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TOPOLOGICAL NEARRINGS
WHOSE ADDITIVE GROUPS ARE TORI

K.D. MAGILL, JR.

1. Introduction. A nearring is a triple (N,+,*) where (N, +)
is a group, (N, x) is a semigroup and (z 4+ y) x z = (z * 2) + (y * 2)
for all z,y,z € N. For information about the algebraic theory of
nearrings, one may consult [4, 8 and 9]. If the binary operations
+ and * are continuous, then (IV, +, %) is a topological nearring. This
paper was motivated by the following question, “Given a topological
group (G, +), exactly what are the continuous multiplications * on G
such that (G,+,x*) is a topological nearring?” The answer, it turns
out, involves knowing just what the continuous functions are from
G into the space of endomorphisms of G under the compact-open
topology. We apply this general result, which is a topological version
of a theorem of J.R. Clay [2] to the n-dimensional torus 7™ and we are
able to completely describe those multiplications * so that (T, +, %)
is a topological nearring. One reason that the case for T" follows so
quickly is that there are, in a certain sense, few continuous maps from
T™ into its space of endomorphisms. The case is far different, however,
for the Euclidean n-groups. There are many continuous functions from
R™ into its space of endomorphisms and, consequently, the operations x*
for which (R™,+, %) is a topological nearring are much more abundant
and varied. We will begin our investigation of continuous nearring
multiplications on R™ in a subsequent paper. In this paper, after we
derive the general result, we focus entirely on applications to the n-
dimensional torus. The main results of the paper are in Section 2 where
we derive the general result and then apply it to the n-dimensional torus
in order to explicitly describe all the continuous multiplications % on T™
such that (7™, +, %) is a topological nearring. After we describe these
multiplications in Section 2, we derive a few corollaries and then we
determine the ideals of each such nearring. In Section 3 we determine
all the homomorphisms from one such nearring into another, and we
describe the endomorphism semigroups and the automorphism groups
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of these nearrings. Finally, we study the multiplicative semigroups
of these nearrings in Section 4. Among other things, we completely
determine Green’s relations for these semigroups, and we characterize
their regular elements which happen to coincide with the idempotents.

2. The main results. We begin this section by making precise
some of the concepts discussed in the introduction. Let R™ denote the
topological Euclidean n-group, and let Z™ denote the subgroup of R™
consisting of those vectors all of whose coordinates are integers. The
quotient R"/Z™ is a topological group which is referred to as an n-
dimensional torus and is denoted by T™. We will denote R', Z! and
T' more simply by R, Z and T, respectively. Consider the mapping
¢ from R™ into the product of n copies of the complex plane which is
defined by ¢(z1,22,...,2,) = (e¥™¥1¢ e?me2i  e2meni)  Eyidently,
Ker ¢ = Z", and we see that T = R"™/Z™ is isomorphic to the product
of n copies of the topological group of complex numbers of modulus one.
Here, an isomorphism between two topological algebraic structures will
always mean homeomorphism as well and a homomorphism from one
topological algebraic structure into another will also mean continuity.

In [7], we defined a right distributive topological system (hereafter
denoted Rdts) as a triple (S, ®,*) where (S,®) and (S, *) are both
topological groupoids (i.e., @ and % are continuous mappings from
S x S into S) and (a®b)*xc =axcdbx*c for all a,b,c € S. For
any topological groupoid (S, ®) we denote by End (S, ®) the space of
all endomorphisms of (S, ®) where the topology on End (S, ®) is the
compact-open topology, hereafter referred to as the c-topology. We
recall that the c-topology takes for a subbasis of the open sets all sets
of the form [K, G| where K is compact, G is open and [K,G] = {¢ €
End (S, ®) : ¢[K] C G}. We note that by our convention, each element
of End (S, ®) is continuous.

In [2], J.R. Clay describes all nearring of order less than eight and in
[3] he describes all nearrings of order eight whose additive groups are
nonabelian and which satisfy certain additional natural conditions. In
order to accomplish all this, he first describes, for any group (G, +), all
multiplications * on G so that (G, +, ) is a nearring. Our first result
here, which is basic to our considerations in this paper, is a topological
version of Clay’s theorem.
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Theorem 2.1. Let (S,®) be a locally compact Hausdorff groupoid,
and let t be a continuous map from the topological space S into the
topological space End (S, ®). Let t(y) = oy for each y € S and define
zxy = @y(z) for all z,y € S. Then (S,®,*) is an Rdts and every
multiplication for which (S, ®, *) is an Rdts is obtained in this manner.
Furthermore, the operation * is associative so that (S, x) is a semigroup

if and only if . 0 py = @y, () for al T,y € S.

Proof. We show first that if * is defined as in the statement of the
theorem, then (S,®,*) is an Rdts and our first step here will be to
show that * is continuous. Define a function F' from S x S into S by
F(z,y) = 2%y = py(z). We must show that F' is continuous. Suppose
F(z,y) = py(z) € G where G is an open subset of S. Since ¢, is
continuous, there exists a neighborhood V' of x such that ¢,[V] C G.
Since S is locally compact, there exists a compact subset K of S and
an open subset W of S such that

(2.1.1) ceWCKCV

and this implies that t(y) = ¢, € [K,G]. Since t is continuous, it follows
that there exists a neighborhood H of y such that ¢[H| C [K, G], and
this means simply that

(2.1.2) wp[K] C G forall be H.

Now W x H is a neighborhood of (z, y), and we assert that F[W x H] C
G. Let (a,b) € W x H. We use both (2.1.1) and (2.1.2) to get

F(a,b) = axb=pp(a) € pp|W] C pp|K] C G,

and this verifies the fact that * is a continuous binary operation.
Furthermore,

(r@y)x2=9p.(zDyY) =p.(2) Dp.(y) =z*x2Dy*2

for all z,y,z € S, and we conclude that (S, ®, %) is an Rdts.

Conversely, suppose (S, @®, *) is an Rtds, and define F(z,y) = z xy
for all z,y € S. For each z € S, define a selfmap ¢, by ¢,(z) =zxz =
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F(z,z). Since F is continuous, it is immediate that ¢, is continuous
for each z € S. Moreover,

pAr@y) = (DY) *x2z=(z*2) D (y*2) = () G p:(y)

and we see that ¢, € End (S,®) for all z € S. Define a map ¢ from
S into End (S, ®) by t(z) = ¢,. We must show that ¢ is continuous.
Suppose t(y) = ¢, € [K,G] where [K,G] is a subbasic open subset of
End (S, ®). Then ¢, [K]| C G which means F(z,y) = zxy = ¢ (z) € G
for every * € K. Since F is continuous, there exists, for each
x € K a neighborhood V, of z and a neighborhood W, of y such
that F[V, x W] C G. The family {V,}.cx covers K and, since
K is compact, some finite subcollection {V,}" , also covers K. Let
W = n{W,,}*_,. Then W is a neighborhood of y, and we assert that
t{W] C [K,G]. Let b € W. We must show that t(b) = ¢, € [K,G],
that is, ¢p[K] C G. Let a € K. Then a € V,, for some 4, and we have

op(a) =a*b=F(a,b) € F[V,, x W,,] CG.

This verifies the continuity of the function ¢. Finally, one easily verifies
that z+(yxx) = (2xy)*x for all z,y, 2 € S if and only if p,0p, = v, (y)
for all z,y € S, and the proof is complete. a

We are now in a position to describe all multiplications * on 7™
so that (T™,+,x*) is a topological nearring. We will associate any
endomorphism of the vector space R™ with the matrix which induces
it. We recall that 7" = R"™/Z™, and for each € R"™, we denote by Z
the equivalence class containing x. In other words, Z is a typical point
of T™.

Theorem 2.2. Let A be any nxn matrix whose elements are integers
and define T x j = Ax for ,§ € T™. Then (T™,+,%*) is an Rdts and
every multiplication * for which (T™,+,%) is an Rdts is obtained in
this manner. Now choose an idempotent matriz A whose elements are
integers and again define T x § = Ax for T,5 € T". Then (T", +,*) is
a topological nearring and every multiplication x for which (T™, +, %) is
a topological nearring is obtained in this manner.

Proof. We first determine End (T™,+). Suppose ¢ € End (T",+).
According to the discussion on pages 82 and 83 of [1], there exists an
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n X n matrix A such that ¢(Z) = Az and moreover AZ™ C Z™. The
latter means that the elements of A must be integers. Conversely, it
follows easily that if ¢ is defined as above, then ¢ € End (77,+).
Thus, each element of End (7",+) is induced by an n X n matrix
whose elements are integers. Among other things, this means that
End (T™,+) is countable. Now End (T™,+), with the c-topology is
completely regular and Hausdorff since T™ is completely regular and
Hausdorff. Since End (IT™,+) is countable, it follows that End (1™, +)
must be totally disconnected and, since T™ is connected, this implies
that the continuous functions from T™ into End (T, +) are precisely
the constant functions. It follows from Theorem 2.1 that one gets all
multiplications * on T™ such that (7™, +, ) is an Rdts by choosing a
matrix A whose elements are integers and defining Z * § = Ax.

Now suppose A is idempotent. Then
(Zxg)xz2=(Az)xz2=AAr = Az =T % (Jx 2),
and we see that (7™, +,#) is a topological nearring. Suppose, con-
versely, that (T™, +, %) is a topological nearring. Then * is associative
which means (Z*y)*Zz = Z*(gy*Zz). This in turn means that AAzx = Az
for all vectors * € R™. Thus, we have (A? — A)x = A%z — Az € Z"
for all z € R", and this can happen only if A> — A = 0 which means A
must be idempotent. This completes the proof. ]

We will denote by Ran (A) the range of the linear transformation
induced by a matrix A.

Corollary 2.3. Let (T",+,%) be a topological nearring. Then
T «T"=T" if and only if Txy = for all T,y € T".

Proof. It is immediate that 7"« T™ =T" if Txy = Z for all T,y € T™.
Suppose, conversely, that 7™ « T™ = T™. Now Theorem (2.2) tells us
that there exists an idempotent matrix A whose elements are integers
such that z * § = Az for all Z,y € T™. But T" * T" = T™ means that
for each § € T™, there exists Z,Z € T™ such that Az = Z * Z = j and
this means that for each y € R", there exists an T such that Az —y = s
for some s € Z™. Consequently,

R" = U Ran (A) + s.

seZm
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Let m = dim (Ran (A)). Now Ran (A) + s is closed for each s € Z™ and
dim (Ran (4) + s) = m for each s € Z™. Thus, we see that R"™ is the
union of a countable number of closed subspaces, each of dimension m
and it now follows from Theorem III 2 page 30 of [6] that m = n. This
means that Ran (A) = R™ and, since A is idempotent, it must be the
identity matrix. Consequently, Z * § = Az = Z for all Z,5 € T™. u]

Given any topological group (G, +) with more than one element, there
are always at least two multiplications one can define which will result
in topological nearrings. One of these is to define z x y = 0 for all
z,y € G and the second is to define z xy = x for all z,y € G. Our next
corollary provides us with a topological group where these are the only
two multiplications which result in topological nearrings. Recall that
T = R/Z denotes the one-dimensional torus and that a nonring is a
nearring which is not a ring.

Corollary 2.4. For each integer n define a multiplication *, on
T by T %, § = nx for T,5 € T. Then (T,+,%,) is an Rdts and
every Rdts for which (T, +) is the additive topological group is obtained
in this manner. Furthermore, (T, +,%o) and (T,+,+*1) are topological
nearrings and these are the only topological nearrings for which (T, +)
s the additive topological group. In particular, the topological group
(T, +) admits exactly one nonring structure which is (T,+,%1) and it
1s evidently not zero-symmetric.

Proof. According to Theorem 2.1, we find all multiplications * on T’
such that (T, 4+, *) will be an Rdts by taking all 1 x 1 matrices A of
integers and defining Z*j = Axz. This, of course, simply means choosing
an integer n and defining T * § = nz. By that same theorem, one gets
a topological nearring precisely when the matrix is idempotent. In the
one-dimensional case only the matrices (0) and (1) are idempotent,
and these evidently correspond to the binary operations %o and x*.
O

We observed in the previous corollary that the only zero-symmetric
topological nearring with additive topological group (7, +) is the zero
ring. The next result says the same for all 7™ and is an immediate
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consequence of Theorem (2.1).

Corollary 2.5. Suppose (T™,+,*) is a zero-symmetric topological
nearring. Then T+ 4y =0 for all z,j € T™.

In what follows, when a multiplication * is defined on 7" by Z%j = Ax
where A is any matrix whose elements are integers, we will refer to * as
the multiplication which is induced by A and we will refer to (T™, 4+, *)
as the nearring which is induced by A. For any subset H C R"™, we let
H={z:zcH}.

Theorem 2.6. Let A be any idempotent matriz whose elements are
integers, and let (T™,+,*) be the topological nearring which is induced
by A. Choose any subgroup G of R™ such that Z™ C G and AG C G.
Then G is an ideal of (T™, +, *) and every ideal of (T™, +, %) is obtained
in this manner. Moreover, G is a closed ideal of (I™,+,*) if and only
if G is a closed subgroup of R™.

Proof. Suppose first that Z" C G and that AG C G. Then G is_a
subgroup of 7™ which is normal since T is abelian. For any z € G
and any § € T™, we have Z*j = Az € G. Finally, for all Z,j € T and
Z € G, we also have

Tx(y+2)—zxy=Az—Az=0¢c G
and we see that G is an ideal of (T™, +, ).

Now suppose that G is an ideal of (T, +,*). It is immediate that
Z"™ C G. Moreover, we have G * T™ C G. This means that, for any
z € G and any § € T", we have Z * § € G which implies that there
exists a Z € G such that Az = z. Consequently, Az — z = v where
v € Z™, and this implies that Az = v 4+ z € G. The last assertion of
the theorem is precisely one of the assertions on page 77 of [1]. u]

The previous result indicates that ideals are abundant in these near-
rings. We discuss some of them. Let A be any idempotent n X n matrix
whose elements are integers, and let (1™, +, ) be the nearring which
is induced by A. Let G be all those vectors in R™ with rational coor-
dinates. Evidently AG C G and so it follows from the previous result
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that G is an ideal of (T™,+, *). Since G is dense in R", G is dense in
T™. For a slightly different type of example, let

G={(z1,22,...,Tp) 1 ;i = q; + b;V/2 where a;,b; € Z}.

One easily checks that, in this case also, AG C G and, hence, G is an
ideal of (T™, +, x). Of course, ARan (A) = Ran (A4) but Z™ Z Ran (A)
unless A is the identity matrix so that Ran (A) is not an ideal of
(T™,+, ) whenever A is not the identity matrix.

3. Homomorphisms. Let A be an idempotent n x n matrix whose
elements are integers, and let B be an idempotent m X m matrix whose
elements are also integers. Let (T™,+, %) be the nearring induced by
A, and let (T™, 4+, ¢) be the nearring which is induced by B. Our next
result describes all the homomorphisms from (7™, 4, *) into (1™, +, ¢).
The symbol Z will be used to denote a typical element in both 7™ and
T™ since we think no confusion will result. In the former case, x € R™
while in the latter case x € R™, of course.

Theorem 3.1. Let D be an m X m matriz whose elements are
integers, and suppose further that DA = BD and define p(Z) =
Dzx. Then ¢ is a homomorphism from (T™,+,%) into (T™,+,¢) and
every homomorphism from (T™, +, *) into (T™, 4+, ¢) is obtained in this
manner.

Proof. We first verify that ¢(Z) = Dz defines a homomorphism.
Since AZ™ C Z™, it follows from the remarks on pages 82 and 83 of
[1] that ¢ is a homomorphism from the topological group (7, +) into
the topological group (T™,+). In addition to this, since DA = BD,
we have s

o(Z*y) = Az = DAz = BDzx
= Dz o Dy = ¢(%) o ¢(7)

and we conclude that ¢ is a homomorphism from (7™,+,x*) into
(T™, +,0).
Suppose, conversely, that ¢ is a homomorphism from (7™, +, ) into

(T™,+,0). It follows from the remarks on pages 82 and 83 that there
exists an m X n matrix D such that ¢(Z) = Dz and DZ™ C Z™. The
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latter condition means that the elements of D must all be integers.
Finally, for all Z,§ € T™, we have

DAz = p(Azx) = ¢(Z + §) = (%) © ¢(7)

Dz o Dy = BDx.

This means that (DA — BD)z = DAz — BDz € Z™ for all x € R"
which readily implies that DA — BD must be the zero matrix. Thus,
DA = BD and the proof is complete. |

We use the symbol End (T, +, *) to denote the endomorphism semi-
group of (T™,+, ) and the symbol Aut (1™, +, *) to denote the auto-
morphism group of (T™,+,x). Denote by C(A) the centralizer of an
n X n matrix in the semigroup of all n x n matrices of integers. That
is, C'(A) consists of all n x n matrices B whose elements are integers
such that AB = BA. Finally, denote by G(A) all those matrices B in
C(A) such that det A = +1.

Theorem 3.2. Let A be an n X n idempotent matriz of integers,
and let (T",+,%) be the topological nearring induced by A. Then
End (T, +, *) is isomorphic to C(A) and Aut (T, +, *) is isomorphic
to G(A).

Proof. By Theorem 3.1, every endomorphism ¢ of (T",+,x*) is
induced by an element B of C(A). That is, ¢(Z) = Bz for each 7 € T™.
Define a map ® from End (7™, +, #) into C'(A) by ®(¢) = B. Let ¢
be another endomorphism of (77, +, ) which is induced by a matrix
C. Then we have ¢ o %(Z) = ¢(Cz) = BCxz for all Z € T", and we
see that ®(p o) = BC = ®(p)®(¢)). It is evident that ® is surjective
and it is immediate that @ is injective as well. Consequently, ® is an
isomorphism from End (7", +, ) onto C(A).

Suppose we now determine when an element ¢ € End (T",+, %)
actually belongs to Aut (T™,+, ). Again, let A be the matrix which
induces ¢. According to Proposition 5, page 83 of [1], ¢ is an
automorphism of (7™, +, x) if and only if A is an automorphism of R"
whose restriction to Z™ is also an automorphism of Z™. This means
that not only must A have integral elements but A~! must have integral
elements as well, and this can happen if and only if det A = +1. It now
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follows in a routine manner that the mapping ® defined by ®(¢) = A for
¢ € Aut (T™,+, %) is an isomorphism from Aut (7™, +, *) onto G(A).

Example 3.3. Let

0 0 a b
A—<1 1> and B_(c d>’
and let (T2,+, ) be the nearring induced by A. One can verify that

B € C(A), (that is, AB = BA) if and only if b =0 and d = a + ¢ so
that, according to Theorem 3.2, End (T2, +, *) is isomorphic to

C(A)={<‘; aic) :a,ceZ}.

Now Aut (T2, +, *) is isomorphic to the group of units of End (72, +, )
which, according to Theorem 3.2 consists of all those matrices B €
C(A) such that det B = £1. One easily verifies that there are exactly
four such matrices and they are as follows:
1 0
(% 4)

10 -1 0 -1 0

0 1)’ 0o -1)° 2 1)
Since each of these elements is an involution, we see that Aut (72, +, )
is isomorphic to the Klein four-group. We make one further observa-
tion. Suppose we choose B € C(A) but 0 # det B # +1. Then B

is an automorphism of the vector space R? but, nevertheless, the en-
domorphism it induces on (7%, +, x) cannot be an automorphism. For

example, choose
1 0
B- (1 2).

Then ¢(1,1/2) = B(1,1/2) = (1, 2) = (0,0) but (1,1/2) # (0,0).

4. The multiplicative semigroups. Let A be an n x n idempo-
tent matrix of integers, and let (7™, +, ) be the topological nearring
induced by A. The multiplicative semigroup, (1™, %) of (T™,+, %) will
be denoted more simply by S(A). In this section we determine some
of the properties of S(A). For any terms regarding semigroups which
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are not defined, one may consult [5]. The symbols H,L,R,D and
J will denote the usual Green’s relations, and for any set X, we let
A(X) = {(z,z) : z € X}. Finally, S(A)" denotes the semigroup formed
by adjoining 1 to S(A).

Theorem 4.1. The following statements are valid for all T,y €

S(A).

(4.1.1) ZLy ifand only if T=¢F or Z,7< Ran(A).
(4.1.2) TRy ifand onlyif T=179y. Thatis, R =A(S(4)).

(4.1.3) L=D=J and H=TR.

Proof. By definition, Z£7 if and only if S(A)! * # = S(A)! x ¢, that
is to say, if and only if {Z} URan (A) = {7} URan (A). Evidently, the
latter equality holds if and only if Z = § or Z, 7 € Ran (A). This verifies
(4.1.1). Now suppose TRy but that Z # 3. Then we have

{z, Az} =2+ S(A)' = 7= S(A)" = {g, Ay}
Since Z # g, we must have
(4.1.4) T=Ay and 7= Az

Thus, ¢ — Ay = s € Z" and hence Az — Ay = Az — A%y =
A(z — Ay) = As € Z™ which means that Az = Ay. This, together
with (4.1.4) implies that Z = Ay = Az = 7 which is a contradiction.
Consequently, we see that T = § whenever ZRy and we have verified
(4.1.2). It now follows that X = LN R = LN A(S(4)) = R and

D=LoR=LoA(S(A) =L
Finally, for any Z € S(A), we have

S(A)Y xzx S(A)' = {Z} U (S(A) x T)
U(@=*S(A)U(S(A)*z*S(A))
= {#} URan (A) U {Az} URan (4)
= {Z} URan (4).
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Consequently, ZJg if and only if {Z} URan (A) = {g} URan (A) and
we have already seen that the latter holds if and only if ZLy. Thus,
(4.1.3) has been verified and the proof is complete. o

The symbol I will be used to denote the identity matrix, that is, the
matrix with 1’s down the diagonal and 0’s elsewhere.

Theorem 4.2. The following statements are equivalent.

(4.2.1) Z 1is a regular element of S(A).
(4.2.2) Z is an idempotent element of S(A).
(4.2.3) (A—Dz ez,

Proof. Suppose T is regular. Then Z x §y x £ = T for some § € T™.
This implies that Az = Z which, in turn, implies that (A — I)z =
Az — x € Z". This verifies that (4.2.1) implies (4.2.3). Now suppose
(4.2.3) holds. Then Az —z € Z" which implies Az = Z and it readily
follows from this that Z is idempotent. Thus, (4.2.3) implies (4.2.2) and
since it is immediate that (4.2.2) implies (4.1.1), the proof is complete.

O

Example 4.3. Let

0 0O
A=12 1 0
3 01
Then let B = A — I and get
-1 00
B=|2 00
3 00

According to Theorem 4.2, T € S(A) is idempotent if and only if
Bx € Z™. One readily verifies that Bz = (—z1,221,3z;) and we
see that Z is idempotent if and only if z; is an integer.
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Example 4.4. This time, let

0 20
A=(10 1 0
0 30
Again, let B =A — I and get
-1 2 0
B=|(0 00
0 3 -1

One verifies that, in this case, Bz = (2x9—x1,0, z2—x3). Consequently,
Z is idempotent if and only if 225 — 1 and 3z — x3 are both integers.
For example, this is satisfied by the vector (1,3/2,1/2) and we see that

(1,3/2,1/2) = A(1,3/2,1/2) = (3,3/2,9/2) = (1,3/2,1/2).

Theorem 4.2 tells us that the regular elements and the idempotents
coincide for any semigroup of the form S(A). We also note that, for
each of these semigroups, the collection of idempotents is a left zero
subsemigroup of S(A).
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