A NEW ANGLE ON STURM-LIOUVILLE PROBLEMS

PAUL BINDING

Introduction. The problem under study takes the form

$$-(py')' + qy = \lambda ry,$$

where

$$p > 0, \quad r > 0, \quad 1/p, q, r \in L_1([0,1]), \mathbf{R}),$$

subject to boundary-conditions of the form

(2)
$$y(0)\cos\beta_0 = (py')(0)\sin\beta_0, \quad 0 \le \beta_0 < \pi$$

and

$$(3) \qquad (a\lambda + b)y(0) = (c\lambda + d)(py')(0),$$

where

(4)
$$0 \neq (a, b, c, d) \in \mathbf{R}^4 \quad \text{and} \quad e = ad - bc.$$

Extensive bibliographies for this problem can be found in Walter [8] and Fulton [5]. Most of the cited work deals with completeness and expansion theory in $L_2[0,1] \oplus \mathbf{C}$. Here we consider Sturm (oscillation, comparison, etc.) theory for three cases:

- (I) $c=0 \neq d, \ e \geq 0$ (also discussed by Reid [7] via different methods);
 - (II) $c \neq 0, e > 0$ (joint work with P.J. Browne and K. Seddighi [4]);
 - (III) $c \neq 0$, e < 0 (joint work with P.J. Browne).

Further details for these and other cases (e.g., with both end conditions λ dependent, indefinite r, etc.) will appear elsewhere.

(I) The simplest case. We remark that this case includes the Sturm-Liouville (λ -independent end condition) one where a=0. We define θ by means of the differential equation

$$\theta' = (1/p)\cos^2\theta + (\lambda r - q)\sin^2\theta$$

Received by the editors on July 28, 1992.

Copyright ©1995 Rocky Mountain Mathematics Consortium

with initial condition $\theta = \beta_0$, see (2). Thus, $\cot \theta = py'/y$, which is essentially the definition given by Prüfer [6]. Let $f(\lambda) = \cot \theta(\lambda, 1)$, and define $\lambda_{-1}^D = -\infty$, with λ_n^D , $n = 0, 1, 2, \ldots$, as the eigenvalues of the Sturm-Liouville problem (1), (2) and the Dirichlet condition y(1) = 0.

Theorem 1. The graph of f has countably many branches B_0, B_1, \ldots , on each of which f decreases strictly and continuously. Indeed, B_n corresponds to $\lambda_{n-1}^D < \lambda < \lambda_n^D$ and $\lim_{\lambda \downarrow \lambda_{n-1}^D} f(\lambda) = -\infty$, $\lim_{\lambda \uparrow \lambda_n^D} f(\lambda) = +\infty$

This follows from standard results (see Atkinson [1, Section 8.4] for the L_1 coefficient assumptions used here).

Since (3) may be written $\cot \theta(\lambda, 1) = g(\lambda) := (a\lambda/d) + (b/d)$ and $e \ge 0$ ensures $a/d \ge 0$, we have the following result for the eigenvalues $\lambda_n, n = 0, 1, 2, \ldots$, of our problem (1)–(3).

Theorem 2. (i) Interlacing. $\lambda_{n-1}^D < \lambda_n < \lambda_n^D$, $n = 0, 1, 2, \dots$

- (ii) Oscillation. λ_n corresponds to a unique (up to scaling) eigenfunction y_n with n zeros in]0,1[.
- (iii) Asymptotics. $\lambda_n = (n\pi/\sigma)^2 + o(n^2)$ as $n \to \infty$, where $\sigma = \int_0^1 (r/p)^{1/2}$.
- (iv) Dependence. If a and d are constant, while $-\beta_0$, -bd, p and q are nondecreasing (respectively continuous) in a parameter t, then each λ_n is nondecreasing (respectively continuous) in t.

Sketch Proof. (i) The graph of g meets each branch B_n precisely once.

- (ii) Each point on B_n corresponds to $n\pi < \theta(\lambda, 1) < (n+1)\pi$.
- (iii) Use (i) and $\lambda_n^D = (n\pi/\sigma)^2 + o(n^2)$, established in [2].
- (iv) θ is nonincreasing, so $f(\lambda)$ is nondecreasing, while $g(\lambda)$ is nonincreasing, in t. \square

Remark. If $pr \in AC([0,1])$, then (iii) may be improved to give an estimate as far as the constant term. For $p = r \equiv 1$, this result is due to Fulton [5].

(II) A less simple case. Recall that now $c \neq 0$. We introduce the new angle

$$\theta^- = \theta - \gamma$$
 where $\gamma = \cot^{-1}(a/c) \in [0, \pi[$.

Qualitatively, θ^- behaves like θ except that $\lim_{\lambda \to -\infty} \theta^-(\lambda, 1) = -\gamma$. Thus, the graph of $f^-: \lambda \to \cot \theta^-(\lambda, 1)$ resembles that of f except that the left hand branch has a horizontal asymptote. To consider the vertical asymptotes, we define λ_n^A as the eigenvalues of (1), (2) and the asymptotic condition ay(1) = c(py')(1) which is obtained from (3) by formally dividing by λ and then setting $\lambda = \infty$.

Theorem 3. Theorem 1 holds for f^- except that the left hand branch has a horizontal asymptote at -a/c, and the vertical asymptotes are at λ_n^A , $n = 0, 1, \ldots$.

This follows from the fact that $\theta = \gamma + n\pi \Leftrightarrow \cot \theta = \cot \gamma = a/c$.

Remark 4. In case (I), B_n corresponds to n internal zeros for the corresponding eigenfunctions. Now, however, the n^{th} branch B_n^- corresponds to $n\pi < \theta^- < (n+1)\pi$. B_n^- intersects the horizontal asymptote for B_0^- where $\cot \theta^- = -a/c$, i.e., where $\theta = n\pi$, so y(1) = 0. Thus, above (respectively, below) this asymptote, B_n^- corresponds to eigenfunctions with n-1 (respectively, n) internal zeros.

We are now in a position to give the analogue of Theorem 2.

Theorem 5. Theorem 2 holds with the following modifications:

- (i) $\lambda_n \in I_n := [\lambda_{n-1}^A, \lambda_n^A], n = 0, 1, 2, \dots,$
- (ii) y_n has n zeros if $n \leq N$ and n-1 zeros if n > N, where N is defined by $\lambda_{n-1}^D < -d/c \leq \lambda_n^D$,
 - (iii) is unchanged,
 - (iv) replace "a and d" by "a, c and e" and "-bd" by "-(ab+cd)."

Sketch Proof. (i) The graph of

(5)
$$g^-: \lambda \to \cot \theta^-(\lambda, 1) = e^{-1}[(a^2 + c^2)\lambda + ab + cd]$$

intersects that of f^- precisely once on each branch.

- (ii) This follows from Remark 4 and the fact that the graph of g^- meets the horizontal asymptote of the graph of f^- at $\lambda = -d/c$, i.e., $g^-(-d/c) = -a/c$.
- (iv) Again $f^-(\lambda)$ is nondecreasing and $g^-(\lambda)$ (5) is nonincreasing in t. \square

Remark 6. As in (I), (iii) may be improved when $pr \in AC[0,1]$. In fact then one obtains the extremely accurate estimate $\lambda_n = \lambda_{n-1}^A + O(n^{-2})$. Again the expansion up to the constant term is due to Fulton [5] in case $p = r \equiv 1$.

(III) A more difficult case. By scaling, if necessary, we can assume that e=-1. We then define inner product spaces $H_{\pm}=L_2[0,1]\oplus \mathbf{C}$ where L_2 is weighted by r. Specifically, if $Y=(y,y_1)\in H_{\pm}$ where $y\in L_2[0,1]$ and $y_1\in \mathbf{C}$, then we have

(6)
$$||Y||_{\pm}^2 = \int_0^1 r|y|^2 \pm |y_1|^2.$$

It follows that H_+ (respectively H_-) is a Hilbert (respectively Pontryagin) space. On H_+ we define the bounded symmetric involution R by $R: (y, y_1) \to (y, -y_1)$.

Following ideas of Walter [8] and Fulton [5], we can define an operator $A: (y, y_1) \to (r^{-1}(-(py')' + qy), d(py')(1) - by(1))$ on a domain guaranteeing that the equation $AY = \lambda Y$ is equivalent to our problem (1)-(3). Specifically, D(A) consists of those (y, y_1) for which the above expression for $A(y, y_1)$ makes sense as an element of H_+ , and for which $y_1 = ay(1) - c(py')(1)$. In the case e = +1, A is self-adjoint, bounded below with compact resolvent on H_+ , and this is the chief tool in [8] and [5].

Here (with e = -1) we have a similar behavior in H_- . Actually, it is more convenient to rewrite $AY = \lambda Y$ in the equivalent form $RAY = \lambda RY$ and then to prove (essentially as in [5]) that RA is self-adjoint, bounded below with compact resolvent in H_+ . We are now in a position to study the (λ, μ) eigenvalues (cf. [3]) for

(7)
$$RAY + \mu Y = \lambda RY.$$

Splitting (7) into components, we obtain

$$-(py')' + qy = (\lambda - \mu)ry,$$
 $by(0) = d(py')(0)$

and

$$(a(\lambda + \mu) + b)y(1) = (c(\lambda + \mu) + d)(py')(1).$$

Thus, λ has been replaced by $\lambda - \mu$ in (1) (and (2)) and by $\lambda + \mu$ in (3). Comparing this with Π , we see that the eigenvalues λ_n correspond to the intersections of the (translated) graphs of $f^-(\lambda - \mu)$ and $g^-(\lambda + \mu)$.

More specifically, a continuous dependence argument (based on varying μ) shows that if (λ, μ) is on the *n*th (variational) eigencurve for (7) then $f_n^-(\lambda - \mu) = g^-(\lambda + \mu)$ (where f_n^- is the restriction of f^- to the *n*th branch) and vice-versa. We may now apply the results of [3] to conclude the following modifications of Theorem 5.

- (i) All but two of the eigenvalues may be indexed λ_n , where $\lambda_n \in I_n$, $n = 1, 2, \ldots$. Both the other two, say $\tilde{\lambda}_j$, j = 1, 2, are either in the same I_M where $M \geq 0$ or else form a nonreal conjugate pair.
- (ii) y_n has n-1 zeros if n < N and n zeros if n > N. y_N has N-1 (respectively N) zeros if $\lambda_N \le$ (respectively greater than) -d/c, and \tilde{y}_j (corresponding to $\tilde{\lambda}_j$) have M-1 or M zeros depending on whether $\tilde{\lambda}_i \le$ or s > -d/c.
 - (iii) The asymptotics (including Remark 6) remain unchanged.
- (iv) If we change -(ab+cd) to ab+cd then Theorem 5(iv) holds locally (i.e., for a sufficiently small t interval) for all λ_n , provided we index λ_M so that $||y_M||_-^2 \geq 0$, see (6). (It can be shown that this is automatic if $\tilde{\lambda}_j$ are nonreal, and if they are real then at most one of λ_M , $\tilde{\lambda}_1$ and $\tilde{\lambda}_2$ has an eigenfunction y satisfying $||y||_-^2 < 0$).

REFERENCES

- 1. F.V. Atkinson, Discrete and continuous boundary value problems, Academic Press, 1963.
- 2. F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm-Liouville problems, J. Reine Angew. Math. 375 (1987), 380–393.
- 3. P.A. Binding and P.J. Browne, Applications of two parameter spectral theory to symmetric generalised eigenvalue problems, Appl. Anal. 29 (1988), 107–142.

- 4. P.A. Binding, P.J. Browne and Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edin. Math. Soc. 37 (1993), 57–72.
- 5. C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 203-208
- 6. G. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499–518.
- 7. W.T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, Berlin, 1980.
- $\bf 8.~J.~Walter,~\it Regular~\it eigenvalue~\it problems~\it with~\it eigenvalue~\it parameter~\it in~\it the~\it boundary~\it conditions,~\it Math.~\it Z.~\bf 133~(1973),~\it 301-312.$

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4 Canada