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STABILITY PROPERTY AND PHASE SPACE

JUNJI KATO

1. Introduction. Recently Murakami and Yoshizawa [16] have
discussed the relationship between the BC-stability and the p-stability
in a class of functions bounded by a priori bound for a functional
differential equation defined on a phase space X with a seminorm ||-||x.
The BC-stability means that the solution remains small if the initial
function is small with respect to the BC-norm, |- |(_s 0], while the
p-stability corresponds to the p-metric:

— . _ ol —k,0
plp) = 27 h—Lra

k=1 1+ |Sa|[—k:,0]’

where |¢|; :=sup,¢; |¢(s)| for an interval I.

The situation above is rather complex; there appear three metrics,
and the restriction to the class of functions bounded by a bound will
be observed to effect on these metrics.

The purpose of this paper is to clarify the relationships between these
metrics and to give a unified aspect on the concepts of the stability by
allowing more flexibility in the choice of the phase space. Haddock and
Hornor [7] have introduced the concept of the H-stability related with
a fading memory subspace H of X, see the latter, Example 3, for the
definition. Our idea will show that this turns out to be a problem of
the choice of the suitable phase space.

Consider the equation

(E) :E(t) = f(tv xt)v

where f(t, ) is defined and continuous on [0, co) X X for a phase space
X. Then it will be easier to see the existence of a solution in a space
with a weaker topology if f(¢, ) endows an adequate regularity there.
However, the weaker the topology of the space is, the more meager
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the set of continuous functions on the space becomes. For example,
any linear function f(yp) on CC, that is, the space of continuous
functions C((—o0,0], R™) with the p-metric is not continuous unless
fle) = f(¥) if o(s) = ¥(s) on [—h,0] for an h > 0, which asserts
that the phase space can be reduced to C([—h,0], R™), the space of
continuous functions defined on [—h, 0] with the uniform norm |-|_j g},
while

£t o) = / Kt — 5)p(s) ds

is continuous on [0,00) x BC if k € L[0, 00) N C0, 00).

The space CC' is one of the examples with a weak topology, while
the space of bounded continuous functions, BC' with the BC-norm is
a typical example with a rather strong topology.

There is no doubt that if f(¢, ) in (E) is completely continuous on
[0,00) x CC, then a solution exists for given initial condition in CC
and remains in CC as long as it exists. On the other hand, Seifert
[18] has presented an example which shows that even if f(¢,¢) is
completely continuous on [0,00) x BC, no solution exists for some
initial function in BC. However, in this case, if the initial function
belongs to BUC' C BC, the space of uniformly continuous functions,
then the solution exists and it stays in BUC as long as it exists (cf. [5,
6, 15]). These facts show us that the choice of the phase space is very
important.

The concept of the stability related with two metrics is also con-
sidered. Recently, similar problems have been discussed by several
authors, cf. [13, 14] and their references. However, our notation is
deeply related with the choice of the phase space and different from
theirs. One of our motivations is to give a unified explanation to the
fact: why the boundedness condition on the righthand side of the equa-
tion could be dropped in the result of Burton [1] based on a Liapunov
functional.

2. Phase space. Axiomatic approaches for the phase space have
been considered by several authors [4, 5, 6, 8, 12, 17], etc., and
summarized in [9]. However, mainly they have restricted the phase
space to be a (semi-) normed space. This feature prevents CC' from
being a phase space (cf. [10]) or requires special considerations when
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supplemental conditions are posed on the initial functions (cf. [6]).

Extending the axioms set on the normed phase space, we shall give
the following definitions. First of all, the following notations will be
utilized throughout the paper:

z(s) :=x(t + s) for s <O0;
|-| :is a norm in R";
UY : is the set of neighborhoods of 0 in the first quadrant
R7 = {(u',u?,. .. ,u™) sut W, u™ >0}
X,C : is the set of functions x defined on (—o0,00) such that
zr € X and ac|[7700) is continuous;

X,.Ck, XTCM,XTCﬁ[ C X,C : the lower suffix M indicates that
|T|r,00) < M, while the upper suffix L means that |z(t) —
z(s)| < L|t — s| for all t,s > T;

K : is the class of strictly increasing, continuous functions p(u)
defined on a U € U} and satisfying p(0) = 0;

LK™ : is the class of continuous functions P(t,u) defined on
[0,00) x U for a U € UT', nonincreasing in ¢, strictly in-
creasing in each of u*, k =1,2,... ,m and P(t,0) = 0 for all
t>0;

and we shall say that the sequence ¢* is compactly convergent to a ¢
on [ if p*(s) is convergent to ¢(s) uniformly on any compact subset of
1.

Let (X, 1) be a subset of R™-valued functions defined on (—o0, 0] with
an invariant (pseudo) metric p; p(0) =0, 0 < u(p) and

ple +9) < ple) +u() ifp,d, o+ € X.

Then (X, p) is said to be a phase space if the following basic axioms
are satisfied:

(A) 0 € X, and for any & € X,C\y, with some M, we have
(i) zr € X forallt > T

(i) p(lz(t)]) < p(ze) < Pt — 7, |2|[r1, p(27)) for some p € K,
P c LK? and all t > T;

(iii) ¢ is continuous in t > T;
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(B) If ©* is a Cauchy sequence in (X, ) and compactly convergent to
a ¢, then p € X and p(p* — ) — 0 as k — oo.

The following proposition says that this provides a natural extension
of the concept of the usual phase space with the norm-setting

Proposition 1 [12]. If the phase space (X, p) is a norm space,
then p(u) and P(t,u,v) in (A) (ii) can be linear in u and in (u,v),
respectively.

A phase space is said to admit a uniform fading memory, or simply
a UFM, if the function P(¢,u,v) in (A) (ii) satisfies

P(t,u,v) -0 ast— oo andu—0,
which is equivalent to assuming
(C) P(t,0,v) - 0 ast— oo,

and we can state the following proposition

Proposition 2. The phase space (X, p) admits a UFM if and only
if, for any v >0 and e > 0, £ < &, there ezists a T'(g,v) > 0 such that

pley) <e ift>74+T(e,pulz,))

when x € X, C with z|[; ) = 0.

Proof. The “only if” part is obvious. Now we shall prove the “if”
part. First of all, it will be noted that we may assume that T'(e,v) is
decreasing in €, nondecreasing in v and tends to co as ¢ — +0.

Let x € X.C be given, and define

z(t) t<r
yt) =< z(r)Q+7—-t) 7<t<7t+1
0 T+1<¢,

z(t) = z(t) — y(¢).
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Then Yy e XT+1C) y|[‘r+1,oo) =0 and

w(ye) < P(O, |z(7)], u(z-))
< P(0,p ' (u(r)), p(z))
=: q(p(zr))

for all ¢ > 7, and hence g € K and we have

w(y) STt —7 =1, p(Yri1))
S Tsil(t - T = ]-aq(,u(x'r)))

for t > 7+ 1, where T }(t,v), defined for t > T'(gp,v) is the inverse
function of T'(e,v) with respect to e, that is, the function such that
T(T=1(t,v),v) = t, and obviously we may assume that T 1(¢,v) € LK
and T-1(t,v) — 0 as t — oo. On the other hand, z € X,C and
w(zt) < P(0, |2|[r,y,0) for all t > 7.

Therefore, we have

p(@e) < plye) + p(2e)
< P(O’ ‘x|[‘r,t]7 0) + Tsil(t - T ]-7 q(:“‘(x‘l')))

forallt > 7+ 1+ T(e0,q(p(z;))), while

pu(xe) < P(0, |2]irg,0) + q(u(z-))

for all ¢ > 7, which imply the existence of P(t,u,v) satisfying the
axioms (A) (ii) and (C). O

For the phase space with UFM we can state the following proposition,
which is well known in the case of norm-setting.

Proposition 3. Suppose that (X, pu) is a phase space with UFM.
Then:

(i) the set I'(t,Y,M,L) = {zs;x € YoCL,s > t} is relatively
compact for any compact set Y C X, any t > 0 and any positive
constants M and L;

(ii) the set T°°(Y,M,L) := My>ol'(t,Y, M, L) is compact for any
bounded set Y C X and any positive constants M and L.
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3. Examples. The above definition is no more than a simple
modification of the usual definition, and it will not be difficult to see
that the fundamental theorems on the functional differential equations
can be verified even for the equations defined on a phase space presented
here by the standard arguments. However, by extending the norm-
setting to the metric-setting, we can obtain a systematical view in
the theory of functional differential equations and unify the various
observations on stability.

Example 1. Consider the space (CC,p) of continuous functions
on (—o0,0] with the compact open topology, that is, metrized by the

metric:
- |<p|[,k 0]
plp) =Y 27k T2
—= 1+ el—k

First of all, for any £ > 0 choose m = m(e) so that Y ;o 27% < ¢/2,
while for given z € CC,C and t > 7 choose § = §(e,z,t) > 0,6 < 1,
so that |z(r) —z(s)| <e/2if |[r—s| < dand r,s € t—m — 1,¢t+1].
Therefore, (A) (iii) will be verified by

—k *
p(xpe — ) < ,C_Z 277 4 —r%lg'&;{gom(t +s)—z(t+s)|<e

if |t* —t| < 0.
On the (A) (ii) we may set

p(u) :== T P(t,u,v) :=u+ 2" tv.
In fact, we have
- |/t k1 2|tk
g-k_llt=kt] p L Ul BN [P
2 T+ ||t — 1+ [@][t—k,7) 2l

k=1 k>t—1

The first term of the righthand side is equivalent to or less than
oo

gl—(t—T+k) || —k,7) — 21=(=") p(z,).
kz::l L+ [@[fr—p,r)
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Thus, the space (CC, p) is a phase space and admits a UFM.

Example 2. In [15] the property

(*) if * € X N BC,supy, |¢*|(_o0,0 < 00, compactly converges to a
¢ on (—00,0], then ¢ € X and pu(¢* — ¢) — 0 as k — .

is assumed instead of (B) as a basic axiom for a phase space (X, pu),
and it is thought of as an independent axiom from the UFM. However,
we have the following

Proposition 4. Let (X, u) be a phase space. Then, for any M > 0
the space (X*, p), X* :={p € XNBC;[p|(—c0,0 < M}, admits a UFM
if and only if the aziom () holds.

Proof. Suppose that the axiom (*) does not imply a UFM for (X*, u).
Then there are sequences t; > 7, > 0 and z* € X:kC such that
ty — 1 > K, w‘[rk,oo) = 0, /"’(wk

Tk

) < v and p(zf ) > e for positive
constants v and £. Set ¢F := xf’k Then obviously ¢* converges
compactly to 0 on (—o0,0], and hence u(p*) < ¢ for large k by (%),

which yields a contradiction.

Conversely, let (X*, 1) admit a UFM. Then, by the standard argu-
ment we can know that X* O BC and u(¢) < P(0,]¢|(~c,0],0) for a
¢ € BC. Therefore, we can choose T(¢) > 0 and n(g) > 0 for £ > 0
so that P(t,u,P(0,2M,0)) < e if t > T'(e) and u < n(e), and hence
@, € X* satisfies u(p — ) < € if [ — Y|[_1(e),0 < n(e). Now let
¢* € X* be a sequence which compactly converges to a ¢ on (—oo,0].
Obviously, ¢ € X*, and |¢* — ¢|[_7(s),0] < n(€) for large k implies that
ple* —9)—0. o

Example 3 (cf. [7]). Let (X, p) be a phase space. The metric space
(Y,v), Y C X, is said to be an admissible subspace if for any = € Y, C
we have

(i) z; €Y forallt > 7
(i) plee) < QU =7l uer), via,) for a Q € LK,

and it is said to be a uniform fading memory subspace if, in addition,
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we have

Q(t,u,v,w) >0 ast— oo andu— 0in (ii).

Suppose that (Y,v) is a uniform fading memory subspace of a phase
space (X, p). Then we can see that the space (X*,pu), X* := {p €
Y;v(p) < M} admits a UFM for an M. In fact, we have

)U'(It)z (t - T, ‘x|[r,t]a H(IT))Q({: - T, ‘x|[r,t]a ,U(CU-,—), V(:ET))

<p
< P(Oa |$|[‘r,t}7 /J,(CL'-,-))Q(t - T, |$|[‘r,t}7 /J'(:L'T)a M)

for any © € X*C, which shows that (X*,u) admits a UFM since

P*(t,u,v) — 0 as t — oo and u — 0, where

P*(t,u,v) := {P(0,u,v)Q(t,u, v, M)}/

Example 4. Let g,h: (—00,0] — [1,00) be continuous, nonincreas-
ing functions, and set

X = {p:p(p) <oo,v(p) < M}

for a fixed M, where
(1) wulp) = Sups<o(|s0(8)l/g(8)) v(p) = Sups<o(\so(8)l/h(5)); or

(i) p(y) O)+/2 . ([e()1/9(5)) ds, v(g) == [° (Ie(s)I/h(s)) ds
with the condltlon
(2) /_ Fls) ds < 00;

(iii) p(p):=le(0)|+[2 (Ie(s)l/g(s)) ds, v(g):= [ (le(s)|/h(s)) ds

forap>1 w1th the condltlon (g).
First of all, it is not difficult to see that

() < Kzl + p(ar)
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for z € XXC, X* := {¢ : u(p) < oo}, under one of the conditions (i),
(ii) and (iii), where K :=1 for (i) and K := 1+ fi)oo(l/g(s)) ds for (ii)
and (iii).

(1%) If M(t) := sup,<_,(h(s +t)/g(s)) — 0 as t — oo, then (X, u)
admits a UFM when g and v are given by (i) or (ii). In fact, for
z€Y,;C,Y :={p:v(p) < oo}, we have

w(ze) < K| + M(t —1)v(z,).

(20) If M(t) := f_ooo(g(s)h(s)/g(s —t)2)P/P=Nds — 0 as t — oo,
then (X, p) admits a UFM when p and v are given by (iii), because

@) < Kl + M (¢ — )02 (2 ) 2y (2,) V2,

4. Stability. Consider the equation

(E) &(t) = f(t,z1)

with a completely continuous function f(¢,¢) defined on a phase space
(X, 1), and let
d: X — [0,00)

with the domain
X%:={pe X :d(p) < oo}

an invariant metric, that is,
d0)=0, 0<d(p), dlp+y)<dle)+d¥)

for ¢, v, +1 € X7

Then the zero solution of (E) is said to be (d, R™)-stable, if for any
e > 0 and 7 > 0 there exists a d(e,7) > 0 such that

(S) d(z;) < d(e,7) implies |z(t)] <eforallt >,

and (d, R"™)-(equi) asymptotically stable, if in addition to (S) there exist
~(7) > 0 and T'(e,7) > 0 for given € > 0 and 7 > 0, such that

(AS)  d(zr) <A(r), t=7+T(e,7) imply [z(t)]<e
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when z is a solution of (E). In a usual manner, we can also introduce the
concepts of (d, R™)-uniform (or total, or uniformly asymptotic) stability.

The assertions (S) and (AS) can be rewritten in

(S) d(z,) < d(e,7) implies |[z[}; o) <&,

(AS) d(xT) < ’Y(T)a t>71+ T(Ea T) imply |x|[t,oo) <g,

respectively.
Generally, let
A(57,t) e XfC’k,oo,t] — [0, 00)

be a functional for any 7 > 0 and ¢ > 7 such that A(z;7,t) is
continuous, nondecreasing in t > 7 for each z € X2C and A(-;7,00) :=
lim¢, oo A(s;7,t). Then we can introduce the concept of the (d,\)-
stabilities by replacing || ) in (S) and (AS) with A(z;t,00), that
is,

(Sx) d(z,;) < d(e,7) implies A(z;T,00) < ¢;

and

(AS») d(z;) <~v(r), t>7+T(e,7) imply M(a;t,00) <e.

Put A (z; 7,t) := |2|[;,4- Then the (d, Af)-stability is not different from

the (d, R™)-stability. The (d, A%)-stability, A(z; 7,t) := sup, < ., d(z),
may be called as (d, d)-stability.

Remark. In [13, 14] and their references, the concepts of the stability
in two measures have been discussed, which corresponds to the notion

d(r,z;) <d(e,7) implies d*(t,z:) <e Vt>r7

and so on, where d(t,-) and d*(t, -) are metrics on the phase space. Our
concepts are a different concept in general.
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The pair (d, \) is said to admit a UFM (on X2C) if

(D) z; € X% and d(z;) < P*(t — 7, M(z;7,t),d(2,)) for z € XIC, all
t > 7 and for a P* € LK? with P*(t,u,v) — 0 as t — oo and u — 0

is satisfied.

Then we have the following

Proposition 5. If the pair (d,\) admits a UFM, then (d,\)-
stabilities imply (d, d)-stabilities.

Proof. For example, let the zero solution of (E) be (d, \)-asymptotically
stable, namely, there are §(e,7) > 0, v(7) > 0 and T'(e, 7) > 0, for given
e > 0 and 7 > 0, satisfying (S)) and (AS)) when z is a solution of (E).

Let € > 0 be given. Choose n(g) > 0 so that
u<n(e) and v<mne) imply P*(0,u,v)<e.
Then we have
d(z;) < min{n(e),d(n(e),7)} implies d(z;) <efort>r.
Now choose T*() > 0 and n*(¢) > 0 so that
P*(t,u,a) <e ift>T"(c) andu<n*(e)

for a fixed & > 0. Hence we can see that d(z;) < ¢ if d(z,;) <
min{n(a),s(n(a),7),v(7)} and t > 7+ T*(e) + T'(n*(¢), 7) because

d(xt) < P* (t — 0, )\(:E, 0, t)a P*(Ua )‘(xa T, 0')7 d(x‘r)))

for the o0 = 7+ T'(n*(e),7) and P*(0, A\(z;1,0),d(z,)) < c. o
Obviously, if d(¢) := u(p) for ¢ € X and A(z; 7,t) := |2[4, then the
property (D) is equivalent to requiring that (X, ) admits a UFM. In

order to introduce various concepts of the stability, it will be interesting
to consider various functionals A. For example, we have the following

Example 5. The pair (d, ) admits a UFM on X,C)y if
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(i) dle) = p(leO)]) + W([2 e™a(lp(s)]) ds) and A(w;7,t) :=

T t)|)+ft,8 (|z(s)|) ds; or

(ii) d(p) = inf_ §<u<0{p lo(u))+ " e"a(|¢(s)]) ds} and A(z; 7, )
= [ B(jx(s)
The pair (d )\) admits a UFM on X, CZT if

(i) d(p) = sup,<qe™*|¢(s)| and A(z; 7, ) := [ B(|z(s)]) ds.
Here and hereafter v,£ > 0 are constants and p,q, W, a, 8 € K.

Consider the case (i). First of all, we shall show that for an z €
X, Ch, we have

1) / Oh e aljp(s)]) ds < e( / Ohmso(sm ds)

fora 8 € K and all h. Let J := {s € [<k,0] : a(|e(s)]) > ¢} for a k
and an e, which will be suitably chosen. Then,

0
A= [ erallpa) is

< a(M)m(J)+e (M) /y +e(k —m(J])),

where the second term in the righthand side will not appear when
k > h and m(J) denotes the Lebesgue measure of the set J, which
implies that m(J) > {A — e ¥ a(M)/y — ek} /(a(M) — €), while we
have

| Blle)ds = B E)m(2).

Hence we can choose a § € K so that (1) holds by setting k :=
log[3a(M)/vA]/7v and e := min{w(M)/2, A/3k}. Therefore,

i(e) < p(et) + w (o[ [ (o)) )

0
+ et / e a(|z(r+s)]) ds>

— 00

S 7‘()\(1‘, T, t)? e"/('r—t) d(xT))a

where r € K is given by 7(u,v) := p(¢~(u)) + W(8(u) + v).
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Now consider the case (ii). Since we have

0
1 Bllgs) ds > Blint —e<ocolels))€
if h>¢,

we have

d(z;) <

ety + (o [ ety a5
4 /u evsaqx(rﬂ))ds)

— 00

inf
¢Lusd’

< r(\z;7, 1),V d(z,))

by setting r(u,v) := p(87' (u/€)) + W(0(u) + v).
Finally, consider the case (iii). Let z € X,CL, and put

A:= sup e"|z(t+s)| =:€"|z(t + 0)|
T7—t<s<0

for a given ¢ > 7. Then |z(t + o)] > A, and |z(t + s)| > A/2 if
|s — 0| < A/2L. Thus, we have

/ B(|z(s))) ds > B(A/2) - min{t — 7, A/2L}.

On the other hand, if A > 2¢7("")|z(7)|, then

A=e"7z(t+ o)
Sla(t+o)| < fe(r)[+ Lt + o — 7|
<|z(r)|+ Ljt — 7]
<t MA/2+ Lt — 7,

which implies that ¢ — 7 > £(A), where £(A) is a solution of
LE+e¢A)2 = A.

Obviously, £ € K. Therefore, we can see that

o) <07 [ BUato)) ds) + 2000 dle),
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where 6 is defined by 6(A) := B(A/2) min{{(A), A/2L} and obviously
which belongs to K.

Comparing the stabilities associated with the choice of the functional
A, we have the following proposition.

Proposition 6. Let d be an invariant distance on X and
A(57, ), A (57, t) XfC|(,oo’t] — [0, 00)

be functionals, and assume that

(2) A (@7, 1) = a(A(x; 7, 1))
when t — 1 > b(A(z;7,t)) and
(3) b(A(z;7,1)) < et — 7, d(z))

if x is a solution of (E) defined on [r,t], where a € K, b € K with
b(u) < B orb(u) =0 onalU € UL, and c is a nondecreasing continuous
function such that ¢(0,0) = 0.

(i) Then the (d,\*)-(uniform, asymptotic) stabilities for the zero
solution imply the (d, \)-stability of the same category.

(ii) Suppose that
(4) X (z;1,t) > N (257, 8) + A¥ (=58, 1)
if T < s <t and that the pair (d,)\) satisfies the relation (D). If

the zero solution is (d, \*)-uniformly stable, then it is (d, \)-uniformly
asymptotically stable.

Remark. By setting A* = A in (ii) and referring to Proposition 5, we
have

(ii*) If X satisfies the relation (4) and if the pair (d, A) admits the ax-

iom (D), then the zero solution of (E) is (d, d)-uniformly asymptotically
stable whenever it is (d, A)-uniformly stable.

Proof. The assertion (i) is obvious when b(u) = 0 on a U € Uj.
Suppose that b € K, and assume that the zero solution of (E) is (d, A*)-
stable, that is, there exists a § € K for which (Sy.) holds. Now, by the
relation (3) we can choose o,n € K so that

(5) b (c(t,u)) <e ift<o(e) andu < n(e)
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for any € > 0. Let d(z,;) < min{n(e),d(a(v(g)))}, where v(¢) is so
small that y(e) < e and b(y(e)) < o(e). First of all, the relation (2)
shows that

(6) a(A(z; 7, 1)) < X (w; 7, 1)) < a(y(e)),

that is, A(x; 7,t) < v(¢) for all ¢ > 7+ B. Suppose that there is a t* €
[T+b(y(€)), 7+ B) for which A(z; 7,t*) = v(g). Then, again, the relation
(2) implies (6) at ¢ = t* because t* — 7 > b(y(e)) = b(A(z; 7,t*)), which
yields a contradiction. Since A(z;7,t) is continuous in ¢, this implies
that A(z;7,t) < v(g) for all ¢ > 7 + b(y(g)). On the other hand,
b(A(z;7,t)) < c(t — 7,d(z,)) by (3), and hence A\(z;7,t) < ¢ for all
t € [r,7 + o(e)] and, hence, for all t € [r,7 + b(y(¢))]. Therefore, the
zero solution of (E) is (d, A)-stable. In order to see the (d, A)-asymptotic
stability, no problem will arise if T'(,7) in (AS,) is greater than B.

Suppose that the hypotheses in (ii) hold. The (d, \*)-uniform stability
implies the (d, A)-uniform stability by (i) and, hence, the (d, d)-uniform
stability under the condition (D) by Proposition 5. Hence, there is a
d(g) > 0, for € > 0, such that

dlzy) <e Vt>1 ifd(z,) <d(e).
Especially, we can choose a 7 > 0 so that

d(z;) <~ implies d(z;) <v and N (z;7,t) <wv

for all ¢ > 7 and a given v > 0.

Let  be a solution of (E) satisfying d(z,;) < «, and let € > 0 be
given. Choose T'(¢) > 0 so that P* in (D) satisfies

P*(T(g),0,v) < 6(¢) and T(e) > max{B,b"'(a"'(v))}.
Then we can find an a(g) > 0 so that
A 0,0 +T(0)) > o H(ale))

if d(z¢) > 6(e) on [o,0 + T(g)].
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Now, assume that d(z;) > d(¢) on 1,7 + mT(¢)]. Then, we have

NE

v>AN(x;T, T+mT(e)) > Y AN(x57+ (k—1)T(e), 7+ kT (e))

Sl
Il

1

a(Mz;m+ (K—1)T(e), 7+ kT(¢)))

1

a(e)

since T'(e) > B > b(A(z;7 + (k — 1)T'(e), 7 + kT'(¢))) for any k < m,
which yields a contradiction for m > v/a(e). Therefore, there is a
o € [r,7+vT(e)/a(e)] such that d(z,) < d(¢), and hence d(x;) < ¢ for
all t > o, especially for all ¢t > 7+ vT'(g)/a(e). O

v
3T

Remark. If the relations (2) and (3) are certified for the solutions of
the perturbed equations under consideration with small perturbations,
then obviously the assertion (i) holds even for the total stability.

Consider the case where
t
Az, t) = / a(|z(s)|)ds for an a € K,

which is a typical example satisfying the property (4). The (d,\)-
stability is called (d, L, )-stability, especially (d, L!)-stability if a(u) =
u. The (d, R")-stability and the (d, L')-stability are different concepts.
However, we have the following:

Corollary. Let d(p) = u(p), and assume that there is an L(u) for
which |f(t,¢)] < L(u(p)), and let (X,p) admit a UFM. If the zero
solution of (E) is (d, Ly)-uniformly stable for an a € K, then it is
(d, d)-uniformly asymptotically stable.

Proof. In order to prove this corollary it is sufficient to show that the
relations (2) and (3) hold for

A (z; 7, t) ::/ a(lz(s)]) ds
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and
Az 7, t) := |z|1r 4,
that is, we shall show that
(7) A (zs7,t) 2 B(lzliry) it —7 > (frg)
and
(8) |Z/(r < et — 7, p(zr))

for some 3, v € K and a nondecreasing continuous function ¢ such that
¢(0,0) = 0.

Since every solution z with p(z;) < &g for an g9 > 0 and all ¢t > 7
satisfies
|z(t) —z(s)| < L|t —s| forallt,s >,

because |f(¢,¢)| < L := L(gg) if u(p) < g9, we have (7) if we put
B(u) := a(u/2)y(u)/2L and y(u) := min{l,u/2L}, since |z(s)—z(c)| <
|2/ 7,5/2 if |2(0)| = || and |s — 0| < |z|[;4/2L. While we have
|#]irg < |2(7)| + L(t = 7)
<p Huler)) + Lt = 1),

which shows the existence of ¢ for which the relation (8) holds. O

Consider two invariant metrics
d,d* : X — [0,00) with the domains X9, X%*.

Then we shall say that d* is stronger than d relatively in (X, p),
d <, d*, if n(e) > 0 can be chosen for £ > 0 so that for any ¢ € X%
with d*(¢) < n(¢) there is a ¢ € X satisfying

¢(0) =9(0),d(¥) <e and p(p—19) <e.

Obviously, we have d <, d* if there is an a € K such that d(p) <
a(d*(¢)) or d(p) < a(u(p)), and also we have

Proposition 7. The relation <, is an order relation.
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Proof. Suppose that d <, d* and d* <, d**, and let 7(¢) and n*(¢)
be the associated numbers. Then, clearly for a given ¢ satisfying
d(p) < n(min{n*(¢/2),e/2}) there is a ¢ such that ¢¥(0) = ¢(0),
d*(¢¥) < n*(g/2) and pu(p — ) < €/2, and then there exists a ¢
such that £(0) = ¢(0), d**(¢) < € and p(yp — €) < €/2, which implies
ple — &) <ple— )+ p( — € <e. Thus, we have d <, d**. O

Example 6. Let (X, 1) be a phase space. Then, the metric |- |(_u 0]
on the BC-space is obviously stronger than p on the C'C-space since
p() < |@|(—00,0)- Conversely, on a BC-ball X* := {p € X N BC :
|¢](=o0,0) < M} for an M > 0 the metric p is stronger than | - [(_ g
relatively in (X, u). In fact, by Proposition 4 there is a T'(¢) > 0 for
which

plp) <e ifpe X and @[_r@),g =0

by noting that u(ps) < P(0,M,0) for all s < 0. Therefore, for ¢ with
p(¢) < n(e) the function ¢ defined by

<0

L0 for —T(e) <5
Y(s) == {<p(—T(€)) for s < —T'(e)

satisfies |{|(_oo,0] < € and pu(p —9) < &, where n(e) > 0 is chosen so
that p(p) < n(e) implies |@[[_1(e),0 < &-

It is obvious that the BC-ball X* can be replaced by {¢ € X N BC':
p(ps) < M for all s < 0}.

Proposition 8. Suppose that d* <, d and that

(c) f(t,¢) is uniformly continuous in ¢ on [0,00) X U for a neigh-
borhood U C X of 0.

If the zero solution of (E) is (d, \)-totally stable, then it is (d*, \)-totally
stable.

Proof. By the assumptions there is a §(¢) > 0 for a given ¢ > 0 such
that A\(y;7,t) < ¢ if d(yr) < 0(¢) and |p|r,00) < 6(g), where y(t) is a
solution of

(P) y(t) = f(t,y:) +p(t),
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and also we can find a y(¢) > 0 for which
[F(t0) = F(L )] < 6(e)/2 i ple — ) <(e).
Let z(t) be a solution of
() = f(t,z) +q(t)
satisfying d*(z;) < n(min{P;*(0,0,7(¢)),d(c)}) and |q|[r,00) < d()/2,
where P is in the axiom (A) (ii) and P, ! denotes the inverse function
of P with respect to the last argument. Then there is a 1 such that

¥(0) = 2(7), d(v) < d(e) and p(¥ — 2,) < P;1(0,0,7(¢)), and set

) fort > 7
y(t) = {1/)(15 —7) fort <.

Obviously, z(t) is a solution of (P) with

p(t) == q(t) + f(t,2¢) — f(t, 1),

which satisfies ‘p|['r,oo) < |q [7,00) + |f(tvzt) - f(tayt)| < 5(6) since
u(ze — ye) < P(0, |2 = ylira, p(zr — y7)) = P(0,0, pu(zr — 9)) < (o).
Thus, we can conclude that A\(z;7,t) = A(y; 7,t) < ¢ for all ¢ > 7 since
d(y;) = d(¢) < 6(¢), namely the zero solution is (d*, A)-totally stable.
O

Remark. Here we only consider the stability of the zero solution.
However, for an arbitrary solution u of (E) the transformation

z—y:at) = ult) +y(b),

provides the concept of the stability of u according to the stability of
the zero solution of

y(t) = g(t7 yt)a

where g(t, p) is defined by

(9) g(t7 (10) = f(tvut + <P) - f(t7 ut)‘
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If u € X,CFk for constants M and L, then ['(u) := {u; : t > 7} is
relatively compact by Proposition 3. Hence g retains the same property
as f. For example, we can state precisely the following

Proposition 9. If f(t, ) satisfies the condition

(c*) f(t, ) is uniformly continuous in ¢ on [0,00) x U for a suitable
neighborhood U of any £ € X,

and if u : [0,00) = T is continuous for a compact set I' C X, then the
function g(t, ) defined by g(t, p) := f(t,u(t)+p) satisfies the condition
(c).

Proof. First of all, we shall prove that the condition (c*) guarantees
the case where U in the (c*) can be replaced by a suitable neighborhood
of the compact set I' C X. Let U(&,7(§)) be a neighborhood of ¢
mentioned in (c*), and let {U (&, 7(£;)/2)}4_, be a covering of I'. Then
U(T,r), r := min}_, 7(&)/2 is a desirable neighborhood. Hence, we
can choose a § € K so that

|f(t7<p) - f(ta¢)| <e
if o, € U(T,r) and u(p — ¢) < é(¢), which obviously implies

lg(t,0) —g(t,¥)| <e
if o, €eU(0,r) and p(p—1) < d(e). O

The following is a simple consequence of Example 6 and Proposition
8.

Corollary (cf. [16]). Consider the equation (E) on the space
(X* ), X* == {p € XN BC : |pl(—oc0) < M} for an M. Then,
under the condition (c) the zero solution of (E) is (p, R™)-totally stable
if and only if it is (| - |(—co,0), R")-totally stable.

5. Liapunov function. The Liapunov second method based on
Liapunov functions is a most systematical and effective method in the
study of the stability not only as a sufficient condition but also as a
necessary condition.
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Consider the equation

() i(t) = f(t,z1)

with a completely continuous function f(t,¢) defined on a phase space
(X, ). A Liapunov function is a continuous function

V :[0,00) x X — [0, 00)
and the derivative of V along the solution of (E) is defined by

. - Vit+h — Vit
V(t, tp) = hl_i>m+0 sup ( + 7It—|;7/h) ( a‘p),

where the sup ranges over the solution z of (E) through (¢, ).

The following results are well-known for functional differential equa-
tions defined on the phase space (C([—h,0], R"), |- |—n,q), [1, 2, 12,
19]. In addition to the conditions

a(|p(0))) S V(t,p) and V(t,9) < —c(lp(0))),

we assume either

(I) |f(t @)l < L(lpl(=n0) and V(¢ @) <b(lel—n0);
0
(1) Vit 0) < bi(le(O)]) +bz( [ et ds),

where a,b,b1,bs,c € K. Then the uniform asymptotic stability can be
concluded.

The key ideas in these results will be clarified in the following way.

Proposition 10. Assume that there exist two Liapunov functions U
and V defined on [0,00) x Q, Q C X being a neighborhood of 0, and
satisfying

(U) a(|e(0)]) S U(t, ) < b(d(p)), U(t,) <0,
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and

(V) 0<V(t,p) 0" (9), VIt e) < —c(|e(0)]),

where a,b,b*,c € K and d,d* are invariant metrics, and suppose that
the pair (d,\) satisfies the aziom (D) on X3Cyr, or on X4CL, if
|7 (t,0)| < L, for M >0 and L > 0 for the functional

N ::/ c(|2(s)]) ds.

Then the zero solution of (E) is (d**, R™)-uniformly asymptotically
stable where d**(p) := max{d(p),d*(¢)}.

Remark. The case (I) corresponds to the case of d(p) = [@|_n.q

while (II) corresponds to the case of d(¢) = b1(]¢(0)]) + bg(f?h lo(s)])-
Refer to Example 5 (iii) and (ii) for the UFM property.

Proof. Obviously the relation (U) implies that the zero solution of
(E) is (d, R™)-uniformly stable, while the relation (V) shows that it is
(d*, A)-uniformly stable, that is, there are 7, dy € K such that

(10) d(z;) < dy(e) implies |z(t)| <e

and
d*(X;) < dy(e) implies A(z;7,t) <e

for the solutions = and all ¢ > 7, from which the (d**, R™)-uniform sta-
bility is obvious. Now we shall prove the (d**, R™)-uniform asymptotic
stability. Put v := min{dy (M), dv (o)} for an g > 0. Then we have

lz(t)] < M and d(z;) < P*(0,e0,7) =:v
Vit>r

if d**(z.) < v, where P* is the function in (D), and moreover we can
assert that there exists n € K and nonincreasing function T'(g) such
that

d(zy) <eift—oc>T(e) and Aa;7,t) < n(e)
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whenever d(z,) < v for a ¢ > 7 by noting that |z(t)] < M for all
t > 7. Then, by the same arguments as in the proof of Proposition
6 (ii), we can see that for a given £ > 0 there is a T*(¢) > 0 such
that d(z,) < du(e) for a o € [r,7 + T*(¢)], and hence |z(t)] < €
for all t > 7+ T*(e), that is, the zero solution is (d**, R™)-uniformly
asymptotically stable. ]

Remark. The evaluation of the solutions due to a Liapunov function
like a V is considered in [3].

In Proposition 10 we can replace the property (D) for (d,A) by
the one for (i(d),\),i(d)(p) = inf ¢<s<od(ps) for a & > 0, when
d(z¢) < q(d(z;)) on X,.Cpy for aqand t € [1,7 +&].

Corollary [1, 2]. Assume that there exists a Liapunov function V
satisfying

allo(O)) < Vievo) < b(p0)) + W ( [ Oh 9)]) ds)

and
V(t,¢) < —c(l(0)])

for an h > 0 and a,b,c,W € K. Then the zero solution is
(C([—h,0], R™), R"™)-uniformly asymptotically stable.

Proof. Noting Example 5 (ii) the conclusion follows immediately from
Proposition 10. m]
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