A NEW ANGLE ON STURM-LIOUVILLE PROBLEMS ## PAUL BINDING Introduction. The problem under study takes the form $$-(py')' + qy = \lambda ry,$$ where $$p > 0, \quad r > 0, \quad 1/p, q, r \in L_1([0,1]), \mathbf{R}),$$ subject to boundary-conditions of the form (2) $$y(0)\cos\beta_0 = (py')(0)\sin\beta_0, \quad 0 \le \beta_0 < \pi$$ and $$(3) \qquad (a\lambda + b)y(0) = (c\lambda + d)(py')(0),$$ where (4) $$0 \neq (a, b, c, d) \in \mathbf{R}^4 \quad \text{and} \quad e = ad - bc.$$ Extensive bibliographies for this problem can be found in Walter [8] and Fulton [5]. Most of the cited work deals with completeness and expansion theory in $L_2[0,1] \oplus \mathbf{C}$. Here we consider Sturm (oscillation, comparison, etc.) theory for three cases: - (I) $c=0 \neq d, \ e \geq 0$ (also discussed by Reid [7] via different methods); - (II) $c \neq 0, e > 0$ (joint work with P.J. Browne and K. Seddighi [4]); - (III) $c \neq 0$, e < 0 (joint work with P.J. Browne). Further details for these and other cases (e.g., with both end conditions λ dependent, indefinite r, etc.) will appear elsewhere. (I) The simplest case. We remark that this case includes the Sturm-Liouville (λ -independent end condition) one where a=0. We define θ by means of the differential equation $$\theta' = (1/p)\cos^2\theta + (\lambda r - q)\sin^2\theta$$ Received by the editors on July 28, 1992. Copyright ©1995 Rocky Mountain Mathematics Consortium with initial condition $\theta = \beta_0$, see (2). Thus, $\cot \theta = py'/y$, which is essentially the definition given by Prüfer [6]. Let $f(\lambda) = \cot \theta(\lambda, 1)$, and define $\lambda_{-1}^D = -\infty$, with λ_n^D , $n = 0, 1, 2, \ldots$, as the eigenvalues of the Sturm-Liouville problem (1), (2) and the Dirichlet condition y(1) = 0. **Theorem 1.** The graph of f has countably many branches B_0, B_1, \ldots , on each of which f decreases strictly and continuously. Indeed, B_n corresponds to $\lambda_{n-1}^D < \lambda < \lambda_n^D$ and $\lim_{\lambda \downarrow \lambda_{n-1}^D} f(\lambda) = -\infty$, $\lim_{\lambda \uparrow \lambda_n^D} f(\lambda) = +\infty$ This follows from standard results (see Atkinson [1, Section 8.4] for the L_1 coefficient assumptions used here). Since (3) may be written $\cot \theta(\lambda, 1) = g(\lambda) := (a\lambda/d) + (b/d)$ and $e \ge 0$ ensures $a/d \ge 0$, we have the following result for the eigenvalues $\lambda_n, n = 0, 1, 2, \ldots$, of our problem (1)–(3). **Theorem 2.** (i) Interlacing. $\lambda_{n-1}^D < \lambda_n < \lambda_n^D$, $n = 0, 1, 2, \dots$ - (ii) Oscillation. λ_n corresponds to a unique (up to scaling) eigenfunction y_n with n zeros in]0,1[. - (iii) Asymptotics. $\lambda_n = (n\pi/\sigma)^2 + o(n^2)$ as $n \to \infty$, where $\sigma = \int_0^1 (r/p)^{1/2}$. - (iv) Dependence. If a and d are constant, while $-\beta_0$, -bd, p and q are nondecreasing (respectively continuous) in a parameter t, then each λ_n is nondecreasing (respectively continuous) in t. Sketch Proof. (i) The graph of g meets each branch B_n precisely once. - (ii) Each point on B_n corresponds to $n\pi < \theta(\lambda, 1) < (n+1)\pi$. - (iii) Use (i) and $\lambda_n^D = (n\pi/\sigma)^2 + o(n^2)$, established in [2]. - (iv) θ is nonincreasing, so $f(\lambda)$ is nondecreasing, while $g(\lambda)$ is nonincreasing, in t. \square *Remark.* If $pr \in AC([0,1])$, then (iii) may be improved to give an estimate as far as the constant term. For $p = r \equiv 1$, this result is due to Fulton [5]. (II) A less simple case. Recall that now $c \neq 0$. We introduce the new angle $$\theta^- = \theta - \gamma$$ where $\gamma = \cot^{-1}(a/c) \in [0, \pi[$. Qualitatively, θ^- behaves like θ except that $\lim_{\lambda \to -\infty} \theta^-(\lambda, 1) = -\gamma$. Thus, the graph of $f^-: \lambda \to \cot \theta^-(\lambda, 1)$ resembles that of f except that the left hand branch has a horizontal asymptote. To consider the vertical asymptotes, we define λ_n^A as the eigenvalues of (1), (2) and the asymptotic condition ay(1) = c(py')(1) which is obtained from (3) by formally dividing by λ and then setting $\lambda = \infty$. **Theorem 3.** Theorem 1 holds for f^- except that the left hand branch has a horizontal asymptote at -a/c, and the vertical asymptotes are at λ_n^A , $n = 0, 1, \ldots$. This follows from the fact that $\theta = \gamma + n\pi \Leftrightarrow \cot \theta = \cot \gamma = a/c$. Remark 4. In case (I), B_n corresponds to n internal zeros for the corresponding eigenfunctions. Now, however, the n^{th} branch B_n^- corresponds to $n\pi < \theta^- < (n+1)\pi$. B_n^- intersects the horizontal asymptote for B_0^- where $\cot \theta^- = -a/c$, i.e., where $\theta = n\pi$, so y(1) = 0. Thus, above (respectively, below) this asymptote, B_n^- corresponds to eigenfunctions with n-1 (respectively, n) internal zeros. We are now in a position to give the analogue of Theorem 2. **Theorem 5.** Theorem 2 holds with the following modifications: - (i) $\lambda_n \in I_n := [\lambda_{n-1}^A, \lambda_n^A], n = 0, 1, 2, \dots,$ - (ii) y_n has n zeros if $n \leq N$ and n-1 zeros if n > N, where N is defined by $\lambda_{n-1}^D < -d/c \leq \lambda_n^D$, - (iii) is unchanged, - (iv) replace "a and d" by "a, c and e" and "-bd" by "-(ab+cd)." Sketch Proof. (i) The graph of (5) $$g^-: \lambda \to \cot \theta^-(\lambda, 1) = e^{-1}[(a^2 + c^2)\lambda + ab + cd]$$ intersects that of f^- precisely once on each branch. - (ii) This follows from Remark 4 and the fact that the graph of g^- meets the horizontal asymptote of the graph of f^- at $\lambda = -d/c$, i.e., $g^-(-d/c) = -a/c$. - (iv) Again $f^-(\lambda)$ is nondecreasing and $g^-(\lambda)$ (5) is nonincreasing in t. \square Remark 6. As in (I), (iii) may be improved when $pr \in AC[0,1]$. In fact then one obtains the extremely accurate estimate $\lambda_n = \lambda_{n-1}^A + O(n^{-2})$. Again the expansion up to the constant term is due to Fulton [5] in case $p = r \equiv 1$. (III) A more difficult case. By scaling, if necessary, we can assume that e=-1. We then define inner product spaces $H_{\pm}=L_2[0,1]\oplus \mathbf{C}$ where L_2 is weighted by r. Specifically, if $Y=(y,y_1)\in H_{\pm}$ where $y\in L_2[0,1]$ and $y_1\in \mathbf{C}$, then we have (6) $$||Y||_{\pm}^2 = \int_0^1 r|y|^2 \pm |y_1|^2.$$ It follows that H_+ (respectively H_-) is a Hilbert (respectively Pontryagin) space. On H_+ we define the bounded symmetric involution R by $R: (y, y_1) \to (y, -y_1)$. Following ideas of Walter [8] and Fulton [5], we can define an operator $A: (y, y_1) \to (r^{-1}(-(py')' + qy), d(py')(1) - by(1))$ on a domain guaranteeing that the equation $AY = \lambda Y$ is equivalent to our problem (1)-(3). Specifically, D(A) consists of those (y, y_1) for which the above expression for $A(y, y_1)$ makes sense as an element of H_+ , and for which $y_1 = ay(1) - c(py')(1)$. In the case e = +1, A is self-adjoint, bounded below with compact resolvent on H_+ , and this is the chief tool in [8] and [5]. Here (with e = -1) we have a similar behavior in H_- . Actually, it is more convenient to rewrite $AY = \lambda Y$ in the equivalent form $RAY = \lambda RY$ and then to prove (essentially as in [5]) that RA is self-adjoint, bounded below with compact resolvent in H_+ . We are now in a position to study the (λ, μ) eigenvalues (cf. [3]) for (7) $$RAY + \mu Y = \lambda RY.$$ Splitting (7) into components, we obtain $$-(py')' + qy = (\lambda - \mu)ry,$$ $by(0) = d(py')(0)$ and $$(a(\lambda + \mu) + b)y(1) = (c(\lambda + \mu) + d)(py')(1).$$ Thus, λ has been replaced by $\lambda - \mu$ in (1) (and (2)) and by $\lambda + \mu$ in (3). Comparing this with Π , we see that the eigenvalues λ_n correspond to the intersections of the (translated) graphs of $f^-(\lambda - \mu)$ and $g^-(\lambda + \mu)$. More specifically, a continuous dependence argument (based on varying μ) shows that if (λ, μ) is on the *n*th (variational) eigencurve for (7) then $f_n^-(\lambda - \mu) = g^-(\lambda + \mu)$ (where f_n^- is the restriction of f^- to the *n*th branch) and vice-versa. We may now apply the results of [3] to conclude the following modifications of Theorem 5. - (i) All but two of the eigenvalues may be indexed λ_n , where $\lambda_n \in I_n$, $n = 1, 2, \ldots$. Both the other two, say $\tilde{\lambda}_j$, j = 1, 2, are either in the same I_M where $M \geq 0$ or else form a nonreal conjugate pair. - (ii) y_n has n-1 zeros if n < N and n zeros if n > N. y_N has N-1 (respectively N) zeros if $\lambda_N \le$ (respectively greater than) -d/c, and \tilde{y}_j (corresponding to $\tilde{\lambda}_j$) have M-1 or M zeros depending on whether $\tilde{\lambda}_i \le$ or s > -d/c. - (iii) The asymptotics (including Remark 6) remain unchanged. - (iv) If we change -(ab+cd) to ab+cd then Theorem 5(iv) holds locally (i.e., for a sufficiently small t interval) for all λ_n , provided we index λ_M so that $||y_M||_-^2 \geq 0$, see (6). (It can be shown that this is automatic if $\tilde{\lambda}_j$ are nonreal, and if they are real then at most one of λ_M , $\tilde{\lambda}_1$ and $\tilde{\lambda}_2$ has an eigenfunction y satisfying $||y||_-^2 < 0$). ## REFERENCES - 1. F.V. Atkinson, Discrete and continuous boundary value problems, Academic Press, 1963. - 2. F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm-Liouville problems, J. Reine Angew. Math. 375 (1987), 380–393. - 3. P.A. Binding and P.J. Browne, Applications of two parameter spectral theory to symmetric generalised eigenvalue problems, Appl. Anal. 29 (1988), 107–142. - 4. P.A. Binding, P.J. Browne and Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edin. Math. Soc. 37 (1993), 57–72. - 5. C. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977), 203-208 - 6. G. Prüfer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499–518. - 7. W.T. Reid, Sturmian theory for ordinary differential equations, Springer-Verlag, New York, Berlin, 1980. - $\bf 8.~J.~Walter,~\it Regular~\it eigenvalue~\it problems~\it with~\it eigenvalue~\it parameter~\it in~\it the~\it boundary~\it conditions,~\it Math.~\it Z.~\bf 133~(1973),~\it 301-312.$ Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta T2N 1N4 Canada