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A NEW ANGLE ON STURM-LIOUVILLE PROBLEMS
PAUL BINDING

Introduction. The problem under study takes the form
(1) ~(py") +qy = My,

where
p>07 r>07 ]-/pa(IaTELI([Oa 1])5R),

subject to boundary-conditions of the form

(2) y(0)cos Bo = (py')(0)sinfo,  0< Py <m
and

(3) (aX +b)y(0) = (cA + d)(py)(0),
where

(4) 0+# (a,b,c,d) € R* and e=ad — bc.

Extensive bibliographies for this problem can be found in Walter [8]
and Fulton [5]. Most of the cited work deals with completeness and
expansion theory in L3[0,1] @ C. Here we consider Sturm (oscillation,
comparison, etc.) theory for three cases:

(I) ¢=0# d, e > 0 (also discussed by Reid [7] via different
methods);

(IT) ¢# 0, e > 0 (joint work with P.J. Browne and K. Seddighi [4]);
(III) ¢ # 0, e < 0 (joint work with P.J. Browne).

Further details for these and other cases (e.g., with both end conditions
A dependent, indefinite r, etc.) will appear elsewhere.

(I) The simplest case. We remark that this case includes the Sturm-
Liouville (A-independent end condition) one where a = 0. We define 0
by means of the differential equation

0" = (1/p) cos® 6 + (A\r — ¢) sin® @
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with initial condition 6 = Sy, see (2). Thus, cotf = py’/y, which is
essentially the definition given by Priifer [6]. Let f(\) = cot 6(A, 1), and
define AP, = —oco, with A2, n = 0,1,2,..., as the eigenvalues of the

Sturm-Liouville problem (1), (2) and the Dirichlet condition y(1) = 0.

Theorem 1. The graph of f has countably many branches By, By, ...,
on each of which f decreases strictly and continuously. Indeed, B,, cor-
responds to AP | < A\ < AP and limy o f(A) = —o0, limyp\o f(A) =
+00.

This follows from standard results (see Atkinson [1, Section 8.4] for
the Ly coefficient assumptions used here).

Since (3) may be written cot (A, 1) = g(\) := (a\/d) + (b/d) and
e > 0 ensures a/d > 0, we have the following result for the eigenvalues
Any, n=0,1,2,..., of our problem (1)—(3).

Theorem 2. (i) Interlacing. A2 | < X\, < AP, n=0,1,2,....

(ii) Oscillation. A, corresponds to a unique (up to scaling) eigen-
function y, with n zeros in 10,1][.

(iii) Asymptotics. A\, = (nm/c)? + o(n?) as n — oo, where 0 =
NGRS

(iv) Dependence. If a and d are constant, while —f3y, —bd, p and q

are nondecreasing (respectively continuous) in a parameter t, then each
A is nondecreasing (respectively continuous) in t.

Sketch Proof. (i) The graph of g meets each branch B,, precisely once.
(ii) Each point on B,, corresponds to nw < 8(\, 1) < (n + 1)m.
(iii) Use (i) and AP = (n7/0)? + o(n?), established in [2].

(iv) € is nonincreasing, so f(A) is nondecreasing, while g(\) is
nonincreasing, in . ]

Remark. If pr € AC([0,1]), then (iii) may be improved to give an
estimate as far as the constant term. For p = r = 1, this result is due
to Fulton [5].



STURM-LIOUVILLE PROBLEMS 53

(IT) A less simple case. Recall that now ¢ # 0. We introduce the
new angle

6~ =60 —~ where v =cot™!(a/c)€]0,n].

Qualitatively, §~ behaves like 6 except that limy_,_., 87 (A\, 1) = —7.
Thus, the graph of f~ : A — cot 8~ (), 1) resembles that of f except
that the left hand branch has a horizontal asymptote. To consider the
vertical asymptotes, we define A2 as the eigenvalues of (1), (2) and the
asymptotic condition ay(1) = ¢(py’)(1) which is obtained from (3) by
formally dividing by A and then setting A\ = co.

Theorem 3. Theorem 1 holds for f~ except that the left hand branch
has a horizontal asymptote at —a/c, and the vertical asymptotes are at
M n=0,1,....

n’

This follows from the fact that § = v + nm < cot = coty = a/c.

Remark 4. 1In case (I), B, corresponds to n internal zeros for
the corresponding eigenfunctions. Now, however, the n't branch B
corresponds to nm < 6~ < (n+ 1)7. B, intersects the horizontal
asymptote for B, where cot§ ~ = —a/c, i.e., where § = nm, so y(1) = 0.
Thus, above (respectively, below) this asymptote, B, corresponds to
eigenfunctions with n — 1 (respectively, n) internal zeros.

We are now in a position to give the analogue of Theorem 2.

Theorem 5. Theorem 2 holds with the following modifications:
(i) A€l =N, [, n=0,1,2,...,

(ii) yn has n zeros if n < N and n — 1 zeros if n > N, where N 1is
defined by AP | < —d/c < AP,

(iii) is unchanged,

(iv) replace “a and d” by “a, ¢ and e” and “—bd” by “—(ab+ cd).”

Sketch Proof. (i) The graph of
(5) g A= cot8- (N 1) =e H(a® + )N+ ab + cd]
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intersects that of f~ precisely once on each branch.

(ii) This follows from Remark 4 and the fact that the graph of g~
meets the horizontal asymptote of the graph of f~ at A = —d/¢, i.e.,

g (—=d/c) = —a/c.
(iv) Again f~ () is nondecreasing and g~ (A) (5) is nonincreasing in
t. O

Remark 6. Asin (I), (iii) may be improved when pr € AC|0, 1]. In fact
then one obtains the extremely accurate estimate A, = A\2_; +O(n~2).
Again the expansion up to the constant term is due to Fulton [5] in
casep=r=1.

(III) A more difficult case. By scaling, if necessary, we can assume
that e = —1. We then define inner product spaces Hy = L2[0,1] & C
where Lo is weighted by r. Specifically, if Y = (y,y1) € Hy where
y € Ly[0,1] and y; € C, then we have

1
(6) 2 = / Pyl % i |

It follows that H (respectively H_) is a Hilbert (respectively Pontrya-
gin) space. On H we define the bounded symmetric involution R by
R: (yayl) - (y7 _yl)‘

Following ideas of Walter [8] and Fulton [5], we can define an operator
A (yyn) = (N =(py) + ay), dpy')(1) — by(1)) on a domain
guaranteeing that the equation AY = AY is equivalent to our problem
(1)—(3). Specifically, D(A) consists of those (y,y1) for which the above
expression for A(y,y;) makes sense as an element of H, and for which
y1 = ay(1) — ¢(py’)(1). In the case e = +1, A is self-adjoint, bounded
below with compact resolvent on H,, and this is the chief tool in [8]
and [5].

Here (with e = —1) we have a similar behavior in H_. Actually,
it is more convenient to rewrite AY = AY in the equivalent form
RAY = ARY and then to prove (essentially as in [5]) that RA is self-
adjoint, bounded below with compact resolvent in H,. We are now in
a position to study the (A, ) eigenvalues (cf. [3]) for

(7) RAY + pY = ARY.
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Splitting (7) into components, we obtain

—(y) +aqy=A—-pry,  by(0) =d(py')(0)

and
(a(A+p) +0)y(1) = (c(A + p) + ) (py') (1)

Thus, A has been replaced by A —p in (1) (and (2)) and by A+ x in (3).
Comparing this with II, we see that the eigenvalues )\, correspond to
the intersections of the (translated) graphs of f~(A—pu) and g— (A +p).

More specifically, a continuous dependence argument (based on vary-
ing 1) shows that if (A, p) is on the nth (variational) eigencurve for (7)
then f (A —p) = g~ (A + p) (where f,, is the restriction of f~ to the
nth branch) and vice-versa. We may now apply the results of [3] to
conclude the following modifications of Theorem 5.

(i) All but two of the eigenvalues may be indexed A, where \,, € I,
n = 1,2,.... Both the other two, say Aj, 7 = 1,2, are either in the
same [y where M > 0 or else form a nonreal conjugate pair.

(ii) yn has n—1 zeros if n < N and n zeros if n > N. yy has N —1
(respectively V) zeros if Ay < (respectively greater than) —d/c, and
7 (corresponding to A;) have M —1 or M zeros depending on whether
Aj <or > —dfe.

(iii) The asymptotics (including Remark 6) remain unchanged.

(iv) If we change —(ab + cd) to ab + cd then Theorem 5(iv) holds
locally (i.e., for a sufficiently small ¢ interval) for all \,,, provided we
index Aps so that ||ya]|/2 > 0, see (6). (It can be shown that this is
automatic if S\j are nonreal, and if they are real then at most one of
Aaz, A and Ay has an eigenfunction y satisfying ||y||> < 0).

REFERENCES

1. F.V. Atkinson, Discrete and continuous boundary value problems, Academic
Press, 1963.

2. F.V. Atkinson and A.B. Mingarelli, Asymptotics of the number of zeros and
of the eigenvalues of general weighted Sturm-Liouville problems, J. Reine Angew.
Math. 375 (1987), 380—-393.

3. P.A. Binding and P.J. Browne, Applications of two parameter spectral theory
to symmetric generalised eigenvalue problems, Appl. Anal. 29 (1988), 107-142.



56 P. BINDING

4. P.A. Binding, P.J. Browne and Seddighi, Sturm-Liouville problems with eigen-
parameter dependent boundary conditions, Proc. Edin. Math. Soc. 37 (1993), 57-72.

5. C. Fulton, Two-point boundary value problems with eigenvalue parameter
contained in the boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 77 (1977),
293-308.

6. G. Priifer, Neue Herleitung der Sturm-Liouvilleschen Rethenentwicklung
stetiger Funktionen, Math. Ann. 95 (1926), 499-518.

7. W.T. Reid, Sturmian theory for ordinary differential equations, Springer-
Verlag, New York, Berlin, 1980.

8. J. Walter, Regular eigenvalue problems with eigenvalue parameter in the
boundary conditions, Math. Z. 133 (1973), 301-312.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF CALGARY, CAL-
GARY, ALBERTA T2N 1N4 CANADA



