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AN ARITHMETIC APPROACH TO THE
DAVENPORT-HASSE RELATION OVER GF(p)

JAMES G. HUARD, BLAIR K. SPEARMAN AND KENNETH S. WILLIAMS

ABSTRACT. It is shown how the Davenport-Hasse relation
for Gauss sums over GF(p) can be deduced from two simple
arithmetic results.

1. Introduction. In this paper we prove two simple arithmetic
results and use them to given an elementary proof of the Davenport-
Hasse relation (Theorem 3) for Gauss sums over a finite field with
p elements, where p is an odd prime. Our first arithmetic result
(Theorem 1) gives a congruence (modp) for a certain root of unity
modulo p in terms of factorials. Hudson and Williams [2] deduced this
congruence from the Davenport-Hasse relation [1] and a congruence of
Yamamoto [5] for Gauss sums. Here we take the reverse approach.
We prove Theorem 1 by simple arithmetic manipulations and then
use it as a key step in a new proof of the Davenport-Hasse relation;
specifically, to determine the root of unity appearing in the relation.
The second arithmetic result (Theorem 2) compares the number of
integers satisfying two inequalities and is used to establish that the
quotient of products of Gauss sums in the Davenport-Hasse relation is
an algebraic integer. In addition to these two theorems we need only the
basic properties of Gauss sums, Jacobi sums, and the ring of integers
of a cyclotomic field. After proving the Davenport-Hasse relation we
use it to show that the inequality proved in Theorem 2 is actually an
equality.

2. Two arithmetic results. In this section we prove the two results
discussed in the introduction.
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Theorem 1. Let f, m and n be integers with f > 1, m > 2, n > 1,
and p=mnf +1 prime. Lett be an integer with 1 <t <m —1. Then

(ntf)! 1:[ (mjf) /H (mj+1t)f n®P=Y™ (mod p).

Proof. Consider the first mnf positive integers. Arrange these
consecutively in mn rows each of length f. Let Ap, h = 1,... ,mn,
be the product of the integers in the hth row, so that

(1) Ap = ((h=1f +1)---(rf) = (Rf)}/(h = D) L.

Next, arrange the first nt f positive integers in tf rows of length n. Let
By, 1l =1,...,n, be the product of the integers in the [th column, so
that

By =1l(l+n)---(+n(tf—1)).
Multiplying each of the f factors of Aj,, 14,1 =1,...,t,5=1,... ,n—1,
by n, we have

nf Ajmii = (jmnf +nif —nf +n)--- (jmnf + nif)
= (n(if — f+1)— )+ (nif —j) (modp),

so that
n—1 t n—1
H anAjm-l—i = H Bn—j (modp)
j=li=1 j=1

Multiplying both sides of this congruence by B,, = n(2n)---(tfn) =
ntf(tf)!, we obtain

n—1 t

Tt f)mn™= DU TT [ Aimei = (ntf)!(mod p);

j=1li=1

that is,

() ﬂ ((mj + )1/ (mif)D) = (ntf)!(mod p),
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from which the assertion of the theorem follows. m]

Before continuing, we note that since p = mnf + 1, we have

Apn—nt1 = ((mn—h)f+1)---((mn—h+1)f)
= (=hf)---(=hf + f —1)(modp),

for h =1,...,mn; that is,
(2) Amin—ni1 = (=1) Ay (mod p),

which we will use later in the proof of Theorem 3.

We also introduce some notation. For a real number z, [z] denotes
the greatest integer not exceeding z. For integers k(> 1) and a, [a]x
denotes the least nonnegative residue of @ modulo k. The following two
properties are immediate and will be used extensively in the proof of
our next result:

(3) [alk = a — [a/k]k;
(4) [ak]i = K[a];, for any positive integer .

Theorem 2. Let m and n be integers with m > 2 and n > 1. Let |
be an integer such that

(Imn)=1 and 1<I<mn.
Let t be an integer such that
(t,m)=1 and 1<t<m.
Let
A(m,n, L,t) =#{j=1,... ,n =1 | [ImJ]mn < mn — [[t];mn}
For any positive integer X\, let

B(m,n,L,t,\) =#{j=1,2,... ,An = 1| [ltj]mn < mn — [{t]mn}
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Then

(a) A(m,n,l,t) =n+nflt/mn] —[It/m] - 1;
and

(b) if t|n, then B(m,n,l,t,1) < A(m,n,l,t).

Proof. (a) Set r = [It/mn], so that by (3), [lt];, = It — rmn. Since
It/m is not an integer, we have

[Imjlmn < mn — [lt]mn
> [ljln <n—((It/m)—rn)  (by (4))
< [lj]n < n+rn— ([It/m] + 1),

whose right side is less than n. As j runs through 1,... ,n—1, so does
[[5]n- Hence,
A(manalat) = #{] €Z | 1 S] <n+rn— [lt/m] o 1}

=n+nllt/mn] — [It/m] — 1,
as required.
(b) Suppose that t|n, so that ny = n/t is an integer. Let I; = [{}mn, -
Since, by (4), the inequality [ltj]mn < mn — [lt]m, is equivalent to
[l1j)mn, < mny —ly, we have B(m,n,l,t,1) = B(m,ny,1,1,t).

Next define the integers j,,, w = 1,2, ..., [l1t/m]) by ju = [wmny /l1].
Since mn; /l; > 1, the j,,’s are distinct. The j,,’s satisfy the inequalities

1§w§jw§ znlt:n.

wmny _ [llt] mny it mny
m

l1 ll m l1
Furthermore, as wmny /1 is not an integer, we have (wmny/l;) — 1 <

Jw < wmnq/ly, from which we obtain
0<mny —l; <lijw — (w—1)mn; < mny.
Thus we have shown that the j,’s, w = 1,...,[l1¢/m], belong to the
set {j=1,...,n—1|[l1j]mn, € mn1 — [l1]mn, }. Hence,
B(m,n,l,t,1) = B(m,ny,l1,1,t)
<n-—1-[l1t/m]
=n—1—[(—[l/mnimni)t/m]  (by (3))
=n—1—[lt/m] +[l/mni]n
=n —1— [lt/m] + n[lt/mn]
= A(m,n,l,t) (by (a)). O
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In fact, we will see later from the Davenport-Hasse relation that
B(m,n,l,t,1) = A(m,n,l,t), where the condition ¢|n in (b) has been
removed.

3. Jacobi sums and Gauss sums. For any positive integer k, set
Br = exp(2mi/k). Let K denote the cyclotomic field Q(B,.r), where
m(> 2) and n(> 1) are integers. Let p be a prime with p = 1(mod mn)
and set f = (p — 1)/mn. Let Ok denote the ring of integers of K
and let P be a prime ideal of Ok dividing the prime p. Choose a
primitive root g modulo p so that g/ = 3,,,(mod P). For any integer
I # 0(modp), let ind,(I) be the least nonnegative integer for which
g™ = [(modp). Then define the character x(modp) of order mn
by X(9) = Bmn, so that X(I) = If(mod P). The Jacobi sum J(X", X*)
is defined for integers r and s by

(5) T00 ) = SN (@ (L - ),

and is in Ok. The Gauss sum G(X") is defined for an integer r by
p—1

G(X") =Y _X"(z)Bg,

which is an integer of Q(By,np). The basic formula relating Jacobi sums
and Gauss sums is

6)  JX,X%) = % if 7, 5,7+ s # 0(mod mn).
Let o, be the automorphism of K given by o4 (Bmn) = 8%,,, where a =

1,...,mn, (a,mn) =1, and set P, = g4(P), so that pOf is the product
of the P,’s. If r,s,7 + s #Z O(modmn), then J(X",X*)J(X",X*) = p,
so that J(X",X*)Ok is a squarefree product of some of the P,’s. The
congruence
(7)

O(mod Py-1), if [kr]mn + [kS]mn < mn,

J(X",x*) = (_1)k;sf+1 <(mn[ﬁr][zgin)f>(mode1), otherwise,
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(where k~! denotes the inverse of k¥ modulo mn) follows from (5) by
means of the binomial theorem. The argument is a straightforward
modification of that given in [2] for Theorem 5.1. From (7), we see
that

mn

0 Jeook= 11 B
k=1
(k,mn)=1
[kr]mn+[ks]mn<mn

A full discussion of Jacobi sums can be found, for example, in [3].

4. The Davenport-Hasse relation. We now give our new proof
of the relation [1]. We state the relation in two equivalent forms, first
using Gauss sums and then using Jacobi sums.

Theorem 3 (Davenport Hasse relation).  Using the notation of
Section 3, fort =1,.

(9) tn HG m] /HG m]+t B:;':Ltnindg(n)v

equivalently,
n—1

(10) [T X/ T (¢, X)) = Brige ™.
j=1

Proof. We first prove that equations (9) and (10) are equivalent by
expressing the left side of (9) in terms of Jacobi sums:

GO™) T2 G(X™)  G(xt) ”Hl (x™d)
[T}, G(xmitt) G(x*) G(xmitt)

n

1 G(X (j+1)) ‘n 1 G(ij)
G(xH) L Glemat)

- < G(X+t) ‘G(xmj)G(Xt)>
G(x7)G(x)  G(xmIH)

Il
I
-

S w.

S w.
|
-

(J(X™,x) /I (X, x"))  (by (6))-

~.
Il
—
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We define p(m,n,t,X) in K by

n—1

(11) p(m,n,t,x) = [[(J(x™,x") /T (X, x")).

j=1

It suffices to prove (10) under the assumption that (¢,m) = 1, for if
(t,m) = e, then t = et;, m = emq, (t;,my) = 1 for some integers
t; and my, and so (10) becomes p(my,n,t;, X?) = fo;ndg(n), where
X°(9) = Brn = Bman-

Assume now that (¢,mm) = 1. We show that we may also suppose
that tjn. To see this, let ¢ = (¢,n), and let ¢ be such that tc =
t' (mod mn). As cis coprime with mn/t', there is an integer x such that
a = ¢+ (mn/t')z is coprime with mn. Now apply the automorphism
04 to (10) to obtain

n—1
H J(Xamj,Xat)/J(Xatj,Xat) — /B;Znn;f indg(n)'
j=1

In the numerator of the left side we may change the product index
j to aj. After relabelling and using (11) we obtain p(m,n,t,Xx) =

nt'indg(n)

mn -

The next step is to show that p = p(m,n,t, X) is a root of unity for
t=1,...,m— 1, with (¢, m) =1 and t|n. Now, by (8),

n—1 mn mn
(12) pox=]] 11 Pk_l/ > P |
j=1 k=1 k=1
(k,mn)=1 (k,mn)=1
[kmj]mn~+[kt]mn<mn [ktF]mn+[kt]lmn<mn

that is, using the notation of Theorem 2,

mn

(13) o =[] (BEE0 B,
k=1
(k,mn)=1

which is an integral ideal by Theorem 2(b). Hence, p € Ok. The con-
jugates of p are given by o,(p), where a = 1,... ,mn, with (a,mn) = 1.
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A typical conjugate has modulus

oulp Ii XX, X))

3 h
|
i ,_.

[ (V5/v7) = 1.

J

Since p and all of its conjugates have modulus 1, by a classical result
(see, for example, Lemma 11.6 in [4]), p is a root of unity in Ok, so
that p = gy, for some integer u.

In order to determine the value of u, we need a prime ideal P,-1 that
does not divide any of the Jacobi sums occurring in p. By (12), k =
mn — 1 satisfies these conditions since (k, mn) = 1, [kmJ|mn + [kt]mn =
mn —mj + (mn —t) > m+ mn —t > mn, and [ktf]mn + [ktlme =
(mn —tj) + (mn —t) = 2mn — (j + 1)t > mn. We next use Theorem
1 and the properties of the Ap’s introduced in its proof to compute
p (mod Py-1). Using (7) and (11), we see that

=T (o (b)) /

(—1)ktf+1 ( (mrgktj%ﬁin)» ) (mod P, 1)

() () i

j=1
n—1 . .
((mn —mj)f)!((mn —tj —t)[)!
= mod Py, -1
L (=i =0 p1(Gn — e et B
n—1
— Amnfmjimnfm.]fl o 'jmnfn.uftJrl (mod Pk—l) (by (1))
j=1 mn—tjAmn—tj—1 """ Amn—-tj—t+1
n—1
(_l)thijrlAijrZ Am]+t
= mod Pj,—1 by (2
i (DT A Aggr - A ( ) (@)
n—1

((mj + ) )Mt f)!
L (mi HN(E7 + ) 1)

(mod Fy—1) (by (1))

.
H
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'nl

_ (mj+1t)f
= ntf I H (mif)! (modefl)

=n (P~ 1)t/’”(mod Py-1) (by Theorem 1).
Therefore,
p= n—ntf = nnktf = gnktfindg(n) = letyindg(n)(modpk_l)‘
But we also have p = g%, = g¢gf/“(mod P, 1), so that ght/* =
g"*tfinds(")(modp). This can occur only if kfu = nktfindy(n))
(mod (p — 1)); that is, v = ntindy(n)(modmn). Finally, we have

tind .
p = Bmn" s g required. a

Using Theorem 3, we may remove the condition ¢|n in Theorem 2(b)
and replace the inequality by an equality.

Theorem 4. Using the notation of Theorem 2, we have

(14) B(m,n,l,t,1) = A(m,n,l,t).

Proof. By (13), since p is a unit, we have (14). O
We have been unable to prove (14) in a purely arithmetic manner.

5. Final remarks. The impediment to extending our method to
prove the Davenport-Hasse relation for Gauss sums over an arbitrary
finite field is that it is not always possible to find a prime ideal of O
that divides p but does not divide any of the Jacobi sums occurring
in p. For example, consider m = 2, n = 2, K = Q(84) = Q(i),
g = 3% = 1(mod4), where f = (¢ — 1)/mn = 2 and 30 is a prime
ideal. The group of units of the field GF(3?) = {z + iy|z,y € GF(3)}
is generated by v = 1 + 2i, where v/ = (1 + 2i)? = i(mod30k).
We define the character X by X(y) = ¢ and the Jacobi sum by
JX",X%) = Yxear@),xz01 X (X)X?(1 — X). For t = 1, we have
p=J(X%X)/J(X,X) = 3/3 = 1, so that the only prime ideal dividing
3 also divides each Jacobi sum occurring in p.
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