ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 25, Number 3, Summer 1995

SOME CONGRUENCES FOR
GENERALIZED BINOMIAL COEFFICIENTS

WILLIAM A. KIMBALL AND WILLIAM A. WEBB

For an arbitrary sequence of integers {u, }2° ;, the generalized bino-
mial coefficients are defined by

Rl (ujuge—1); - ws) Uk - uj)
and [Z} = [Z] . In order to guarantee that these expressions are
1

integers, it is usually required that the sequence {u,} be regularly
divisible, that is, p’|u; if and only if r(p®)|j for all i > 1, j > 1, and all
primes p. Here r(p') denotes the rank of apparition of p', that is, the
index of the first element of {u,} divisible by p'.

Such generalized binomial coefficients have many properties in com-

mon with the usual binomial coefficients <n> . Analogs of results such

k
as Kummer’s theorem, Lucas’s theorem, the Star of David property,
etc., have all been studied [3, 4, 7, 10].

The principal class of sequences which are known to be regularly
divisible are the second order recurrence sequences u,, = at,_1+bu,_o
with (a,b) = 1 and initial conditions ug = 0 and u; = 1 [5]. We will deal
with such sequences and introduce the following additional notation.
Let D = a?>+4b # 0, a = (a +vD)/2, B = (a — vV/D)/2, so that
a+ 3 =aand af = —b. Then u, = (a" — 3")/v/D and we also define
the companion integer sequence v, = a™ + 3". The following identities
are easily established

(1) 2uptr = UpVk + URU,
2) 2up 4k = VU + Dupug

(2)
(3) Vnak = vpvg — (—b)Fvn_g
(4)
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Finally, p will always denote an odd prime, 7 the period and r = r(p)
the rank of apparition of {u,} modulo p, and ¢t = 7/r which will be an
integer. We also assume that p{b and pt D.

It is readily apparent that

()= () tmodn

and it has at various times been noted that

(2)-(z)

for p > 3 and mod p? for p > 5 [1, 2, 8]. Another special case
when w, is the nth Fibonacci number also produces a congruence
which holds modp? [6]. We will examine what happens when w,, is an
arbitrary second order recurrence, subject only to the conditions noted
previously. Simple numerical examples show that we cannot expect a
congruence of such a simple form to hold. We will also note how these
general theorems apply to another widely studied type of expression,
namely the g-binomial coefficients.

Theorem 1. Forn>m >0,

)= (5) () s

Proof. Separating the factors divisible by p from those relatively
prime to p, we have

o []-

nr—1 (n—m+1)r—1
< Upr U(n—1)r o U(nm+1)r> Hk (n—1)r+1 U - Hk: (n m) r+1 Uk
1
Umr U(m—1)r Up Zl:rr(mfl)r+l U+ + k::1 Ug

= |:n:| Hla
mj,
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respectively.
We first note that

k
(6) Vpr = 2<%T> (mod p?) for k > 0.

This can be proved using induction on k and noting that, by (2) and
the induction hypothesis,

k
1 Uy Uy
Vkt1)r = E(vkrvr + Dugruy) = 2<?> <E>
NG ,
2 5 (mod p*).

Another induction argument shows that if p*|k,

(7) 5:7; = (;) <%>k1’5 (mod p?).

We can pair off the factors in [:J to be of the form u,/uj, such

that k/j is a p-integer, and apply (7) to obtain

T A [

From (1) and (6) we have

v,

m 1
<7> uk + o UkUmr (mod p?)

Umr+k

and so

(n+1)r—1 mr—m (n+1)r—1

mr—2m
(9) H Umr+k = <U_2T> H U + %(%) U

k=nr+1 k=nr+1

(n+1)r—1 (n+1)r—1

H U Z Yk (modpz).

Uk
k=nr+1 k=nr+1
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However,
(n+1)r—1
Vg
Z — =0 (mod p)
Uk
k=nr+1
since
Unr+i + ,U(n+1)r7i o 2“(2n+1)r

Uprii u(n+1)7"—i unr+iu(n+1)7‘—i

and if 7 is even, v, 4,2 = 0 (mod p) by (1). Hence, the second term
on the right side of (9) is 0 (mod p?), and we have

Uy

(10) I, = <7

(n—m)m(r—1)
> (mod p?),

and Theorem 1 follows from (5), (8) and (10). o

Corollary 2.
o (7] o om((5) ) (3) mir

Proof. Replacing n and m by nt and mt, respectively, in Theorem 1,
we obtain

w o []=(5)7 () e

Since 7 is the period, u, 1 = b~! (mod p) and u,y; = 1 (mod p)
so, by (4), v, = 2 (mod p). By (6), v, = 2(v,/2)! (mod p?), and so
(v./2)" =1 (mod p?). Hence,

(2"~ ((5) )
(3 -) i

Taking k = 7(n — m)m and substituting in (12) completes the proof.
O

(13)



GENERALIZED BINOMIAL COEFFICIENTS 1083

The congruence in Corollary 1 still involves the factor v, as well as
the parameters n, m and 7. We can, however, eliminate v, as follows.

By (3) and (2), respectively,
vor = v2 —2(—b)" and 2vy, =v? (mod p?)

(=b)" (mod p)2. Since, by (3),

o\ 2t o\t
- — - = 2
<2> 2<2>+1_0 (mod p?)

and so (v,./2)2

we have

Y
| $
N~~~
~

I

N | =
7N
=
+
7N
| $
N~~~
4
N~~~

(mod p?). O

Il
|
—~
[a—
_|_
—~
\
=
~
3
Y
~

Substituting this expression in (12) yields

Theorem 3.

[ nr } _ (l + el mym((-b)" - 1)> (:ft ) (0 p2).

mT

Since 7 must be even when b = —1 [9], we also have

Corollary 4. If b= +£1, then

2] () s

Although we assumed a and b were integers, the extension to any
p-integral rational numbers is immediate.
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An important special case which has been widely studied are the
g-binomial coefficients or Gaussian polynomials.

(n)_ 11+q)(1+q+¢®) - (1+qg+---+g" 1)

k) 114+¢q) -1 4--+¢ )11 +q)---(1+---+qrF-1)
which can be considered as generalized binomial coefficients with re-
spect to the sequence {u,}52, where ug = 0, uy = 1, upia =
(¢ + Dupy1 — quy, for n > 0. Thus, D = (¢ — 1)}, a = ¢, 8 = 1,
u, = (¢"—1)/(¢g—1) for n > 0 and v, = ¢" + 1. Clearly r is the
smallest n > 0 such that ¢" =1 (mod p) and T =rsot=1.

We can take ¢ to be any p-integral rational such that p | ¢ — q.
Applying the various theorems above to the g-binomials, we obtain

Theorem 5.

()=

1
7N
(=}
2,
N+
—
N———
7
g
3
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