equivariant, i.e.,

f(γϕ, α) = γf(ϕ, α)

for γ ∈ Γ, (ϕ, α) ∈ C × R, where γϕ ∈ C is defined by

(γϕ)(θ) = γϕ(θ), θ ∈ [−r, 0].

Our first hypothesis is as follows

(H1) There exists α0 ∈ R and β0 > 0 such that

(i) A(α0) has eigenvalues ±iβ0;

(ii) the generalized eigenspace, denoted by µiβ0(A(α0)), of these
eigenvalues consists of eigenvectors of A(α0) only;

(iii) all other eigenvalues of A(α0) are not integer multiple of ±iβ0.

Note that we do not require the eigenvalues ±iβ0 to be simple. In
fact, the presence of symmetry often forces those purely imaginary
eigenvalues to be multiple. Hence, the standard Hopf bifurcation
theorem of functional differential equations cannot be applied.

To state our next hypothesis, we recall that, under (H1), µiβ0(A(α0))
is the real vector space consisting of Re (eiβ0·b) and Im (eiβ0·b) such
that b ∈ Ker ∆(α0, iβ0). Moreover, there exists a natural identification
between Ker ∆(α0, iβ0) and R2m, where 2m = dim Ker ∆(α0, iβ0) as a
real vector space. We require

(H2) There exists an m-dimensional absolutely irreducible represen-
tation V of Γ such that Ker∆(α0, iβ0) is Γ-isomorphic to V ⊕ V .

Here a representation V of Γ is absolutely irreducible if the only linear
mapping that commutes with Γ is a scalar multiple of the identity.

(H2) is the equivariant analogue of the “simple eigenvalue” assump-
tion in the standard Hopf bifurcation theorem. A slight modification
of the argument in [6, p. 264] shows that the nontrivial restriction (H2)
on the eigenspace placed by symmetry is a generic assumption.

Under (H1) and (H2), we can obtain

Proposition 2.4. There exists δ0 > 0 and a continuously differ-
entiable function λ : (α0 − δ0, α0 + δ0) → C such that λ(α0) = iβ0
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and for each α ∈ (α0 − δ0, α0 + δ0), λ(α) is an eigenvalue of A(α),
µλ(α)(A(α)) consists of eigenvectors of A(α) and dimµλ(α)(A(α)) =
dimµiβ0(A(α0)).

The above proposition enables us to make the following transversality
assumption

(H3)
d

dα
Reλ(α)

∣∣∣∣
α=α0

�= 0.

Under further assumption, it is possible to apply the result of Chow,
Mallet-Paret and Yorke [2] on Hopf bifurcations from multiple eigen-
values to establish the existence of small-amplitude periodic solutions.
However, our primary interest here is the existence of periodic solu-
tions with prescribed symmetry. To specify the prescribed symmetry,
we let ω = 2π/β0 and denote by Pω the Banach space of all continuous
ω-periodic function x : R → Rn. Identify S1 with R/ωZ and define
an action Γ × S1 on Pω by

(γ, θ)x(t) = γx(t+ θ)

for (γ, θ) ∈ Γ×S1, x ∈ Pω, t ∈ R. The isotropy subgroup of an element
x ∈ Pω is defined by

Σx = {(γ, θ); (γ, θ)x = x}

which is also called the group of the symmetry of x. Clearly, Σx is a
combination of the spatial symmetry Γ and the temporal dynamic-shift
symmetry S1. It can be shown that the subspace SPω of Pω consisting
of all ω-periodic solutions of the linearization (2.2) with α = α0 is
Γ×S1-invariant, i.e., (γ, θ)SPω ⊆ SPω for all (γ, θ) ∈ Γ×S1. Therefore,
for every isotropy group Σ ≤ Γ × S1, the fixed point set

Fix (Σ, SPω) := {x ∈ SPω; (γ, θ)x = x for (γ, θ) ∈ Σ}

is a subspace.

Now we are in a position to state a local Hopf bifurcation theorem
for (2.1).
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Theorem 2.5. Assume that (H1) (H3) are satisfied. If there exists
a subgroup Σ ≤ Γ × S1 such that

(2.6) dim Fix (Σ, SPω) = 2,

then there exists a unique branch of small-amplitude periodic solutions
of (2.1) with period near 2π/β0, having Σ as the group of symmetry.
More precisely, for a chosen basis {σ1, σ2} of Fix (Σ, SPω) there are
constants a0 > 0, a∗0 > 0, δ0 > 0, functions α : R2 → R, ω∗ :
R2 → (0,∞) and x∗ : R2 → R, with all functions being continuously
differentiable in a ∈ R2 with |a| < a0, such that x∗(a) is an ω(a)-
periodic solution of (2.1) with α = α(a), and

γx∗(a)(t) = x∗(a)
(
t− ω(a)

ω
θ

)
, (γ, θ) ∈ Σ,

x∗(0) = 0, ω∗(0) = ω, α(0) = α0,

x∗(a) = (σ1, σ2)a+ z∗(a)
z∗(a) = o(|a|) as |a| → 0.

Furthermore, for |α − α0| < α∗
0, |ω∗ − 2π/β0| < δ0, every ω∗-periodic

solution of (2.1) with ||xt|| < δ0, γx(t) = x(t− (ω∗/ω)θ) for (γ, θ) ∈ Σ,
t ∈ R, must be of the above type.

The above local Hopf bifurcation theorem says that, under cer-
tain nonresonance, genericity and transversality assumptions maxi-
mal isotropy groups with minimal dimensional fixed-point subspace
lead to periodic solutions with a certain spatial-temporal symmetry.
This represents an analogue for functional differential equations of the
Golubitsky-Stewart theory. The detailed proofs and related discussion
as well as some results on the stability of the obtained periodic solu-
tions can be found in [12]. A similar result was also obtained in [3] via
a topological approach based on an equivariant degree theory. How-
ever, the smoothness of the branch of periodic solutions with respect
to the parameter cannot be described due to the topological nature of
the argument.

3. Application to Turing rings with delayed coupling. As
an illustrative example, we consider the following system of delay-
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differential equations

(3.1) ẏi(t) = −αyi(t) + αh(yi(t))[g(yi−1(t− 1))
+ g(yi+1(t− 1)) − 2g(yi(t− 1))]

where i (mod n), α > 0 is a positive constant, h, g : R → R are
continuously differentiable functions with

g(0) = 0, g′(0) �= 0
h(x) �= 0 for all x ∈ R,

µ := h(0)g′(0) > 0.

Equation (3.1) can be obtained, by rescaling the time and making a
change of variables, from the following system

(3.2) v̇i(t) = −f(vi(t)) + d[vi+1(t− α) + vi−1(t− α) − 2vi(t− α)]

which arises from the study of a ring of n identical cells with delayed
coupling between adjacent cells, where the kinetics of each cell is
described by a simple scalar ordinary differential equation v̇i = −f(vi)
and the coupling of cells is nearest-neighbor, symmetric and delayed.

The linearization of (3.1) at the zero solution is

ẋi(t) = −αxi(t) + αµ[xi−1(t− 1) + xi+1(t− 1) − 2xi(t− 1)]

and the characteristic equation becomes

det∆(α, λ) = 0, ∆(α, λ) = (λ+ α)Id − αµe−λδ,

where δ is defined by

(δx)i = xi+1 + xi−1 − 2xi, i (mod n), x ∈ Rn.

Let ξ = ei2π/n and

Cr = {(1, ξr, . . . , ξ(n−1)r, )Ta; a ∈ C}, 0 ≤ r ≤ n− 1.

Then

Cn = C0 ⊕ C1 ⊕ · · · ⊕ Cn−1, ∆(α, λ)Cr ⊆ Cr,
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∆(α, λ)|Cr
= ∆r(α, λ) := λ+ α+ 4αµe−λ sin2 πr/n,

0 ≤ r ≤ n− 1.

So

det∆(α, λ) =
n−1∏
r=0

[λ+ α+ 4αµe−λ sin2(πr/n)].

For simplicity, we only consider the case where n = 2k + 1 is an odd
number. Assume

µ >
1

4 sin2(kπ/(2k + 1))

and define β0 ∈ (π/2, π) as the unique solution of

cosβ0 = − 1
4µ sin2(kπ/(2k + 1))

.

Let
α0 = − β0

tanβ0
.

Then ∆r(α0, iβ0) = 0 for r = k and k+1. Moreover, if λ(α) is a smooth
curve of zeros of ∆r(α, λ) with λ(α0) = iβ0, then (d/dα)Reλ(α)|α=α0 >
0. Consequently,

dimµiβ0(A(α0)) = 4.

Equation (3.1) is Γ-equivariant, where Γ = Dn acts on Rn by

(ei2π/n · x)j = xj−1, (κ · x)j = xn−j , x ∈ Rn, j (mod n).

As

Ker ∆(α0, iβ0) = {(z1+iz2)ε+ (z3+iz4)ε̄; zi ∈ R, i = 1, . . . , 4},

where
ε = (1, ξk, ξ2k, . . . , ξ(n−1)k)T ,

ε̄ = (1, ξ−ik, ξ−2k, . . . , ξ−(n−1)k)T ,

we can easily show that the restricted representation of Γ on
Ker ∆(α0, iβ0) is Γ-isomorphic to R2 ⊕ R2, where the action of Γ on
R2 is absolutely irreducible.
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Let sinβ0 , cosβ0 denote the 2π/β0-periodic function from R to R
defined by

(sinβ0)t = sinβ0t, (cos)β0t = cosβ0t, t ∈ R.

Denote by ω = 2π/β0. Then SPω is spanned by
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε1 = sinβ0 u+ cosβ0 v,

ε2 = sinβ0 u− cosβ0 v,

ε3 = cosβ0 u− sinβ0 v,

ε4 = cosβ0 u+ sinβ0 v,

where

u =
(

1, cos
2kπ

2k + 1
, . . . , cos

2k(n− 1)π
2k + 1

)T

,

v =
(

0, sin
2kπ

2k + 1
, . . . , sin

2k(n− 1)π
2k + 1

)T

.

Clearly, for every θ ∈ [0, ω),

Σθ := {(ei·(2π/(2k+1))j , eiθj); j = 0, 1, . . . , 2k}

is a subgroup of Γ× S1. After a straightforward but tedious computa-
tion, we have

Fix (Σθ, SPω) =

⎧⎨
⎩

{z1ε1+z3ε3; z1, z3 ∈ R} if θ = (k/(2k+1))ω,
{z2ε2+z4ε4; z2, z4 ∈ R} if θ = ((k+1)/(2k+1))θ,
{0} otherwise.

So

dim Fix (Σθ, SPω) =
{

2 if θ = k/(2kπ) or θ = ((k + 1)/(2k + 1))ω,
0 otherwise.

Applying Theorem 2.4, we obtain

Theorem 3.3. There exists a unique branch of small-amplitude
periodic solutions of (3.1) with period near 2π/β0, having Σ(k/(2k+1))θ

as the group of symmetry. More precisely, there exist constants a0 > 0,
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α∗
0 > 0, δ0 > 0 functions α(z1, z2), ω(z1, z2) and an ω(z1, z2)-periodic

function x∗(z1, z2), with all functions being continuously differentiable
in (z1, z2)T ∈ R2 with |z1|+ |z2| < a0, such that x∗(z1, z2) is a solution
of (3.1), when α = α(z1, z2) and

x∗i−1(z1, z2)(t) = x∗i (z1, z2)
(
t− k

2k + 1
ω(z1, z2)

)
,

x∗(0, 0) = 0, ω∗(0, 0) = 2π/β0, α∗(0, 0) = α0,

x∗(z1, z2) = (z1 sinβ0 +z2 cosβ0)u+ (z1 cosβ0 −z2 sinβ0)v

+ o(|z1| + |z2|) as |z1| + |z2| → 0.

Furthermore, for |α − α0| < α∗
0, |ω∗ − 2π/β0| < δ0, every ω∗-periodic

solution of (3.1) with ||xt|| < δ0 and xi−1(t) = xi(t − (k/(2k + 1))ω∗)
for t ∈ R must be of the above type.

Remark 3.4. The periodic solution obtained in Theorem 3.3 is a
special form of discrete waves and is called phase-locked oscillation [1]
where each cell oscillates like others except not in phase with each
other.

Note that the symmetry of the bifurcated branch of periodic solutions
decreases to proper subgroup of Γ×S1 of the equilibrium. This feature
of spontaneous symmetry breaking has been extensively investigated
for ordinary differential equations and partial differential equations.
But, to the best of my knowledge, little has been done about the effect
of temporal delay on the symmetry breaking.

Remark 3.5. The phase-locked oscillation observed in Theorem 3.3 is
totally attributed to the temporal delay in the diffusion process. In fact,
if α = 0 then (3.2) generates a strongly monotone dynamical system.
According to a result of Hirsh [8], each solution of the linearization of
(3.2) either converges to zero or infinity as t → ∞ and, consequently,
(3.2) has no Hopf bifurcation. In general, it has been shown that a ring
of identical cells coupled by instant diffustion between adjacent cells
does not exhibit Hopf bifurcation if the state of each cell is described
by a single variable (see [4, 5, 6]). Consequently, it is the temporal
delay that causes the oscillation of (3.2).
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α
α1 2, n[ ] α1 12, n[ ]− α1 1,

Γ n
2[ ] Γ n

2 1[ ]−
Γ1

FIGURE 1. Each branch Γr represents a branch of nontrivial periodic solutions
with the symmetry xj−1(t) = xj(t − (r/n)ω), t ∈ R, where the period ω near

2π/β1,r ∈ (2, 4).

Remark 3.6. The argument for Theorem 3.3 can also be applied to
obtain the existence of a unique branch of small-amplitude periodic
solution of (3.1) with period near 2π/β0 and the symmetry

xi−1(t) = xi(t− ω/2), t ∈ R,

in the case where n is even. One can also obtain several other branches
of periodic solutions for arbitrary n. More precisely, for any n,m, r
with 0 ≤ r ≤ n− 1, let

cosβ1,r = − 1
4µ sin2(πr/n)

, β1,r ∈ (π/2, π),

βm,r = β1,r + (m− 1)2π,

αm,r = − βm,r

tanβm,r
.

If (
4µ sin2 πpr

n

)2

�= p2

[(
4µ sin2 πr

n

)
− 1

]
for all p ≥ 1

then there exists a unique branch of small-amplitude periodic solutions
of (3.1) with period ω near 2π/βm,r and having the following symmetry

xi−1(t) = xi

(
t− r

n
ω

)
.
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α
α1,r α2,r α3,r αk r,

Γ Γr r
1 =

Γr
2

Γr
3

Γr
k

FIGURE 2. Each Γm
r , 1 ≤ m < ∞, represents a branch of nontrivial periodic

solutions with the symmetry xj−1(t) = xj(t−(r/n)ω), t ∈ R, where the period

ω near 2π/βm,r ∈ (2/(2m − 1), 2/(2m − 3/2)).

These results can be depicted in Figure 1 and Figure 2. The descrip-
tion of the maximal continuation of these branches requires a global
bifurcation theory developed in [3] and the stability of the obtained
periodic solutions is still an open problem.
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