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QUALITATIVE ANALYSIS OF
NONLINEAR SYSTEMS BY THE METHOD OF
MATRIX LYAPUNOYV FUNCTIONS

A.A. MARTYNYUK

ABSTRACT. This paper surveys applications of the method
of matrix Lyapunov functions in the investigation of stability,
asymptotic stability and instability of systems modelling real
phenomena in engineering and technology. As a framework
of the stability analysis systems of ordinary differential equa-
tions (ODE) under structural perturbations, the concept of
matrix Lyapunov function is used.

0. What is a matrix Lyapunov function? As is well known,
an auxiliary function with properties similar to those of a norm is an
essential tool in Lyapunov’s direct method for the qualitative theory
of differential equations. At present, scalar Lyapunov functions are
widely used for the solution of various problems in engineering, tech-
nology, mathematical biology, economics, etc. In the early 1970s, there
appeared techniques utilizing several auxiliary functions that were ac-
tually components of a vector Lyapunov function. The idea was exten-
sively developed when the dynamical properties of solutions of so-called
“large scale systems” were investigated.

Further development of ideas by Lyapunov and Poincare resulted
in the concept of a “matrix auxiliary function.” Our subsequent
presentation deals with this concept.

0.1. Let (R™,[|-]]) be a real Euclidean normed space. We denote
by B(p) = {z : ||z|| < p} an open ball with radius p and center at
the origin, and D = Ty x B(p) is a direct Descart product, where
To={t:to <t <oo}andtyge T, CR, where T, = {t: 7 <t < +oo},
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7 € R. Moreover, we will require an open, connected, time-invariant
neighborhood ' C R" of the point z = 0.

We consider a system of differential equations

(0'1) o = f(t’x)v x(tO) = Zo,

where z € R™ and f € C[D,R"]. Suppose that the solution z(¢; %o, zo)
of (0.1) is continuous for all t € 7o and (to, zo) € Int (7o x B(p)), where
I(to; to, Io) = Zp.

Here the definitions of stability, attraction, asymptotic stability and
also instability of the zero solution of (0.1) are the usual.

0.2. Together with system (0.1) we consider a two-index system of
functions (a matrix-function)

(0.2) Ut,z) = [vi;(t,2)],  i,j=1,2,...,m, m>1

with elements v;; € C[T; x R",R]. As is well known, the property
of having a fixed sign of the auxiliary function is the most important
property in the method of Lyapunov functions. Taking function (0.2)
as an auxiliary function, we introduce its property of having a fixed
sign for using Lyapunov’s direct method, so that the following three
points hold.

(a) The property of having a fixed sign of the matrix-function (0.2)
is to be coordinated with the well-known concept of this property of a
numerical matrix.

(b) The property of having a fixed sign of the matrix-function (0.2)
is to be coordinated with the classical notion of the property of being
a Lyapunov function.

(c) The property of having a fixed sign of the matrix-function (0.2)
is to be natural in the framework of the direct method of Lyapunov.

Let y € R™, n € R} or ¥ € C[R",R™], ¥(0) = 0 be given. By
means of the vectors y and 7, or the vector-function ¢ (z), we introduce
the following functions:

L. V(t,z,y) = yTU(t, z)y;
2. V(t,z,n) =n"U(t, z)n;
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3. V(t,o,¢) =¢TU(t x)¢.

Any of the functions 1-3 can be utilized in order to define the property
of having a fixed sign of the matrix-function (0.2). Hence, without loss
of generality, we shall only consider function 1.

Definition 0.3. Matrix-function U : 7, x R™ — R™*™ js called

(1) positive definite on T, if and only if there exist a time-invariant
connected neighborhood A/ C R™ of the point = 0, a positive definite
function W : N'— R, and a vector y € R™, y # 0, such that

(a) U € O[T, x N,R™*™|;
(b) U(t,0) =0 for all t € T;
(c) V(t,@,y) > W(x) for all (t,z £ 0,y #0) € T x N x R™;

(2) positive definite on T, x L if and only if conditions (a)—(c) of
Definition 0.3 (1) are satisfied for N'= £ C R™ is an arbitrary set;

(3) positive definite in the whole on T, if and only if conditions
(a)—(c) of Definition 0.3 (1) are satisfied for ' = R™;

(4) negative definite (in the whole) on T, x N if and only if (-U) is
positive definite (in the whole) on 7, X A/ (on 7).

Remark 0.4. The expression “on 7,” in Definition 0.3 is omitted if
and only if all its conditions are satisfied for 7 € R.

Definition 0.5. A matrix function U : 7, x R"™ — R™*"™ is called

(1) decreasing on 7., 7 € R if and only if there exist a time-invariant
connected neighborhood A/ C R™ of the point x = 0, a positive definite
function v : N' = Ry and a vector y € R™ such that conditions (a)
and (b) and

(d) V(t,z,y) =y"U(t,2)y < u(@)¥(t,z #0,y #0) € T, x N x R™
are satisfied;

(2) decreasing on T, x L if and only if all conditions of Definition 0.5
are satisfied for N = £, L C R"™;

(3) decreasing in the whole of T, if and only if all conditions of
Definition 0.5 are satisfied for N'= R".
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Remark 0.6. If system (0.1) is autonomous and matrix function (0.2)
is autonomous, condition 1 (c) of Definition 0.3 is simplified to the
following

() V(z,y) =y"U(z)y >0V (z #0,y #0) € N x R™.

Remark 0.7. The definitions of positive semi-definiteness of an
autonomous matrix function are formulated on the basis of Definition
0.5 in the context of condition (¢’).

Definition 0.8. A matrix-function U : 7, x R™ — R™*™ is called:

(1) radially unbounded on T, 7 € Rif as ||z]| = 400, V(t,2,y) —
+oo for all (t,z # 0,y #0) € T, x N/ x R™;

(2) radially unbounded if as ||z|| — +o0, the condition V (¢, z,y) —
+oo for all (¢, # 0,y #0) € T, x N x R™, 7 € R holds.

We determine the total derivative of matrix-function (0.2) along
solutions of system (0.1) as follows:

(0.9) DTU(t,z) = [DTvi(t, @), i, 5 € [1,m]];
(0.10) D, U(t,xz) = [Dyv;;(t,x), 4,5 € [1,m]];
where

Dto(t,x) = limsup{[v;;(t + 0,z + 0f(t,x)) — vi;(¢, )]0t — 0t
Dvj(t,z) = liminf{[v;;(t + 0,2 + 0f(t,x)) — vi; (£, )]0~ : 0 — 01},

The notation D*U(t,z) means that either of expression (0.9) or (0.10)
may be used.

Definition 0.11. The two-index system of functions (0.2) is called
a matriz Lyapunov function (MLF) if and only if

(1) the matrix-function U(¢,z) has a fixed sign;

(2) the matrix-function D*U (¢, z) is semi-definite (has a fixed sign)
with sign opposite to that of function U(¢,z) and D*U(t,0) = 0 for all
teT,.

Definition 0.11 shows that an MLF solves the problem of stability for
the zero solution of system (0.1). Definition 0.11 can be modified with
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reference to the various dynamical properties of the zero solution. We
designate by S(y) a set of MLF’s, which solve the stability problem.

Definition 0.12. A matrix-function U : 7, x R™ — R™*™ is called
MLF of S(y) type if and only if on 7, x A/, the conditions

(1) the matrix-function U (¢, z) is positive definite (decreasing);
(2) the matrix-function DT U(t, z) is nonpositive and D*U(t,0) = 0
are satisfied.

We designate by AS(y) a set of MLF’s solving the problem of
asymptotic stability.

Definition 0.13. A matrix-function U : 7, x R™ — R™*™ is called
MLF of AS(y) type if and only if on 7; x N the conditions:

(1) the matrix-function U (¢, z) is positive definite (decreasing);
(2) the matrix-function DTU (¢, z) is negative definite and for all ¢,
D*U(t,0) = 0 are satisfied.

We designate by N.S(y) a set of matrix-functions solving the problem
of instability of the zero solution. We now characterize several prop-
erties of U-functions in terms of special types of comparison functions
(see [4, 14]).

A continuous function a : [0,h] — Ry (or a continuous function
a:[0,00) = Ry) is said to belong to class K, i.e., a € K, if a(0) =0
and if a is strictly increasing on [0, k] (or on [0,00)). If a: Ry — R,
a € K and if lim,_,, a(r) = oo, then a is said to belong to class K R.

Definition 0.14. A matrix-function U : 7, x R™ — R™*™ is called
a matriz-function of Lyapunov-Chetayev type of NS(y) if and only if
there exists a tg € 77, A > 0 such that B(A) C A, and an open set
W C B(A) such that on 7, x W the following conditions are satisfied.

(1) 0<U(t,z) < C, where C is a real m X m matrix;
(2) yTU(t,x)y > a(V(t,x,y)), where a is of class K;
(3) 0€oW;

(4) U(t,z) =0o0n T, x (OW N B(A)).
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In terms of existence of an MLF, the stability and instability theorems
of Lyapunov’s direct method are formulated as follows.

Theorem 0.15. For the zero solution of (0.1) to be stable (uniformly)
it is mecessary and sufficient that the MLF U : T, x R™ — R™*™ of
S(y) type exists for some positive integer m.

Proof. For m = 1 the proof of Theorem 0.13 is well known (see
for example Lyapunov [5]). If m > 1, then the function V (¢, z,y) for
y € R™ is scalar and the theorem is proved similarly to the m =1
case. o

Theorem 0.16. For the zero solution of (0.1) to be asymptotically
stable (uniformly) it is necessary and sufficient that the MLF U :
T x R™ — R™*™ of AS(y) type exists for some positive integer m.

Theorem 0.17. For the zero solution of (0.1) to be unstable it
is sufficient that the MF of Lyapunov-Chetayev type of NS(y), U :
T, x R™ — R™*™_ exists for positive integers m.

We consider a simple example

(0.10) & = P,

r=(75 1),

The elements of MF are taken as

where z € R?,

.2 .2 _ _
V11 = Iy, V22 = g, V12 = V21 = QX1X2,

where « is a constant. It is easy to verify that for —1 < o < —25/7 the
application of the matrix-function

U(x):< 23 ax12:172>

QAT1T2 Ty

and vector 7 = (1,1)T allows one to solve the problem of stability of
the zero solution of problem (0.10).
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1. Systems described by ODE’s under structural perturba-
tions. Let the matrix P = (p¥,pZ,... ,pT)T € R**7 be characteristics
of inner (or outer) perturbations. We designate the class of all admis-
sible matrices P by

(1.1) P ={P:P < P(t) < Pt € [~o0,+00l},

where the matrices P; and P, are a priori defined. Note that P can
also consist of a single element {0}.

We define a structural matrix S; : R — R™*¥" which contain

the structural parameters s;; : [—00, +00] — {0, 1} which take binary
values as functions of ¢, i.e., s;; : [—00,+00] — [0, 1] by the formula
(1.2) S; = [sirdis sinlis -, Sir—11i iy Sipy1dis -, sin 1],

r 1, I; = diag {1,1,... ,1} € R™*™,

Here N is the number of all possible structures. It should be noted that
it is sufficient but not necessary to require that the condition s;;(t) =1
implies that s;(t) = 0 for all k # j.

The matrix
S(t) = diag (Sl, SQ, e ,Ss),

describing all structural variations is called a structural matrix. The
set of all possible matrices S(t) is designated by Ls:

Ls={S:85=diag(51,...,5)}

Let some real system S be described by system of ODE’s (of dimen-
sion n)

(1.3) dz/dt = f(t,z, P),
where z € R™, f € F and F = {f1,..., fN},

ffeC[T; xR" x R4, R"  VEk=1,2,...,N.
System (1.3) can be presented in the form

dmi
dt

(14) = fz(tamlao)+Sz(t)fz*(t7$7p1)a
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where z; e R, z = (2] ,... ;21)T e R", >]_ ni =n,
i _ (0T T T T T n
zt=(0",...,00,z;,07,...,00) € R™

The number N in the definition of the family F and F; = {f},..., f"},
describes structural variation of the whole system. The function
k = k(t) on the set N' = {1,2,... ,N}, k(t) € N for all t € R,
describes the variation of system (1.3). It is clear that system (1.3)
is structurally invariant if and only if K(¢) is constant, K(t) = K, i.e.,
the set N/ = {K} consists of one element.

In this section we establish stability conditions for system (1.4) by
applying an MLF.

Definition 1.5. The zero solution of system (1.3) is called

i) asymptotically stable (in the whole) on P x Ly if and only if it is
asymptotically stable (in the whole) for any (P,S) € P x Ls;

i) wuniformly asymptotically stable (in the whole) on P X L if and
only if it is uniformly asymptotically stable (in the whole) for any

(P,S) € P x Ls.

Assumptions 1.6. There exist

(1) open connected neighborhoods N;; C R™ of states z; = 0,
i=1,...,s}

(2) functions @i : Njy = Ry, i =1,2,...,s, k= 1,2, (pi, € K-
class (KR));

(3) real constants a,;, @ij, 4, = 1,... , ;
(4) a matrix-function
vin(t,x1) - vt T, @
(1‘7) U(t, ‘/L-) e R vij — iji
Usl(taxlaxs) 'Uss(taxs)

the elements of which satisfy the following estimates

(@) aueh(lzilla(t) < vi(t,z) < aiph([lzill), for all (¢,z;) €
Ry XNz, i=1,2,...,s;
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[l

(b) ayspar(llzill)pji(llj]))alt) <wvij(t zi, 25) <@ijpa ([l ja(
>p5>0

for all (¢,z;,2;) € Ry X Nig X Njg, where a € C[R,R4], a
forallt e Ry, (i #j) € [1,s].

Lemma 1.8. If all conditions of Assumptions 1.6 hold, the function
(1.9) V(t,z) = n"U(t,z)n, neR,, >0
satisfies the two-sided estimate for all (t,z) € Ry X Ny
(1.10) a(tyu] H* AyHuy <V (t,z) <uy HT AyHus,

where ’ .
uy = (pri(llzal])s- - s esllzsl) ™

uz = (pr2(llzall), .- s pas(llasl))”,
H:dlag [771777%--- ans]a
A1 = [Qij], A2 = [O_éij], ’L,] = 1,2,. sy S,

Proof. Inequalities (1.10) are obtained by a direct substitution
of estimates (a) and (b) from condition (1.6) (4) in the extended
expression for function V (¢, ). o

Assumptions 1.11. There exist

(1) functions ¢;, v;j; ¢,j = 1,...,s satisfying the conditions of
Assumptions 1.6 and, moreover,

(a) functions vy (t,z;) € C[R4+ X Nig,, Ry] or vy(t,z;) € C[R4 x
R™, R, ]|, where Nz, = {z; : ©; € Nig,x; # 0};

(b) for i # j functions v;;(¢,z;,zj) € C[R4y X Nigy X Njgy, R] or
Uij(t, xi,xj) € C[R+ x R™ x an,R];

(2) constants p;, pi(P,S), pij(P,S), i =1,...,8 7=2,...,8j>1
such that the following conditions hold

(a) 0 (Dfvii + (DFvia)" filt,2,0)) < piF(||ai]|) for all (t,2;) €
R x Nigg, i =1,2,..., 5;

(b) Xoimy (D vi) " Sifi (6w, pi) + Y05y 5mp jo 2mimi{ Dy vij +
(D;j—ivij)Tfi(ta xz,o) + (D:—ci—jvij)Tfj(ta IJ,O) + (Dzvii)TSifi*(taxapi) +
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(DF,vig) T8 f5 (6 w,py) < 320, P (P S)eF(laall) + 2370 3o5s
pii (P, S)pi(llzil)p;(||z;]) for all (,z, P, S) € Ry x Noy X P x L.

Lemma 1.12. If all conditions of Assumptions 1.11 are satisfied,
then the total derivative of function (1.9) with respect to system (1.4)
satisfies the inequality

DYV (t,x) =" DYU(t,z)n < w'G(P, S)w

(1.13)
V(t,xz,P,S) € Ry x Ny X P X L,

where

G(P,S) = [0(P,S)],  ij=12....s
oi;(-) = 05i(-) = pi(P,S)  Vi#j,
oii(-) = pi + p; (P, S)

Proof. Inequality (1.13) results directly by substituting inequalities
(2)(a) and (2)(b) from Assumptions 1.11 into the expression for the
function DtV (t,z). Let ¢ € Ry, ¢ > 0 be given. The set V¢(t) is
called a maximal connected neighborhood of point z = 0 for t € R
and can be obtained by using the function V;V : R, x R" —
R, so that the condition z € V(t) implies V(¢,z) < (. The
definition of maximal connected neighborhood of the point z; = 0 is
introduced similarly, with the help of functions v;;(¢,z;) constructed
for independent subsystems

dIi
dt

= filt,z",0), i=1,2,...,s. O

Theorem 1.15. Let the perturbed equations of motion (1.4) be such
that all conditions of Assumptions 1.6 and 1.11 are satisfied; except for
the upper estimate of the function vi;, 1,j = 1,2,... ,n in Assumptions
1.6, and assume

(a) there exist positive numbers & (or & = +o00) such that the

set Vic(t) is asymptotically contracted for any ¢ € [0,&] and every
i=1,2,...,5
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(b) the matriv A= HT A1 H is positive definite;

(c) there exists a negative definite matriz G* € R*** such that for
matriz G(P, S) from the (1.13) estimate,

G(P,S)<G* V(P,S)€PxL,

s valid.

Then the equilibrium state x = 0 of (1.4) is structurally asymptotically
stable on P x L°.

If all hypotheses of Theorem 1.15 are satisfied for N;, = R™
for radially unbounded function ¢; and for & = 400 when every
i=1,2,...,s, then the equilibrium state z = 0 of (1.4) is structurally
asymptotically stable in the whole on P x L.

Proof. Let the conditions of Assumptions 1.6 and hypothesis (b)
of Theorem 1.14 be satisfied, and let the function V(¢,z) be positive
definite. Hypothesis (a) of Theorem 1.14 ensures the asymptotic
contraction of the set V;(t) constructed based on the function V' (¢, z).
Assumptions 1.11, Lemma 1.12 and hypothesis (c¢) of Theorem 1.15
imply that DTV (¢,z) is a negative definite function for every (P, S) €
P x Ls. These conditions are known [4] to be sufficient to provide
structural asymptotic stability of the state x = 0 of (1.4).

In the case that N;, = R™ and ¢; are radially unbounded and
& = +oo, then function V(t,x) is positive definite in the whole and
radially unbounded. Together with other hypotheses of Theorem 1.15,
this ensures the structural asymptotic stability in the whole on P x L.

Let the large scale system (S) of Lurie system type be decomposed
into S subsystems

dx; 5 id
(1.17) at >S5 A+ Y i aufa(ow),
' =1 1=1

_ T S
oy = ¢y, 1=1,2,...,s,

where U;llfu(ail) € [0,ky) € R4, A;; are constant matrices, z; € R™,
Zle n; =n, r € R™, k;; are constants. Every matrix and every vector
in system (1.17) is of the corresponding dimension and, moreover,
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matrices SZ.(II) and Sl(l2 ) are diagonal. With the help of structural
matrices

SR AT G R
Ts® s s 0 5@, s

S = dlag (Sl, Sg, “e ,Ss),
the structural set is defined as follows
L,={S:0<8P <18 =1i,1=1,2,... 5k=12}

where [ is a unit matrix of corresponding dimension. The set P for the
system is the zero set, i.e., P = {0}.

Substituting for the vector = by the vector z¢ we subdivide system
(1.17) into independent subsystems of the form

dz; .
(1.18) CZ =Aii$i+5i(i2)qiifii(0ii),
where G;;ckat, 2t = (0,...,0,2;,0,...,00T € R* i € [1,s]. We

introduce the following notations:
) 9 _ _ )
fi(z') = Ay + Si(i )Qiifii(Uii), Gii = chats

fi@S) =Y Si(ll)Ailxl+ZSZ'(12)(]ilfil((7il)
=1

(1.19) L =
2 ~
+ Si(i )qii[fii(o'ii) + fi:(5)],
Uil:ciTlm, 1=1,2,...,s.

In view of (1.19), system (1.16) can be written as

120) Tt g@s),  i=12.0s

where f;(0) =0 and f7(0,s) =0 for alli =1,2,...,s. Stability of the
equilibrium state z = 0 of (1.20) is investigated by means of the matrix
Lyapunov function

(1.21) U(z) = [vij(@i, z;5)],  vij = v,
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the elements v;; of which are defined as
(122) vij(:vi,xj) = :EZTPZ'J'IJ', Z,j S [1, S],

where the P;; are symmetric positive definite matrices, and F;;, ¢ # 7,
are constant matrices.

Functions (1.22) satisfy the following estimates [1]:
(1.23)
M (Pii)ill* < wii (i) < Anr(P) |l

1/2 1/2
N (P P il 51| < vig (i, 5) < A2 (P PT) il ][5
V(zi,z;) e R xR™  (i#3), 4,j=12,...,s

Here A, (P;;) are minimal and Ap(Pj;) are maximal eigenvalues of
the matrices Py;, A M(P,JP”) are maximal eigenvalues of the matrices

PP and (i # j) € [1,5].
If estimates (1.23) are valid for the function
(1.24) V(z) =n"U(z)n, neRL, n>0,
the two-sided inequality
(1.25) uf Au < V(z) <u?'Bu Ve eR",

similar to inequality (1.10), holds, where

ut = (|lz], |22, - - - 5 [|zs]]), A=HTAH, B=H"AH
a;; = Am(Pii), aii = A (Pii),
i = i *)‘1/2(]3 PT) Qij = Qi = )‘I/Q(P PT) o

Lemma 1.26. If for system (1.17) the matriz function (1.21) with
elements (1.22) is constructed, then for the Dini derivatives of functions
(1.22) along solutions of system (1 17) the estimates

@ <D+vn>sz< ) < D)l for all ;€ N, i@ =
(b) zz (D) F (2, 8) 42500, 0 oo s g (DFvis) T (fi(a)

+7(2,8)) + (DEvif) T (fi(29) + fi(x,5)) < zizlpz“( )\lzil[2 +
23 Yy i pii ()il [[z5]] for all (zi,2;) € Nigy X Njgy X Ls

1

)
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hold. Here pgk)(S), k = 1,2; i € [1,s] are maximal eigenvalues of
matrices

M2 [PiiAii + AL Py + PSP quik (ci)™ + (S qiik (i) ™) T Pl
1—1
S {18 A)T + (S quikis(ch) )T Py

+ PEISY A + 8D quiks (ci) 7]}

+ > mandPalSi Au + S qukis(ch) "]
l=it1

+ (S5 )T + (8D quiks (ci) T TIPT Y
2 [PuaS P qiiksi ()T + (S aukiy (i)™ P,

respectively, and p;;(S), 1 < j, 1 =1,2,...,s; j = 2,...,s are norms
of the matrices

Znam AT + (S ks (i) ™) TR

+ Z nml(S Aw)T + (S5 ki (i) ™) TP
I=j+1

i—1
+ > mmPLISE Ay + S ki (el)"]
=1

+ Z WinPil[Sz(jl)Alj +Sl(j2)quk?j(clzj1')]

I=i+1
+ S PSP Ai) + (82 4)T P+ Pa (8D aighty (e)T)
+(s” 01k (d) ") Pi+ P (S ik () )+ (S quaki (cl)™) " Pus}
+ nJ{PJm S5 Aj) + (S Aji) T Pji + Pyi(S5 gk (ch)T)
+(s§f>qﬂk*-(c'~> )" Py; + Pis(SE aisk3;(ci)")
+ (8% aik3;(c5 ) Py,
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respectively. Here

k
kij for Uij(Si(j )qij)TPijIj > 0,
ki; = iji=1,2,...,8 k=12
0 in other cases
{ ki for O'H(Sl(f)q“)TP“xz >0,1=1,2,...,s;

]g;,"f" =
! —k;; for azz(Sl(f)q“)TP“xz <0,2=1,2,...,s

cﬁj € R™ is the k" component of vector Cij-

Lemma 1.26 is proved by the immediate transformations of expression
nT DU (x)n.

The application of Lemma 1.12 to system (1.20) when the estimates
from Lemma 1.26 hold, enables us to get for D"V (z) the inequality
(1.27) DtV(z) <uTC(S*)u  VY(z,S) € Ny x Ls,
where C(S*) = [¢;;(S*)] and

cii(S) = o (57) + pP(57),
cij = ¢ji = pij(S¥) (i#7)€ll,s]

Here S* € L, is a constant s X s matrix such that

p(S) <P pig(S) < pig(ST), k=12

Estimate (1.27) is proved by the immediate transformation of expres-
sion DTV (z) in view of inequalities (a) and (b) from Lemma 1.26.

Theorem 1.28. Let equations (1.17) be such that there exists matriz-
function (1.21) with elements (1.22) satisfying estimates (1.23), and for
the Dini derivative of function (1.24), estimate (1.27) holds. If

(a) matriz A in equality (1.25) is positive definite;

(b) matriz C in inequality (1.27) is negative definite. Then the
equilibrium state x = 0 of system (1.17) is uniformly asymptotically
stable on L.



412 A.A. MARTYNYUK

If the hypotheses of Theorem 1.28 are satisfied for N, = R™, then
the equilibrium state x = 0 of system (1.7) is uniformly asymptotically
stable in the whole on L.

Proof. It is easily seen that if all hypotheses of Theorem 1.28 are
satisfied, all hypotheses of Theorem 1.15 are also satisfied, and thus
Theorem 1.28 is a corollary of Theorem 1.15. m]

Example 1.29. Let system (1.17) be a system of fourth order of
Lurie type decomposed into two interconnected second order systems
defined by the following vectors and matrices:

-3 0 -5 0 5 0
All - |: 0 3}7 A12_ |:1 5:|’ A21 - |:l 5:|7

o1 07 ~Joa] o]
22 — 0 01 9 CII,l - 0 ) QZ,I - 01 9
cf; = (0.1;0;0.1;0); e, = (0.1;0;0;0.1);
kil:]-a 7’712172;
s = S& = sl j=1,2  I=diag(1,1).
Here s;; : [—00, +00] — [0,1] is a structural parameter. The structural

set is defined as
Lo={S:0<s® <18 =1,i,j,k=12}.
For the elements v;; of matrix-function (1.21) taken in the form
T .
ii(Ti) = z; [z, =12
(1.30) vii(z;) =z Iz i .
vi2(®1, T2) = vo1(x1, x2) = 0, 1oy Iz,
the estimates
vii () > ||z %, 1=1,2
viz(z1,22) > 0, 1|z1]] ||z2]]
hold. Let n7 = (1,1). Then matrix A, corresponding to matrix A4 in
estimate (1.25), is:
Q- [ 1 —0.1] '

-0.1 1
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If the elements of matrix-function (1.21) are taken in the form of (1.30),
then

(1) for ky =0, pi7(8) = =6; pf"(8) = 0.2;

p(S) =1,140.02s11;  p57 (S) = —0.9 + 0.02s5s,
p12(S) = 0.29;

(2) for kf =k =1; pV(S) = —6 + 0.02s11;

PV (S) =02+40.01s32;  p?(S) = 1.1+ 0.02511 + 0.001s:;

pP(S) = —0.9 + 0.0001s1 + 0.0282;
p12(S) = 0.29 4 0.01151; + 0.01s12 + 0.00552; + 0.00752;.

Matrix C corresponding to matrix C' in estimate (1.27) has the form

—4.28  0.29 -
G [ 0.29 —0.68] for ki =0;
) [-4.859  0.323 .
[ 0.323 —0.669] for ki = ki =1

and is negative definite.

Thus, all hypotheses of Theorem 1.28 are satisfied and the equilib-
rium state z = 0 of (1.17) with vectors and matrices from (1.29) is
structurally asymptotically stable in the whole on L.

2. Conclusions. The method of qualitative analysis of nonlinear
systems based on matrix Lyapunov functions embraces the advantages
of both the method of scalar Lyapunov functions and that of vector
Lyapunov functions. First, it is simple in its applications (given the
presence of an appropriate function). Second, it can be effectively
applied to large scale dynamical systems. By the same token, the
method

(i) enlarges the classes of functions suitable for the construction of
an appropriate Lyapunov function;

(ii) allows a more precise accounting of the interconnections between
subsystems in large scale systems and extends the assumptions on the
dynamical properties of the subsystems;
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(iii) does not require the construction of quasimonotone comparison
systems as vector functions do;

(iv) simplifies the testing of conditions leading to the property of
having a fixed sign of special matrices in nonnegative cones in stability
(instability problems).

3. Comments. The famous dissertation paper by A.M. Lyapunov
[5] containing the basic method of qualitative analysis of nonlinear
systems is very close to ideas of H. Poincare [15]. There are many
monographs developing this or that Lyapunov’s method of functions.
Results obtained for large-scale systems are presented in books by L.T.
Grujié [3], A.A. Martynyuk [6], A.N. Michel and R.K. Miller [14],
D.D. Siljak [16], L.T. Gruji¢, A.A. Martynyuk, M. Ribbens-Pavella [4],
etc. The concept of matrix Lyapunov functions was proposed by A.A.
Martynyuk (September, 1976, Yablonna, Poland). Papers [1,2, 7—10]
were the first to develop the idea of auxiliary matrix functions. In our
paper we present some results from these and some generalizations (see
A.A. Martynyuk, V.G. Miladzhanov [11, 12]). In the description of
structural perturbations we follow L.T. Gruji¢, A.A. Martynyuk and
M. Ribbens-Pavella [4].
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