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FUNCTION THEORIES FOR THE
YUKAWA AND HELMHOLTZ EQUATIONS

L.R. BRAGG AND J.W. DETTMAN

ABSTRACT. Transmutations operating on heat polynomi-
als and associated heat functions are employed to develop
function theories for the Yukawa and Helmholtz equations.
The special functions developed by means of these transmuta-
tions are studied, including series and integral representation
theorems for solutions corresponding to analytic and entire
data.

1. Introduction. It is well known [1] that the linear second order
partial differential equation in two independent variables

(1.1) AUzg + 2bUgy + cUyy + dug + euy + fu = g(z,y)

with constant coefficients can (except for one degenerate case) be trans-
formed by changes of variables to the heat, wave, Laplace, Helmholtz
or Yukawa equation. The best known function theory associated with
these equations, in the case of Laplace’s equation, is the analytic func-
tion theory in one complex variable. P.C. Rosenbloom and D.V. Widder
[13] have developed a function theory for the heat equation based on the
heat polynomials and associated heat functions. The authors [5] have
shown that there is an analogous function theory for the wave equation
related to these through transmutation operators. In the present paper,
we show that there are analogous function theories for the Yukawa and
Helmholtz equations. R.J. Duffin [8] has presented a function theory
of the Yukawa equation from the point of view of the pseudoanalytic
function theory of Bers-Vekua [2]. Also, see [9]. Our approach is
through transmutation operators [3, 7] and is essentially independent
of the Bers-Vekua theory. There are also analogous function theories
for certain singular elliptic and hyperbolic differential equations [6].
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The plan of this paper is as follows: A summary of the transmutation
operators needed will be given in Section 2 along with the heat poly-
nomials and associated heat functions which give rise to the basic solu-
tions and associated functions for the Yukawa and Helmholtz equations.
Section 3 will contain the basic functions, associated functions, gener-
ating functions, recurrence relations and generalized Cauchy-Riemann
equations for the Yukawa equation. Similar material for the Helmholtz
equation will be given in Section 4. Section 5 will present representa-
tion theorems for solutions of the Yukawa and Helmholtz equations with
analytic data. Representation theorems for Yukawa and Helmholtz so-
lutions with entire data will be treated in Section 6. Section 7 will
contain Fourier transform criteria for Yukawa and Helmholtz solutions
with entire data. The final section gives a summary of results.

2. Transmutation operators. It has been shown [7] that, if w(z, t)
is a solution of

(2.1) Wy = Way — p2w

for —oco < x < o0, t > 0, with w(x,0) = ¢(z), u? a positive constant,
then under appropriate assumptions on ¢(z),

Y * —3/2_—y?/4s _
2.2 u(z,y) = — s e ¥ /w(e,s)ds = Thw(x,t
(2.2) (@) = 7= /0 (z,5) 1w(z,t)
is a solution of the Dirichlet problem for the Yukawa equation

uzz+uyy:u2u, —oco<x<oo, y>0,

(2.3)
u(z,0) = ¢().
Similarly,
(2.4) v(z,y) = _\/LE ; s™H2eV" 15 y(x, 5) ds = Tyw(a, t)

is a solution of the Neumann problem:

vmz+vyy:p2v, —oo < x < o0,y > 0;

(2:5) vy(z,0) = ¢(z).
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If h(x,t) is a solution of the heat equation
(2.6) he = heg,

then w(z,t) = e * th(z,t) is a solution of (2.1). In this case,
_ Y 00 —3/2_—y?/4s —u’s
(2.7) Tyw(z,t) = — s /fe Y /%% h(z,s)ds
Var Jo
1 (e9)
(2.8) Tow(z,t) = — \/_/ 571/2671’2/4567“2371(30, s) ds.
m™Jo

Hence, we have related solutions of the Yukawa equation to solutions
of the heat equation.

In this paper we shall be mainly concerned with particular solutions
of the heat equation, namely the heat polynomials,

[n/2] 204
29 hn ,t == ‘ T AN :0,1,2,...
(2.9) (z,t) =n w2 "

and the associated heat functions,
13

(2.10) Hy(z,t) = k(z, t)hy (z/t, —1/t) = (—2)"8%k(x,t)

where k(z,t) = (1/v/4mrt)e = /4 is the fundamental solution of (2.6).

For reasons which will become clear later, we shall also need trans-
mutations relating the damped wave equation

(2.11) U = Ugy — P00

to the heat equation. If h(z,t) is a solution of (2.6) for —oco < z < o0,
t >0, h(z,0) = ¢(z), then

(2.12)  u(z,t) = ty/alLy {s 32 # /45 h(x,1/48) }spz = Tsh(z,t)

is a solution of (2.11) for —oo < < oo, t > 0, with u(z,0) = ¢(z),
ug(z,0) = 0. Here £71{- - },_,;2 denotes the inverse Laplace transform
with 2 the variable of inversion. Similarly,

(2.13)

v(z,t) = (1/2)V/m L7 {73/ 2e W 145 h (2, 1/48) } o2 = Tyh(a, t)
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is a solution of (2.11) for —co < z < oo, t > 0, with u(z,0) = 0,
ui(z,0) = o().

3. The Yukawa equation. In this section we shall begin the
development of an analogous function theory for the Yukawa equation
by defining some basic solutions and associated functions. We begin
by transforming the heat polynomials of Rosenbloom and Widder [13]
using the transmutations 77 and T5. We define

uf (@,y) = Ta[e™ hn(x, )]
oo /2] ,_2j j—3/2
_ n!y 67y2/4S€7H2SZ x Jgi—3/ ds
Var Jo = (n—2)4!

[n/2] by i—1/2
- 2-nly "2 25\’

=" Ky i - ‘
z"e + o/ j§:1: (n — 2j)15147 < " Kj_1/2(1y)

Using the fact that K; 1/2(py) = (V7/2)e " (uy)/>770;_1(uy),
j > 1, where ©;_; is the reverse Bessel polynomial (see [10]), we have

[n/2]

n2@Q.
ut(,y) =a"e ™ +nlpye M Y (33 i-1(1y)
j=1

n—2;)j2u2)

Since the integral above connected with T is equally meaningful if
u < 0, we define

[n/2]

n-2jQ. | (—
uy (2,y) = & — nluyery Y T2 1(—4)
j=1

(= 2)3!(2%)i°

Finally, we define our basic solutions as

un(z,y) = [ug (2,y) + uy (2,9)]/2
[n/2] 20
= z" cosh py + nluy < -
(3.1) : : ;1 (n —24)!5!(2u%)7

x {e‘“y@j_lwy) — 0,1 (—py) }
. .
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A few examples of these solution functions are
ug = cosh puy, uy = x cosh uy,

ug = x2 cosh py — y sinh py,
I

3
usg = x> cosh py — oy sinh uy,
I

2 2
3 3
Y Y sinh ny — —Z sinh py + % cosh py.
H H

ug = z* cosh py —

It is clear that the u,(z,y), n =0,1,2,... are solutions of the Yukawa
equation satisfying the condition wu,(z,0) = z".

Next, we transform the heat polynomials with the transform 7%:

v (2,y) = Tale ™ thn (2, 1))
[n/2] =20 gi—1/2

n! e 2 2
- -y~ /4s _“S-E:id
Vil ©° (n -2t ©

=0

[n/2] 2 j+1/2
2-n! "2 < Yy >]
= - |53 Kjt1/2(ny

VT j;) (n—25)151\ 2p2 i+1/2(4Y)

n! [n/2] 20
= ___. e MO, .
r ;0 =iy ¢ )

Similarly, replacing x4 by —pu, we have

n! /2] a2
U, (T, Y) = — - < - PO (—py).
9= JZ:% (n — 24)15!(2u2)7 i)

Hence, it follows that

vt (z,y) + v, (z,y)

vn(wa y) =

[n/2]
(3.2) - Z n—2J 1(2p?)7

_ (e’“’@j(—#y) ; eMo; (#y)>_
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A few examples of these functions are:

1
vy = — sinh py, v =  sinh 1y,
H M

2
1
Vg = LE_ sinh ny + -3 sinh MY — % cosh ny
Iz " X
3 3 3
v3 = L sinh pny + —fg sinh py — igy cosh py.
Jz 2 ®

The functions v, (z,y), n = 0,1,2,... are solutions of the Yukawa
equation satisfying the condition du,(z,0)/dy = z™.

To find generating functions for the solutions u,(z,y) and v,(z,y),
we transform the generating function for the heat polynomials [13]
which is given by the relation

az+a2t o - an
(3.3) e = Zohn(x,t)m.

Hence, we have

T1 [€7u2t6a1+a2t] — 6‘”1671 /M2*a2'y_
But this is the generating function for p}(z,y). Observing that
u, (z,y) = u} (z,—y), we find

(3.4) e*® cosh(\/p? —a?-y) = Z Un(x,y)jl_,
n=0 ’

is a generating function for u,(z,y). In a similar way, we find that

eazefw/uzfazy
/l'l’2 _ a2

is a generating function for v\ (z,y). However, v, (z,y) = —v,} (z, —y).
Therefore, we get

Tg [67u2teaz+a2t] [

e®® sinh(y/pu2 —a?-y > a”
(3.5) ( ) _ > vnl@,9)
n=0 '
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as a generating function for the v, (x,y).

Using these generating functions, it is easy to establish the following
recurrence relations:

(3.6) W — ntn_1 (2, y)

an 2B ) - - Do sley)
(3.8) W = nvp_1(z,y)

(3.9) %z’y) = up(z,y).

It is possible to show, with the right combination of the u, and the
vn, that we have conjugate pairs of panharmonic functions which
satisfy generalized Cauchy-Riemann equations (see [8]). Let u(z,y) =
un(z,y), v(z,y) = —pv(x,y) + nvy—1(x,y). Then, using the above
recurrence relations, we can show that

Ou Ov Ov  Ou
(3.10) o oy pu, 92 + o —pv.

Hence, u + ¢v is right-regular in the sense of Duffin [8].

It is important to show that our function theory reduces to the
analogous function theory for Laplace’s equation (see [5]). This follows
from the generating functions

oo an

3.11 ae = Re (z")—

(3.11) e cos ay ngzo e(z )n!
esinay ~= [Im(2")) a®
3.12 —_— = E il
(312) a = { n+1 } n!

which are obviously limits of our generating functions for the basic
solutions of the Yukawa equation as u approaches zero.

To develop associated functions for the Yukawa equation, we must
first obtain fundamental solutions by transforming the fundamental
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solution for the heat equation. We have

(3.13)
Ty [e ¥t \/%ewz/‘“] = % /000 s~ 2e W se—(a+y")/4s g
_ky Kailur)
™ T
and
(3.14)
Ty e #t. \/%ewz/‘“] = —% 000 s~lemH se=(@+y)/4s g
1
=~ Kolur).

The associated functions are then determined by the differentiation
relations

(=2)"py O™ Ki(pr)

(3.15) Uy = 200w O K
and

To be more explicit, we can transform the functions

(n/2] i n—2ii—

1 . (—1)ign—2d¢i—n

Hn Cl?,t = ——¢e " /4t E —
(1) Vit = (n — 27)!5!

and this leads to the sum forms:

(3.17)
Un(z,y) = Tile " ' Hy(a, 1))

yn! [n/2] _1)ign—2i 2% n—j+1
s

C2n = (n — 2j)ljlpn—i+l

Kp—ji1(pr)
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and

(3.18)
Vi@, y) = Tole ' Hy(z,1)]

[n/2] 2 w

nl 'O (—1)gn=2 (2u)n=i
=—_— — K,_i(ur).
T (n—2j)lhn i{ur)

To determine the generating functions for these types of solutions,
we transform the generating function for the associated heat functions.
Since

o0 an
(3.19) k(x — 2a,t) = ;}Hn(m,t)m,
it follows that
(3.20)
K “2a)2 + 42
Tye " k(e — 2a,8)] = 1Y . Kaln/(@ — 207 + v7)
m (z = 2a)? + 4?2
o0 an
n=0 :
and
(3.21)
1
TZ[S_H’Ztk(m —2a,t)] = —= - Ko(u/(z — 2a)? + ¢2)
T
oo an
= Z Vol(z, y)—'
—= n!

To show that the associated functions U, (z,y) and V,(z,y) reduce
to the analogous associated functions for Laplace’s equation, we use
the asymptotic expansions for the Bessel functions K;(z) and Ky(z),
namely K;(z) ~ 1/z and Ky(z) ~ —In(z) as z — 0. Hence, as u — 0,
we have the asymptotic relations

ny Ki(py/(z—a)®+y%) 1
™ (z —a)? +y? T (z—a)’+y*
1

L Ko(VE a1 7)) ~




896 L.R. BRAGG AND J.W. DETTMAN

except for a superfluous constant in the second case. These are
the generating functions for the analogous associated functions for
Laplace’s equation found in [5].

We can obtain recurrence relations for the associated functions by
using the formulas (3.15) and (3.16). These relations are given by the
following equations:

(3.22)
OUn _ (=2)"py O™ Ka(ur) 1,
or T gntl 2t
(3.23)
ov, (=2)» ont! 1
Zn_V2 2K - _z
ox T ozntl o(kr) g
(3.24)
oV, (=2) o™ 9
_— = — . —_K
Jy T oz™ dy o{kr)
_ (%”ﬂ(uyfﬁ(w)) _u
w  Ox" r "
(3.25)
ou, 0*V, 9 0%V, 9 1
dy  Oy? =V = ozz ! V”_ZV"“‘
In this case, we also have pairs of panharmonic functions which are
right-regular. Let U(z,y) = Uy(z,y) and V(z,y) = —uVu(z,y) —
Vo+1(z,y)/2. Then it follows that
ou oV ov  oU
3.26 — — — =uU d —+—=—uW.
( ) or Oy K an Ox + oy K

4. The Helmholtz equation. The counterparts of the transmuta-
tions for the Helmholtz equation would appear to be

le(aj,t) = \/LZL_?T‘/O' 873/2€7y2/486“25h(1:,8) ds
1 oo
Tow(z,t) = 871/267y2/456lt25h(x,3) ds.

vy

Unfortunately, these integrals fail to converge. Hence, we must take a
different approach for building up the basic functions for this equation.



YUKAWA AND HELMHOLTZ EQUATIONS 897

In the Helmholtz equation, we replace =z by ix and y by ¢, and the
equation then becomes the damped wave equation given by

(4.1) Upy = Ugy — P2

We relate the solutions of this equation to those of the heat equation
using the transmutations T3 and T} in equations (2.12) and (2.13).

We begin by transforming constant multiples ¢, of the heat polyno-
mials where the ¢, are to be determined. We find that
(4.2)

i (i, t) = cpty/mL;" {5_1/26_“2/4Shn(m, 1/45)}

[n/2] n—2j

= cpt\/mn! Z

s—t2

—15 —j—1/2_—u?/4s
(n—2])'j'43£5 {5 € }s—>t2

j=0
/2 n—2jgi+1/2
/m' t
'3 Gy )

from which it follows that

[n/2] n 25,7+1/2
—iT y
(z,9) —cn\/ E n_2] Jj-1/2(1y)-

(n —25)15!(2p)7

In order to satisfy the initial condition @, (x,0) = =™, we must choose
the constant ¢,, so that ¢,,(—i)™ = 1. With this choice for Cn, We obtain

[n/] l ] n— 21y3+1/2
(43) 7y M TL — 2] 2,[},) Jj—1/2(,ufy)-

Let us recall the following relation between the Bessel functions and
the reverse Bessel polynomials for 7 > 1:

1
2mi(py)i—1/2
Using this in (4.3), we find that

Ji—12(my) = [0 1 (—ipy) — e MO, 1 (ipy)]-

(4.4) Gy (z,y) = z" cos py
[n/2] 27 ; . ) .
Z l)’w" T [erO 1 (—ipy) — e VO, (ipy)
| J J
hn (2u2)7 { 2i '
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A few examples of these functions are
Uy = COS LY, Uy = T COS [y, iy = x° cos wy — y sin py
I

s 3 3ry .
13 = x° cos py — — sin py
1

.4 6x2y
gy = 2" cos py —

. 3y, .
sin py + E(Sm [y — py CoS py).
A similar calculation involving the transformation of the heat poly-
nomials using T} results in
n—27j

[n/2] Jm
;TL—Q_] w?)i

[0, (—iny) —
2

(4.5)

e~ "0, (ipy) }

A few examples of these solution functions are given as follows:

_sinpuy . xsinpy
v =, v = ———
K K
- z?sinpy  sinpy  ycospuy
2= 3 T 2
iz K K
. x2sinpy  3zsinpy  3zycospuy
U3 = - 3 + 3 .
iz K K

The 9,,(x,y) satisfy the initial condition

00, (2,0)

We can obtain the generating functions for 4, and ¥, by observing
that these two functions can be obtained from u,, and v,,, respectively,
by replacing p by ¢u. Therefore,

(4.7) w(z,y,a Zunwy TcosvuZ+a®-y

in\/u2+a2-y
Z’l)nmy \/m

(48)  o(z,y,a
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The following recurrence relations can be obtained from these gener-
ating functions by the usual differentiation procedures:

@ Y i)

@) P 2, (ay) Do)

(4.11) W = ni,-1(z,y)

(4.12) 6‘7”8(;”’ Y _ ()

If we let 4(x,y) = n(z,y) and o(z,y) = —ipd,(z,y) + no,_1, then

it follows from the above relations that 04/0x — 09/0y = iut and
0u/0y + 0v/0x = —iu®. Therefore, @ + i¥ is right-regular.

Before defining the associated functions, we must first construct the
fundamental solutions for the Helmholtz equation. Since (py/7) -
K (ur)/r is a solution of the Yukawa equation, it is clear that (iuy/m)-
Ky (ipr)/r and (—ipy/mw) - K1(—iur)/r are solutions of the Helmholtz
equation. The objective is to combine these solutions to obtain the
proper asymptotic forms as p approaches zero. Since iuK(ipy) =
(—ipm/2)[J1(pr) — Yi(ur)] and —ipKy(—ipy) = (ipm/2)[J1(pr) +
1Y1(ur)], we find

ipy Ki(ipr) ipy Ki(—ipr)  py Ya(ur)

2 r 2 r 2 r

and Yi(ur) ~ 2/(umr) as p approaches zero. Hence, —(uy/2) -
Yi(ur)/r ~ y/(m(z? + y?)) which is the fundamental solution for
Laplace’s equation. Therefore, we define the fundamental solution of
the Helmholtz equation as —(py/2)-Y; (ur) and the associated functions
by

(4.13) Un(z,y) = _(_2)"% [%Yl(,,n«)]

A similar calculation gives us the fundamental solution Yy(ur)/2 and
the other set of associated functions, namely

(4.14) Va(z,y) = (—2)"% [YO(;T)} '
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More explicit versions of U, and V, can be found by substituting iu
and —ip for p in the formulas (3.17) and (3.18) for U,, and V,, and
using the following properties of K, when v is an integer: K, (+iuy) =
(1/2)m (i) T Jy (ur) F iY,(ur)]. The results are

(4.15)
/2], i ne2i e \mei
o) == 3 g Yoy )
and
(4.16)
n/2 e
Valasy) = %‘ ' [i] ((Z)ch;j;!]j(!iﬁ)—j L Y (ur).

By analogy with Section 3, the generating functions for the U, and
V,, are

_my Ya(py/(z —20)% +¢?)
2" e 2ar )
and
~ e ~ an
(4.18) V(z,y,a) = Z Vn(m,y)m
n=0 '

SYo(u/ e~ aP 1 ).

Recurrence relations for the ﬁn and YN/n can be found as in Section 3,
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namely,
6i}n ﬁn—i—l
4.1 = —
(4.19) Or 2
o, ~  Viys
4.2 no— PV, - 2
(4.20) By pV; 1
6‘711 ‘7n+1
4.21 —_— ==
( ) ox 2
v, =~
4.22 — =U,.
(422) o

Once again, if we let ﬁ(m,y) = (}n(ac,y) and V(ac,y) = —iuvn(m,y) —

Vit1(z,vy)/2, then the validation, as usual, of the equations OU /dz —
0V /0y = iuU and 0U /0y + 0V /Ox = —ipU verify that the function
U + iV is right-regular.

5. Solutions with analytic data. In the case of Laplace’s
equation, the power series in z converging inside a disk centered at
the origin is the classical case of solutions with analytic data. Outside
such a disk, one considers power series in z~!. In the cases of the
Yukawa and Helmholtz equations, the counterparts are series of basic
solutions for the interior problem and series of associated functions
for the exterior problem. In this section we shall indicate that the
results for Laplace’s equation have their counterparts for the Yukawa
and Helmholtz equations. There are eight different cases to consider.
However, for the sake of brevity, we shall treat only two of them because
the approach is the same. We shall show that each class of functions
has its analogous set for the Laplace case and that these functions
are asymptotic to the corresponding set for the Laplace equation.
Furthermore, we shall show that the regions of convergence for the
series considered depend on the coefficients in the series and not on the
value of p in the partial differential equation. Therefore, we can assume
that p is very small and use the asymptotic forms in the Laplace case to
determine the region of convergence. As representative cases, we shall
consider series of the forms > 7 o anun(z,y) and >~ b, Vo1 (2, y).

Before proceeding with these cases, we need to rewrite the special
function solutions of the Yukawa and Helmholtz equations in more
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suitable forms which will permit showing that the convergence results
are independent of the parameter y. The required forms are given
in the following with the notation indicating their dependence on the
parameter p:

(5.1)

§ . ' [n/2] e MO, _1(uy) — e0;_1(—py)
Un (T, y; 1) = [COS py + pyn: ; 21 (n — 2§)1j! ()% ]
(5.2)

1 3 g, — e MO,
Z (—py) (uy)}

py = 2Hn = 2j)l (p)?

(5.3)

Un(@, 1) = oy [ pmt Z e 2;;9;)" ;Jf)n -JKnHl(llr)}
(5.4)

BT .
(5.5)

U (@, ys ) = " [Cos py + pynli

[n/2] if.—i i ' )
(-1){e e, 1(ipy) — e'Mo;_ 1(=ipy)}
jzzl 27t (n — 2j)Y (W«")2J ]
(5.6)
) nli [n/2] (_1)j{€—iﬂy@j (ipy) — ei“y@j(—iﬂy)
On(z, 45 1) = 2"y [uy z:;) 2041 (n — 25)1j! (u) % ]
(5.7)

n/2]

[ . P

— T et " (1 (uaynRign

Un(,y; 1) = S [ 5 ZO (n = 25)11(ur) 3 Yojia(pr)
p
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(5.8)

[n/2] . I
~ N Nk (—=1)7 (pzx)n=272n7
Vn(xayﬂu’) = . [ 9 < . (n — 2])"7'(#71)_] Ynfj(,ur) .

Lemma 5.1. Assume that the series Y .. anun(T,y;€) converges
for p = /22 +y? < o, where limsup,, . |a,|'/™ = 1/ for some
e > 0. Then, if p > 0, the series 5. = S anln (T, y; ) also
converges for p < o.

Proof. Introduce the dilation of coordinates px = €€, uy = en. Then,
by equation (5.1), the sum Y’ becomes Y"°  a,(c/p) un (€, n;€), and
this converges for p’ = /€2 + 12 < ¢ where limsup,,_, . (¢/1)|an|"/" =
(e/p)/o or where o' = (u/e)o. Thus, the region of convergence for the

sum Y is p' = \/(uz/e)2 + (uy/e)? = (p/e)p and this last term is
< (p/e)o. Hence, it follows that p < o. O

Lemma 5.2. Assume that the series > .., by Viu(z,y;€) converges
for p = /22 +y2 > o, where limsup,,_, ., 2n|b,|*/" /e = o, for some
e > 0. Then, if p > 0, the series >, = D bnvn(x,y;p) also
converges for p > o.

Proof. Introduce the dilation of coordinates pux = €€, py = en as
in Lemma 5.1. Then, by the equation (5.8), the sum " becomes
PO bn(u/e)”vn(g,n; e) and this converges for p' = /&2 +n? > o’
where ¢/ = limsup,,_,.(1/€)2n|b,|"/" /e = (u/e)o. Therefore, the
region of convergence for > is p' = \/(uz/e)? + (uy/e)? = (u/e)p >
(u/e)o or p > 0. O

Theorem 5.1. Let a, be real, n = 0,1,2,..., and suppose that
limsup,,_, o |an|Y™ = 1/a. Then the series u(z,y) = oo, antin(z,y; 1)
converges to a solution of the Yukawa equation forr = \/x? +y? < o
but does not converge everywhere in any including disk. Furthermore,
u(z,0) = ¢(z) = Y., g anz™ and ¢(z) is analytic for |z| < o.
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Proof. As indicated in Lemma 5.1, we can assume that the parame-
ter p is very small. With this in mind, we can show that the function
un(x, y; p) is asymptotic to Re (2™) as p approaches zero. The gener-
ating function for the solutions u, (z,y; ) as given by (3.4) is
( MQ _ a2)ky2k

g(wv Y K, a’) = e COSh( /J’Z - a’2y) = e Z (2k)‘

This is an entire function of (u,a) for fixed values of (z,y). As such, it
has continuous partial derivatives. Therefore,

0" g(x,y; p, a)

n

T A
(5.9) o= o=
o Re (2")
= —e*®cosay =
da" a=0

It is well known that the series ZZOZO a,7™ cosnf converges absolutely
if r < o and uniformly if r < ¢’ < ¢ for any fixed o’. Also, this series
diverges if § = 0 and 7 > o. Using Taylor series expansions, it is not
difficult to show that the second term in the asymptotic expansion as
pu— 0 for u,(z,y; p) is

2 [n/2] ]wn 25,,27
Y
.1 n! E
(5.10) Bn(, g5 1) n—2] (25 + 1)

To obtain a bound for |R,|, we compare this series with the series

1)ign—2dy2
(5.11) Re (2") = n! ZO ((nzzT%y)‘

which attains its maximum r” when y = 0 and = = r. We can rewrite

(5.12)
,”2/2 Jac” 242 ,["2/2] —1)an2ly/(2) + V)Y
(n—25)1(2j +1) (n — 25)Y(24)!
which also attains its maximum when y = 0 and z = r. Hence,

|Ry(z,y; )| < p?r"T2/2. As a result, we see that

(5.13) un(@,y; 1) — Re (2") = 0(u?r"*?/2).
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It is clear from this that the w, has essentially the same growth
as Re(z") and the series Y.~ anun(z,y;p) converges absolutely
when r < o and uniformly when r < ¢’ < o. By substitution
> o @ntn (@, 05 ) =307 apx™ = ¢(x) is analytic for |z| < o.

To show that u(z,y) satisfies the Yukawa equation for r < o, we
must establish the uniform convergence of the series involving the first
and second partial derivatives of the u,(z,y; ). This is easy to do by
using the recurrence relations (3.6), (3.7) and the pair of second order
differentiation formulas 0%u, /0z* = n(n — 1)u, o and 0%u,/0y* =
p2u, —n(n—1)u,_o that follow from these. In view of the fact that the
formula (3.7) involves the v, functions, one requires asymptotic forms
analogous to (5.10) for these v, to completely establish the uniform
convergence of the series for Ju/0y. But these forms can be obtained
by using an argument quite similar to the one above for obtaining the
asymptotic forms for the u,. For this, one needs to call upon the
formula (3.5). This completes the proof. O

Theorem 5.2. Let b, be real, n = 0,1,2,..., and suppose that
limsup,,_, ., 2n|b,|'/" /e = 0. Then the series V(z,y) = > oc b Vi1
(x,y; 1) converges to a solution of the Helmholtz equation for r > o but
does not converge everywhere forr > o —¢, € > 0.

Proof. We shall again assume that y is very small and use asymptotic
forms for the V,(z,y;u) as p — 0. The fundamental solution for
this equation is Yy(ur)/2 which we have shown to be asymptotic to
(27) " !In(2? + y?). This implies that

Zn

~ —on(pn — 1)!
SR IWES)

Vi(z,y; p) ~ Re ( n=1,23,....

Using asymptotic expansions of the Y, (ur), n = 1,2,3,..., (see [11]),
we can derive, for n > 3, the formula

/2, i onsini
_ nt B2 (qyign—2ign—i(n — j — 1)
Vn Y5 ~ =5 Y -

(l' Yy ,u') 20 ;:0: (n_ 2])!]!(7.2)117]

(5.14) i
2,2 7 j n—2j gn—j ;

L (= 2) 51

J
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The first term in the right member of this is —2"(n — 1)!Re (2" /r*") /7
which is bounded by 2" (n—1)!r ™ /. Dividing out the factor —2"(n —
1)!/(7r™) from this term, we have

[n/2] i n—2j .
2" B (=1)?z" % (n—j —1)!
5.15 Re (= | =21 —.
(5.15) ¢ <r”> n]—; (n —2j4)ljlrn—2743
This sum attains its maximum of 1 when x = r and y = 0. If we let
B,, denote the sum in the right member of (5.15) with these choices,
we get

/2]

Din—j-1! _,

5.16 B, =21 :
(5-16) " (n — 25)lj143

=0

To obtain a bound for the second term in the right member of (5.14),
we compare that sum with the following sum:

[n/2]

. “1)i(n - 1))
5.17) C, = —2""1 ( . , =3,4,5,....
(517 ! ;, (n—2/)4i(n—j—1 "
We find that C,, is positive and that the sum
[n/2] ; .
_ —1)?(n—j—1)! 1

1 B, L =2n1 ( i 1—

(5.18) +C n) (n — 2j)j147 n—j—1

j=0

approaches 1 as n tends to infinity. This establishes that C, is bounded.
The second term in the asymptotic expansion of V,,(z,y; 1) is bounded
by p?r?2"(n — 1)!C,/(4wr™). Hence, it follows that

~ Re (2™ /r?") <2"(n— 1)!u2)

. n p— '4 =
(5.19) Vi(z,y;p)+2"(n—1)! - @) p—

We will now make a comparison of the series Y - by Vg1 (2, 5 1)
with the series — Y > (2" F!nlb,Re (2”1 /r?"*2) /r. Using Stirling’s
formula for n!, it can be shown that limsup,,_,__(2"n!|b,)'/" = o,
and that this last series converges absolutely for r > ¢ and uniformly
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for r > o/ > o for any fixed o' (see [5]). It diverges for y = 0,
|z| < o. By comparison, the series > > b1 Vi (2, y; 1) exhibits this
same convergence and divergence behavior under the same restrictions.

To show that the function YN/(ac,y) satisfies the Helmholtz equation
for r > o, we must establish the uniform convergence of the series
involving the first and second partial derivatives. This can be done by
calling upon the recurrence relations (4.21) and (4.22) and the second
derivative formulas that follow from these, namely, 82V}, /0z% = Vy42/4
and 92V, /8y* = —p2Vy, — Vnyo/4. Since the formula (4.22) involves
the function (7”, an asymptotic bound is also needed for this function.
But this can be developed from the formula (5.7) by using arguments
similar to those employed above.

6. Solutions corresponding to entire data. In this section we
develop integral type formulas for the solutions of the Yukawa and
Helmholtz equations in terms of solutions of the wave equation when
the data is entire. For this purpose, we first derive representations of
the Bessel polynomials and reverse Bessel polynomials in the form of
Laplace transforms.

The Bessel polynomials can be written as

(6.1) ()—lznj ") i, 01,2
. ynm—n!k_o g ) e n=0,12....

Replacing x by 1/s, we have

1 (n+k)!
sntl Yn <;> n! Z < > ok gntk+l

Taking the inverse Laplace transform with = the variable of inversion,
we obtain

B 1 1 1 ~~/n)\ z"tk z»
1) _ - - — _
L {Sn+1yn<s> }S_m n!k20<k> ok |( +x/2)".

Hence,
1 <1> 1 /°° _
L (B) =5 [ e e+ o)
sntl s n! Jo
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Upon replacing s by 1/z (assuming that > 0) and then making the
replacement ¢ — 2xo for the variable of integration, we obtain the
following result:

(62) yule) = 2

/0 e 2 (o(1 4 20)]" do.

n!

This was derived by assuming = > 0, but it holds for all z. The reverse
Bessel polynomial is defined as ©,,(z) = 2"y, (1/z), and this along with
(6.2) implies that

(6.3) Onz) = 2

/0 " e o (o + 0)]" dor

n!
Using this formula we can express the functions u,(z,y) as

[n/2] w"_Qj
= n ' v
21

X —/ e 70! e (uy+0)’ T — eV (—py+o) T do
=1 Jo

which can be rearranged into the form
(6.4)
un(z,y) = 2" cosh py

oo _y /2] i1
+ Hy/ 6—20 |: m : 7’L' : {a(uy—i—a) }J xn—Qj
0 2p? = (n=2j)l5!( -1)! I

_ﬁ[n/Z] n! J(_/“Ly+0) j_lmn—Qj do
22 2 25D '

It was shown in [5] that the wave polynomials wy,(z,t) can be
expressed as

(6.5)
(x+t)" + (x

wn(2,1) = e D" _ tﬁﬁ_l{s_l/zhn(x, 1/43)}

s—t2
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(6.6)
wn(xa \/;) = \/Fﬁl{sl/2hn(ma 1/45)}

S—T

where h,(z,t), as usual, denotes a heat polynomial.

For n > 2, we define S, (z,t) by the sum:

[n/2] |
Sn(z,t) = — i lgn=2
; (n—27)l5!(j — 1)!

which, after a change of index of summation k£ = 7 — 1 becomes

[(n=2)/2] n!

6.7)  Sa(w,t) = ; O,
(6.7) (z,t) ];J (n —2—2k)!(k +1)!k!
Then

[(n—2)/2] 2k k+1
- (n—2)12 n—2-2k1
t-Su(e,t) =n(n—1) Y n—2—2k)kl(k + )" 22k~
k=1

Taking the Laplace transform of this on the ¢ variable, we get

[(n—2)/2]

n(n—1) Y z/2)n—2—2k
L{tSn(z,t)} = %2" > (n f 2 — 2)k)!k! | /(218)’c
k=0

~ n(n— 1)2”72h z 1
B 52 "2 s )

Using (6.6), we can invert this transform to obtain

tSn(z,t) = n(n — 1)2"2 [%//22) * {\/%WH <§ ﬁ) H
w /1(1 _ 0)1/2%5”/5) do.
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After the change of variables o = ¢\, we have

(6.8) Sn(z,t) = M/Olu - A)I/Zw“(g,m) A~L2 g,

™

From (6.7) and (6.8), and using the fact that 2" 2w, »(z/2,£) =
Wp—a(x,2£), we deduce
(6.9)

~1 oo
un(z,y) = 2" cosh py + n(n -1y / e~2
TH 0

1
X {/ (1= NY2A"Y2 e, o(z, 20 o (py + o)A
0
— M, _o(z,2u N o(—puy + o)) d)\} do.

Suppose we require a solution of the Yukawa equation with data
u(z,0) = ¢(z) = > o7 ana™ with ¢ entire of appropriate growth.
Then

oo
u(z,y) = Z an " cosh py
n=0

Dany [ _5, _
+Z /0 e 27{(1— NN L2

X e M wn_o(z, 2~ o (uy + o))
— eMw, o(z,2u o (—py + o)N)] d\} do

o) 1
= ¢(z) cosh py +/ 620{/ (1- )\)1/2)\71/2i
0 0

um
x |e HY Zn(n — Danpw, 2(z,2u" o (uy + o)
n=0
— et Z n(n — Daywn,_o(z, 20 /o (—py + U))\)] d)\} do.
n=0

But Y°° jn(n — ayw,_o(z,t) = [¢"(z +t) + ¢ (x — t)]/2 = w(z
is a solution of the wave equation corresponding to the data ¢"(x)

£)
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S0 on(n —1)a,z™ 2. Therefore,

ey = ole)eoshpy + [ e | [a-apaat
(6.10) x [e Mw(x, 2~ o (uy + o))
— eMVw(z, 2~ o (—py + 0))\)]} d\do.

By carrying out analogous manipulations on the functions v, (z,y),
we can also show that
(6.11)

1 /oo/l —20y—1/2 -1/2
vp(z,y) = e 7 1-A
@=— [ [ (1=

x [eMwy, (2,20 1/ Ao (—py + o))
— e M, (z, 2~ "/ Ao (—py + o)) dAdo

and a solution v(z,y) of the Yukawa equation satisfying the conditions
v(z,0) + 0 and vy(z,0) = ¢(x), with ¢(z) entire and of appropriate
growth, is

(6.12)

1 oo 1
v(z,y) = N_W/o /0 6720)\71/2(1 — )\)71/2

x [eMYw(z, 2u~ /Ao (—py + o))
—e Mw(x,2u™ \/)\0 (—py + 0))]drdo

where the function w(z,t) here is given by [¢p(z + t) + ¢(z — t)]/2. To
construct integral formulas for the functions @, (x,y) and @,(x,y) and
the solutions of the Helmholtz equation corresponding, respectively, to
the conditions @(z,0) = ¢(z), Gy(x,0) = 0 or ¥(z,0) = 0, ¥y(z,0) =
¢(z), replace p by ip in the above formulas for u, (z,y), u(z,y), vn(z,y)
and v(z,y).

7. Fourier transform criteria. In [13], Rosenbloom and Widder
developed a Fourier transform criteria for expansions of solutions of the
heat equation in terms of associated heat polynomials. The authors [5]
have shown that there are analogous criteria for the wave and Laplace
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equations. We again find that this is possible for the solutions of the
Yukawa and Helmholtz equations.

To establish these, we must first find Fourier representations of the
corresponding fundamental solutions. Starting with the formula 15 on
page 306 of [12], it is easy to show that

~Ko(pr) 1 [* eV ooszy/t? — p? &t

1% T™Ju /tz—p,2

Introducing the change of variables s = 1/t — u2, we find that

Ko(ur) 1 [ e ¥V cos s

— = —— S
(7.1) ™ ™ Jo Vst + u?
’ 1 o0 e—y\/52+u2eisz p
= S.

_% oo /52+u2

From the formula —7 10Ky (ur)/0y = uyKi(ur)/(xr), we get

K e .
(7.2) py Kalur) _ L[ /5750 gise g,

T r 21 J_ o

For the case of the Helmholtz equation, we begin with formula 3, page
296 of [12], for v = 0. The result is

2) 20 [ e HY(EH) cos pa/t2 + 2it
Hy" (pr) = — . dt.
™ Jo t2 =+ 2it
After the change of variables, 7 =t + i, we obtain
95 [itoo g—pyrT 211
iy = B [ T e TR
™ Ji \/m

The further change of variables s = uv/72 + 1 then leads to the formula

% [ e-w/EHE
H(g2)(,ur):—l e cos s ds

™ Jco /527‘12
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where the integration is over the contour C' given by

11 4\ Y2
8—£+in—ut(§+§ 1+—>

1 1/ 4\ Y2
ut| — = —4/1 <t .
+z,u< 2 5 +t> , 0<t<oo

From the relation Hél)(ur) = Hé2) (ur), we get
21 e IV cos s
T J& /52 _ //’2

where C is the reflection of C in the real axis. Then from the fact that
Yo(ur) = [H(l)(ur) + H(z)(,ur)]/% we deduce the formula

LA

Finally, for the second term in the 1ntegra1, we make the replacement
s — —s to get

(7.3) Yolur) _ 47r/ /(e e ei”> ds

where the contour I is given by

HY (ur) = s

s=E+1n
1 1 4\ Y2
—utl 2+ 414+ =
“(2+2 +t2>
1 1 4\Y?
+i,ut(§+§ 1+t—2> , —oo<t< oo,

and T is the reflection of I' in the real axis. Then, from the differ-
entiation formula (1/2)0Yo(ur)/0y = —pyYi(ur)/(2r), we obtain a
companion formula to (7.3), namely

(74) 7% . M — i / +/(e*y\/ s2—p2 . eisz)ds‘
2 T 4 r T
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Theorem 7.1. The series . byUn(z,y) converges fory > o >0
if and only if Yo (b Un(z,y) = (1/27) [72 e®3e VST y(s) ds
where Y(z) is an entire function of growth (1,0) and b, = ¥ (0)/

{nl(~2i)"}.

Proof. 1If the series converges, then limsup,, ., 2n|b,|'/"/e < &
which implies that ¢(z) € (1,0). Conversely, from the formula (7.2)
and the definition of the U,, it follows that

Un(m,y) = (_2)n8_ﬁ Kl(,ur) i/ (_2is)neisze—y\/m ds.

ox™ r “ o

Then
Z ann(ma y) = — / <Z bn(_2ls)n> emsefy\/m ds
ne0 2 J_ o =
; eizseiy\/miﬁ(s) ds

:g .

where the last integral follows from the definition of ¥(z) and provided
that the term-by-term integration is valid. This is guaranteed by the
facts that ¢ (z) has growth (1,0) and y > o. O

Theorem 7.2. The series Y. o by Vu(z,y) converges fory > o >0
if and only if

S bVl = [T T )

W Va(z,y) = —— —————(s)ds

o 2m oo 82+ p?

where (2) is an entire function of growth (1,0) and b, = %™ (0)/

{n!(~2i)"}.

Proof. The proof of this is the same as the proof of Theorem 7.1 but
with — Ko (ur) /7 replacing py Ky (uy)/(7r). O

Theorem 7.3. The series ), b, U, (z,y) converges fory > o >0
if and only if 37 bpUp (z,y) = (1/47) Jo+ [pemse vV =12y (s) ds
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where (z) is an entire function of growth (1,0) and b, = %™ (0)

J{n!(=29)"}.

Proof. The proof of this is the same as the proof of Theorem 7.1, but
with —pyY7(ur)/(2r) replacing py Ky (ur)/(7r). O

Theorem 7.4. The series Y, bnvn(x,y) converges fory > o >0
if and only if

eiTs =Y 52—;1,
va z,y) 47r/ / 0

where (2) is an entire function of growth (1,0) and b, = %™ (0)/

{n!(~2i)"}.

Proof. Again, this follows the proof of Theorem 7.3 with Yp(ur)/2
replacing —puyYs (ur)/(2r). O

In Theorem 7.3 if y approaches zero, then the contours I' and T
collapse to the real axis so that the fundamental solution becomes

1 1 .
S e@sevlsl ds
Tx?+y? 27

and thus reduces to Theorem 4.3 of [5]. In the case of Theorem 7.4,
the integral

eiTse sz—u 1 0 Lizs,—yls]|
——————————ds reducesto — — —ds
47T 27 —o0 |S|

when p approaches zero. This integral must be taken in the generalized
sense (see [15]) and has the evaluation

1 [ eizseyls| 1 5
—_— 2 ds=—1 2 2 L
21 J_o |8 T or og(z” +v7) + ™

where « is the Euler constant. This is essentially the fundamental solu-
tion for Laplace’s equation which gives rise to the associated functions

Vi(z,y) = —2"(n — D)!Re (2" /r*™) /7, n=1,2,3,....
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8. Summary of results. In this paper, we have established,
by means of transmutations, function theories for the Yukawa and
Helmholtz equations. These are analogues of the corresponding classi-
cal function theory for the Laplace equation. It is useful to summarize
how the elements of these theories match up. Corresponding to the con-
jugate polynomial sets {Re 2"} and {Im 2" }22 ; associated with the
Laplace equation, conjugate polynomial sets {u,(z,y)}, {vn(z,y)} and
{@n(z,v)},{0n(z,y)} involving Bessel polynomials were constructed,
respectively, for the Yukawa and the Helmholtz equations. The gen-
erating functions which were obtained have a strong resemblance to
those for the Laplace case. Suitable linear combinations of wu,(x,y)
and v, (z,y) satisfy general Cauchy-Riemann type conditions as do
appropriate linear combinations of the ,(z,y) and o,(z,y). If
the coefficients a,, in the series Y - a,z" satisfy the condition
limsup,,_, ., |a,|*/™ = 1/0, then both of the series > .°° a,u,(z,y)
and > 7 ( a,v, (@, y) converge to a solution of the Yukawa equation in
the disk 2 + y? < o?. Similarly, each of the series > aytn(z,y)
and ZZOZO a,0,(x,y) converge to a solution of the Helmholtz equation
in that same disk. This is in agreement with Laplace polynomial ex-
pansions. Associated function sets {U,(z,y)} and {V,,(x,y)} which
permit series expansions in regions exterior to disks were also con-
structed for the Yukawa equation as were the similar sets {U,(z,y)}
and {V,(z,y)} for the Helmholtz equation (these are analogues of the
function sets {Rez "} and {Imz "} for the Laplace equation). Gen-
erating functions for the various associated sets were developed along
with appropriate Cauchy-Riemann type equations. If the data associ-
ated with a Yukawa or Helmholtz equation is entire, then the solution of
that problem was shown to be represented by an integral that involves
a solution of the wave equation. Finally, Fourier transform criteria were
obtained for defining expansions of solutions of Yukawa and Helmholtz
equations in terms of the different sets of associated functions. Once
again, these are analogues of criteria for expansions of solutions of the
Laplace equation in terms of the sets {Re 27"} and {Imz~"}. In sum-
mary, we have matched up element by element the building blocks for
the function theory for the Yukawa and Helmholtz equations with the
corresponding ones for the analytic function theory associated with the
Laplace equation.
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