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OSCILLATORY AND ASYMPTOTIC BEHAVIOR
OF A DISCRETE LOGISTIC MODEL

Q. KONG

ABSTRACT. We consider the discrete logistic model with
or without delay

AnTn

—_— =0,1,2,...,72>0
1+/Bnmn—j7 n Lt Bt} 2] Z

Tn+1 =

where an, [, are positive bounded sequences. A complete
discussion on the oscillatory and asymptotic behavior is given
for the case that j = 0. For the case that j > 0, some results
on oscillation are also obtained.

1. Introduction. In 1969, Pielou posed the difference equation
model (see [8])

azT,

1.0 Tpgg = ———2
(L.0) "= T

n=0,1,2,...,7>0

(where a > 1, 8 > 0 are constants) as the discrete analog of the delay
logistic equation

N(t) =rN(t) {1 — W]

Recently, Kuruklis and Ladas have obtained oscillation criteria for
Equation (1.0) with j > 0 and asymptotic stability results for (1.0)
with 7 = 0,1, see [4].

However, from the derivation of the model (1.1) we see that o and 8
are related to the growth rate r and the carrying capacity p as follows:

a=¢" and B=(e"—1)p,

and hence are not constants, and not even periodic in general.
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Our aim in this paper is to study revised models where « and g in
(1.0) are replaced by bounded sequences «;, and 3,. We will consider
both the difference equation without delay

an
(11) $n+1:ﬁ, n:0,1,2,...,x0>0
n+n

and the difference equation with a delay

AnTn .
1.2 = — =0,1,2,... >1
( ) Tn+1 1+,8nxn—J7 n 5 Ly 4y ) 2
with z; = a; for i = —j5,...,0, ¢; > 0 for i = —j,...,—1, a9 > 0,

l1<a, <a, <a*"<oo,and 0 < B, < B, < B* < co. We will give
a complete discussion on the behavior of (1.1) and obtain some results
on the oscillation of (1.2).

Definition 1. A sequence {z,} is said to be oscillatory if z, is
not eventually positive or eventually negative. A sequence {x,} is said
to be oscillatory about a sequence {y,} if {z, — y,} is oscillatory. A
sequence {z,} is said to be k-oscillatory if {z,} is oscillatory about
{k}. If a sequence {z,} is k-oscillatory for some k, then we refer to
A(z,) = limsup z,, — liminf z,, as the amplitude of {z,}.

Definition 2. Let {z,},{y,} be two sequences. {z,} is said to
approach {y,} asymptotically, denoted by x,, ~ ypn, if ©, — y, — 0 as
n — oo. Furthermore, we say that z,, ~ y, with an exponential speed
if |z, — yn| < kc™ for some k>0, 0 < c< 1.

The following assumptions will be used in our discussion.
(H1) K, = (an —1)/B, is eventually monotonic and lim K,, = k;

(H2) K, is not eventually monotonic and liminf K,, = k, and
limsup K,, = k*.

2. Behavior of equation (1.1). In this section we obtain results
for oscillatory and asymptotic behavior of (1.1) which are parallel to
those of the continuous logistic model given in [3].

It is obvious that equation (1.1) is equivalent to the equation
Kn — Tn

T4 B

(2.1) Tpt1 — Ty
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Theorem 2.1. Assume that (H1) holds. Then every solution {z,}
of (1.1) eventually satisfies x, > K, or z, < K,, and =, ~ k.

Proof. Without loss of generality, we assume that K, is increasing
for n > ng.

i) If z, > K, for n > ng, then by (2.1) z,, is decreasing, and hence
z, = ¢ > k. From (1.1),

Qp Tn+1
= — 1, — 00.
1+ Bnn  Tn e
Then ay, ~ 1+ B,2,, and
n— 1
Ty ~ @ =K, — k.

B

ii) If there exists an ¢ such that z; < K, since the function
o(z) = az/(1 4+ Bz) is increasing for any o > 0 and 8 > 0, we have

Q;T; o; K;
1+ Bizi = 1+ BiK;

Tig1 = =K; < K1

By induction z,, < K,, for n > i. From (2.1), z,, is increasing, and as
ini), z, = k. mi

Theorem 2.2. Assume that (H1) holds and K, is increasing
(decreasing) with

n—1
K, - K,
K, ; m,@; — —oo(400) asn — oco.

Then all solutions of (1.1) eventually satisfy that x, < K,, (z, > K,)
and x, ~ k.

Proof. Without loss of generality, assume that K, is increasing. By
Theorem 2.1, it suffices to show that all solutions eventually satisfy
z, < K,.
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Let {z,},{yn} be two solutions of (1.1). Clearly, =, > y, implies
that ,,41 > yn4+1. Denote

E = {z¢ : solution {z,} starting at z( satisfies =, > K, for all n}.

Assume the conclusion is not true; then F is nonempty, connected and
bounded below by Ky. Let * = inf E. If 2* ¢ E, then there exists an
ny such that z; < K,,. By the continuous dependence of solutions
on their initial values, we see that there exists an £ € FE such that
Zn, < Ky, contradicting & € E.

If «* € E, then there exist x(n) — z* as n — oo such that the
solution z;(n) of (1.1) starting from x(n) satisfies that z,(n) = K,
and z;(n) > K, for i = 0,...,n — 1 since z;(n) is decreasing in i.
Since 9 (z) = (Kz — 2?)/(1 + Bz) is decreasing for any K > 0, 8 > 0
and x > K, noting that K,, > K;,7=0,... ,n — 1, we have

n—1

n(n) — zo(n) = Y _(zi41(n) — z:(n))

=0
2K —ai(n)
=X T A

1
K;, — K,

by assumption. Thus, z,(n) = K,, - —oo since zo(n) are bounded,
and this contradicts K,, — k. m]

Lemma 2.3. Assume that (H2) holds. Then, for any € > 0, all
solutions of (1.1) eventually satisfy

(2.2) ke —e<azp <k*+e.

Proof. Assume that there exists a solution {x,, } which does not satisfy
(2.2) eventually. Consider the following four cases:

i) @, > k* + € eventually,

i) x, < k. — € eventually,
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iii) there exist n; — oo such that (2.2) holds for n = n;,
iv) there exist sequences n; — oo and m; — oo such that i) holds
for n = n; and ii) holds for n = m;.

For case i), from (2.1) eventually we have

K, —x,
1+ﬂnmnﬂn$n
e Bu(k*+e)
=214 Bk +e)
€ Byk*
= 21+ Bk’

Tn+1 — Tp =

S0 z, — —0o0 as n — 00, contradicting that z, > k* + €.
For case ii), the discussion is similar.

For case iii), if z,, > K,, eventually, then there exists an n; such that
(2.2) holds for n; and z, > K,, for n > n;. Hence, {z,} is decreasing
forn > n;. Asaresult, z, < z,, < k*+¢c for n > n,;. At the same time,
x, > K, > ks —e. Thus, (2.2) holds for n > n;. A similar argument
holds for the case that z, < K, eventually. If {x,} is not eventually
monotonic, from (2.1), we see that {x,} assumes its local maximum at
some n =i+ 1 if ; < K; and z;41 > K;y1. So, from (1.1), for large 4,

;T o; K;

1+ Biz; — 1+ BiK;

Tiy1 = :Kl<k*+€

Similarly, if {x,} assumes its local minimum at some n = i + 1, then
Zi+1 > ki« — € for large ¢. Hence, for sufficiently large n, we have that
(2.2) holds, contradicting the assumption.

For case iv), the proof is exactly the same as the second half of case
iii). |

Theorem 2.4. Assume that (H2) holds with k. = k* := k. Then all
solutions of (1.1) satisfy xn, ~ k.

Proof. This is an immediate corollary of Lemma 2.3. O
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Lemma 2.5. Assume that (H2) holds with k. < k*. Then, for every
solution {z,,} of (1.1), there exists an interval (a,b) C (k., k*) with

bk

2. boq> _xtr
(2:3) = 538k

(k" — k)

such that {x,} is k-oscillatory for every k € (a,b), and hence A(x,) >
b—a>0.

Proof. Let a = liminfz,, b = limsupx,. First we show that
k. < a <b<Ek* and hence {x,} is k-oscillatory for any k € (a,b).

By Lemma 2.3, it is obvious that k, < a < b < k*. Now we show
that a < b. If not, lim z,, = x* exists and z* € [k,, k*]. Without loss of
generality, assume that * < k*. Let k* — 2* = 2[. Then there exists
an ¢ such that K,, — z, > [ and (2.2) holds for some 0 < ¢ < k, and
n > 4. Therefore, by (2.1)

K. 1B.(ky — €)

n*xnﬁ >
nln 2
n 1+ 6*(k* + )

= >0,
1+ B,

Tn4+1 — T

contradicting that lim x,, = x*.

Next we show that (2.3) holds. Assume the contrary. We have

Bk
2.4 Az, — = (k* — k).
2.9 (1) < gL (b )
Then
lim sup{|K,, — zn|} > [(K* — ki) — A(z,)]/2
14 Biks .
~ 3136k, (k" =)
and
lim sup{Jens1 — al} > lim sup{|K, — @]} lim inf —""
imsup{|T,+1 — zn|} > limsup{|K,, — x|} limin Tt 5.2,
14 Bk, Bk
Bl et Y A M L
2+35*k*( )1+,3*k*

2+ 3Bk
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This implies that

(k* — k)

k
lim sup z,, — liminf z,, > L

T 24 3084k

and hence contradicts (2.4). O

Corollary 2.6. Assume that (H2) holds. Then every solution of
(1.1) is oscillatory about {K,}.

Proof. Assume the contrary and, without loss of generality, assume
that there exists a solution {z,} of (1.1) satisfying z,, > K, eventually.
By (2.1), {z,} is eventually decreasing, contradicting that {z,} is k-
oscillatory for k € (a,b) C (k«, k*). O

Lemma 2.7. Assume that (H2) holds, and {z,} and {z}} are two
solutions of (1.1). Then x,, ~ z, with an exponential speed.

Proof. Assume that z,, # z). Then z, # z). Without loss of
generality, assume that x,, > x). Make a change of variables z,, = e¥
n (1.1). Then we have

(25) Yn+1 = Yn — In |:O[i(1 + /Bneyn):| = f(nayn)

n

Noting that

d Bne® 1
dzf(n’ ?) 1+ Brer 14 B,e?

It is easy to see that 0 < (d/dz)f(n,z) < c < 1for e* € (k. —e,k* +¢)
where € > 0. Hence, for the solutions z,, = e¥, x}, = e¥n, we have

0 < ¥Ynt1— Uni1 = f(n,un) — f(n, )

(2.6) d . .
= d_f(nagn)(yn - yn) < C(yn - yn)

2z
where &, € (yn, ), and hence e*» € (k. —¢, k* +¢). Now (2.6) implies
that y, ~ y; with an exponential speed, and so z, ~ z; with an
exponential speed. ]
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Theorem 2.8. Assume that (H2) holds with k. < k*. Then there
exists an interval (a,b) C (k., k*) satisfying (2.3) such that all solutions
of (1.1) are k-oscillatory for any k € (a,b).

Proof. Let {z,} be a solution of (1.1). By Lemma 2.5 there exists
an interval (a,b) satisfying (2.3) such that {x,} is k-oscillatory for
k € (a,b). We show that this interval is suitable for all solutions. Since
A(z,) > 0, there exist € > 0 and n; — oo such that z,,, < k —e. Let
{z}} be any other solution of (1.1). By Lemma 2.7, z,, ~ z},. Without
loss of generality, assume that =¥ > x,. We claim that {z}} is also
k-oscillatory. Otherwise, zj, > k for n > ng > 0. Then zj, > k for
n; > ng and thus x;,, — z,, > €, contradicting the fact that x), ~ zy.
]

For equations with periodic coefficients, we have the following result.

Corollary 2.9. Assume that {a,} and {B8,} are positive periodic
functions with period j > 0. Then there exists a unique j-periodic
solution of (1.1) which is globally asymptotically stable.

Proof. By induction it is easy to see that (1.1) is equivalent to the
following equation

T _ Qp *** QAptj—1Tn
+j = .
" 1+ (/Bn+an6n+1 +"'+an"'an+j726n+jfl)wn

(2.7)

{z},} is a j-periodic solution of (1.1) if and only if z},, ; = z;,. Solving
this equation we find

*

n Bn + an5n+1 +otap - O‘n+j726n+jfl,

Qn * Qpfj—1 — 1

T n=12,....

Therefore (1.1) has a unique j-periodic solution {z}} if {a,} and {8,}
are j-periodic. By Lemma 2.7, all solutions of (1.1) approach {z}} as
n — oo, i.e., {z}} is globally asymptotically stable. O

3. Oscillation of equation (1.2). In this section we present
some oscillation results for the delay difference equation (1.2). (1.2)
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is equivalent to the following equation

anmn_jﬁ -
ndn-

(3.1) +1 T+ Buon s

Denote

N@G@)={n€e N,n > i},
N; = {n € N : K,, assumes its local minimum at n},
Ny ={n € N : K,, assumes its local maximum at n},
Ni()) = Ny N N(i),  Na(i) = Na N N(5),

and
i« = min{ Ny (3)}, 1* = min{Nx(3)}.

Theorem 3.1. Assume that (H2) holds with k. < k*. Then every
solution of (1.2) is oscillatory about {K,y;}.

Proof. Assume the contrary. Then there exists a solution {z,} which
is not oscillatory about {K,;}. Without loss of generality, assume
that ¢, > K,y; for n > ¢ > 0. By (3.1), {z,} is decreasing for n > i
and hence lim z,, = z* exists. Noting that Nj(¢) is an infinite set, by
(3.1) we have

Tt —x; = Z(In—l—l —x,) < Z | (Tng1 — zn)

K, — K, -
< Z Wﬂnxn
nEN, (i) + Pn®n—k

> Ak k)

n€N;(z)

IN
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where M is a constant, 0 < M < B.k./(1+ 8*k*). This implies that

x* = —o0, which is impossible. ]

Theorem 3.2. Assume (H2) holds with k. < k*. Then, for
every solution {x,} of (1.2), there exists an interval (a,b) such that
[a,b] N [k«, k*] # @D, (2.3) holds and {z,} is k-oscillatory for any
k € (a,b).

The proof is similar to that of Lemma 2.5. But here we may not have
(a,b) C (k«,k*). Instead, since {x,} is oscillatory about {K,4;}, we
have

limsupz, >k, or liminfz, <k*.

Therefore, [a,b] N [k, k*] # 2.

Theorem 3.3. Assume that (H2) holds, with k., < k*. Let {x,},
{yn} be two solutions of (1.2). Then either {x,} is oscillatory about

{yn} or T ~ Yn-

Proof. Suppose that {z,} is not oscillatory about {y,, }. Without loss
of generality, assume that z,, > y,, n > i — j for some i. By induction
from (1.2), we get

Tnir i L+ Biyij 14 Bnyn—j

Ynt1  Yil+Biwii; 1+ Bamn_y

If ,, % y,, then there exists n; — oo such that

14 Bnitnis 5 9.
1 +/8nixm*j N

Hence, Z;,41/Yn+1 — 0 as n — oo, contradicting that z,, /y, > 1. o

Theorem 3.4. Assume that (H2) holds with k. = k* := k, and

Y (Kp—Kp-)=-00 and Y (K, - Kp-)=oc.
neNy n€Na

Then every solution of (3.1) is oscillatory about {K,;}.
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Proof. The proof is similar to that of Theorem 3.1. Note that, from
(3.2), we get

N M
Y Z'(Kn—Kn*)=—oo
n€Ny (i)

contradicting that z* > 0. ]
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