SEQUENCES OF FIELDS WITH MANY SOLUTIONS TO THE UNIT EQUATION

DAVID GRANT

Dedicated to Wolfgang Schmidt on the occasion of his 60th birthday

Let K be a number field of degree δ over the rationals **Q** and S a finite set of places of K containing the archimedean places M_{∞} . Let U_S denote the group of S-units of K and U the group of units. Let s = #S. Then, for $\alpha, \beta \in K^{\times}$, the (two variable) S-unit equation is

(1)
$$\alpha x + \beta y = 1, \quad x, y \in U_S.$$

In its simplest form, $\alpha = \beta = 1$ and $S = M_{\infty}$; we call the resulting equation

$$(2) x+y=1, x,y\in U,$$

the "unit equation." For a general reference to S-unit equations, see [4]. Evertse has shown that the number of solutions to (1) is at most $3 \times 7^{\delta+2s}$ [3]. The dependence of the bound on s is interesting. An equivalence relation on S-unit equations is given in [5], and it is shown there that for fixed K and S, there are only finitely-many equivalence classes of S-unit equations with more than two solutions. Yet, it is shown in [6] that with $K = \mathbf{Q}$, $\alpha = \beta = 1$, (1) can have more than $\exp(Cs^{1/2}/\log(s))$ solutions, for some constant C>0. (A conjecture for the correct dependence on s of the number of solutions to (1) with $K = \mathbf{Q}$ and $\alpha = \beta = 1$ is also given in [6].)

On the other hand, it is unknown how the number of solutions to (2) should depend on δ . Nagell has shown that, for any $\delta \geq 5$, there are infinitely many number fields K of degree δ over **Q** with at least $6(2\delta-3)$ solutions to (2) [8]. (This bound is twice what Nagell stated, but Nagell did not distinguish between the solutions $(\varepsilon_1, \varepsilon_2)$ and $(\varepsilon_2, \varepsilon_1)$ to (2).) There is considerable room between Evertse's and Nagell's bounds; the purpose of this paper is to produce sequences of number fields where

Received by the editors on June 13, 1995, and in revised form on February 29, $^{1996}.$ Partially supported by NSF grant DMS-9303220.

the number of solutions to (2) grows quadratically in δ . Our examples come from cyclotomic and elliptic units, and we use mainly only well-known facts about these units. The first example of such a sequence of fields comes from:

Theorem 1. Let p be an odd prime and ζ a primitive pth root of 1. Let $K = \mathbf{Q}(\zeta)$ and $\delta_p = [\mathbf{Q}(\zeta) : \mathbf{Q}] = p - 1$. If m_p is the number of solutions to (2) in K, then

$$m_p \ge \delta_p^2/2$$
.

Proof. The proof follows easily from classical facts about cyclotomic units (see [11]). Let $1 \leq i$, $g \leq p-1$ with $i \neq g$. Note that $v_{iq} = (1-\zeta^i)/(\zeta^g-\zeta^i)$ is a cyclotomic unit, so

$$\frac{1-\zeta^i}{\zeta^g-\zeta^i} + \frac{1-\zeta^g}{\zeta^i-\zeta^g} = 1$$

gives the solution (v_{ig}, v_{gi}) to (2). Now let $1 \le k, l \le p-1$, with $k \ne l$. We want to show that $v_{ig} = v_{kl}$ if and only if (i, g) = (k, l).

Let $\lambda = 1 - \zeta$, which generates the lone prime in $\mathbf{Z}[\zeta]$ above p. Let $\mathbf{Z}[\zeta]_{\lambda}$ denote the completion of $\mathbf{Z}[\zeta]$ at λ . We can compute the first two terms in the λ -adic expansion of v_{iq} by

$$v_{ig} = \frac{(1 - \zeta^{i})/(1 - \zeta)}{(1 - \zeta^{i})/(1 - \zeta) - (1 - \zeta^{g})/(1 - \zeta)}$$
$$= \frac{\sum_{m=0}^{i-1} \zeta^{m}}{\sum_{m=g}^{i-1} \zeta^{m}} \text{ or } \frac{\sum_{m=0}^{i-1} \zeta^{m}}{-\sum_{m=i}^{g-1} \zeta^{m}},$$

depending on whether i > g or i < g. So

$$v_{ig} = \frac{\sum_{m=0}^{i-1} (1-\lambda)^m}{\sum_{m=q}^{i-1} (1-\lambda)^m} \quad \text{or} \quad \frac{\sum_{m=0}^{i-1} (1-\lambda)^m}{-\sum_{m=i}^{g-1} (1-\lambda)^m}.$$

In either case,

$$v_{ig} = \frac{i - i(i-1)\lambda/2 + O(\lambda^2)}{i - g - (i(i-1)/2 - g(g-1)/2)\lambda + O(\lambda^2)}$$

$$= \frac{i(1 - (i-1)\lambda/2) + O(\lambda^2)}{(i-g)(1 - (i+g-1)\lambda/2) + O(\lambda^2)}$$

$$= \left(\frac{i}{i-g}\right)(1 + g\lambda/2) + O(\lambda^2),$$

where $O(\lambda^2)$ denotes an element in $\lambda^2 \mathbf{Z}[\zeta]_{\lambda}$.

Suppose that $v_{ig} = v_{kl}$. Then

$$\left(\frac{i}{i-g}\right)\left(1+\frac{g}{2}\lambda\right) \equiv \left(\frac{k}{k-l}\right)\left(1+\frac{l}{2}\lambda\right) \bmod \lambda^2.$$

So if we let a bar denote reduction mod p, then $\bar{i}/(\bar{i}-\bar{g})=\bar{k}/(\bar{k}-\bar{l})$, and since $(p)\mathbf{Z}[\zeta]=(\lambda)^{p-1},\ p-1\geq 2$, we also have that $\bar{g}/2=\bar{l}/2$. Therefore, $\bar{g}=\bar{l}$ and hence $\bar{i}=\bar{k}$. So (i,g)=(k,l).

Therefore the solutions (v_{ig}, v_{gi}) to (2) are distinct, and we can conclude that the number of solutions m_p to (2) in K is at least

$$(p-1)(p-2) = \delta_p(\delta_p - 1) \ge \delta_p^2/2.$$

We can get a similar result for towers of fields generated by torsion points on elliptic curves with complex multiplication. We refer the reader to [9] and [10] for the following facts about elliptic curves and the theory of complex multiplication of elliptic curves. Let K be any field. Recall that an elliptic curve E over K can always be defined by a Weierstrass model

(3)
$$C: y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_i \in K.$$

The discriminant of the model is nonzero and is given by

$$\Delta(C) = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6,$$

where

$$b_2 = a_1^2 + 4a_2,$$
 $b_4 = 2a_4 + a_1a_3,$ $b_6 = a_3^2 + 4a_6,$ $b_8 = a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2.$

The j-invariant j and invariant differential ω of E are given by

$$j = \frac{(b_2^2 - 24b_4)^3}{\Delta(C)}, \qquad \omega = \frac{dx}{2y + a_1x + a_3}.$$

1020 D. GRANT

Fixing the point at infinity, the choice of Weierstrass model over K is unique up to transformations of the form

(4)
$$x = u^2 x' + r, y = u^3 y' + u^2 s x' + t,$$

$$r, s, t \in K, \ u \in K^{\times}.$$

If C' is the resulting Weierstrass model relating x' and y', then

(5)
$$\Delta(C') = u^{-12}\Delta(C).$$

Over a field of characteristic not 2 or 3, E has a model of the form

$$y^2 = x^3 + ax + b, \qquad a, b \in K,$$

and the j-invariant of E is zero if and only if a=0. Now let K be a number field and O_K its ring of integers. Let $\mathfrak p$ be a prime of O_K , $K_{\mathfrak p}$ the completion of K at $\mathfrak p$, and $R_{\mathfrak p}$ the integers of $K_{\mathfrak p}$. We will let $\mathfrak p$ also denote the maximal ideal of $R_{\mathfrak p}$. We say that a model C of E over $K_{\mathfrak p}$ with coefficients in $R_{\mathfrak p}$ is a model defined over $R_{\mathfrak p}$, and that it has good reduction if the reduced equation mod $\mathfrak p$ defines an elliptic curve over $R_{\mathfrak p}/\mathfrak p$. This happens if and only if $\Delta(C)$ is a unit in $R_{\mathfrak p}$. We say that E has good reduction at $\mathfrak p$ if it has a model over $R_{\mathfrak p}$ which has good reduction. If such a model exists it can always be obtained from a given Weierstrass model via a transformation as in (4). We say that E has potential good reduction at $\mathfrak p$ if there is a finite extension field N of $K_{\mathfrak p}$, whose maximal ideal of its ring of integers we denote by $\mathfrak P$, such that E obtains good reduction at $\mathfrak P$ over N. Any elliptic curve over a number field K has only finitely many primes at which it does not have good reduction.

Let K be an imaginary quadratic field, O_K its ring of integers and h its class number. We will let \mathfrak{a}^{ρ} denote the complex conjugate of an ideal \mathfrak{a} of O_K . Let H be the Hilbert class field of K, so [H:K]=h. Then there exists an elliptic curve E defined over H with complex multiplication by O_K , i.e., there exists an injection

(6)
$$i: O_K \to \operatorname{End}(E)$$
.

(Indeed, there are h many isomorphism classes of such E over an algebraic closure of \mathbf{Q} .) We write $[\alpha] = i(\alpha)$. We can (and will) always

assume the injection is normalized by $[\alpha]^*\omega = \alpha\omega$ for all $\alpha \in O_K$, where $[\alpha]^*\omega$ denotes the pullback of ω under the action of $[\alpha]$. The complex multiplication forces E to have everywhere potentially good reduction, which occurs precisely when the j-invariant of E is an algebraic integer. Let O denote the origin on E. Let \mathfrak{p} be a prime ideal of O_K . Then we let $E[\mathfrak{p}]$ denote the elements $x \in E$ such that $[\alpha]x = O$ for all $\alpha \in \mathfrak{p}$. We let $E[\mathfrak{p}]'$ denote $E[\mathfrak{p}] - O$. We let $H(E[\mathfrak{p}])$ be the field generated over H by the x- and y-coordinates of all the points of $E[\mathfrak{p}]$.

We will let $M = H(x(E[\mathfrak{p}]))$ denote the field generated over H by all the x-coordinates of points in $E[\mathfrak{p}]$ (which is the field generated over H by all even functions of points in $E[\mathfrak{p}]$). A major result of the theory of complex multiplication is that M is the ray class field over K of modulus \mathfrak{p} , so long as K is not $\mathbf{Q}(\sqrt{-3})$ (in which case j=0), or $\mathbf{Q}(\sqrt{-1})$ (in which case j=1728) [10, p. 135].

Theorem 2. Let $K \neq \mathbf{Q}(\sqrt{-3})$ be an imaginary quadratic field of class number h, and let O_K be its ring of integers. Let H be the Hilbert class field of K and E an elliptic curve defined over H with complex multiplication by O_K , so then the j-invariant j of E is a nonzero algebraic integer. Let $\mathfrak p$ be a prime ideal of O_K , prime to j, with $N\mathfrak p > 12$ (hence $\mathfrak p$ is prime to 6), such that E has good reduction at all primes of H above $\mathfrak p$. Then if $M = H(x(E[\mathfrak p]))$ and $m_{\mathfrak p}$ is the number of solutions to (2) in M, then $\delta_{\mathfrak p} = [M:Q] = h(N\mathfrak p - 1)$, and

$$m_{\mathfrak{p}} \geq \frac{1}{2^4 h^2} \delta_{\mathfrak{p}}^2,$$

where $N\mathfrak{p}$ denotes the norm of \mathfrak{p} from K to \mathbf{Q} .

Note that all but finitely many primes \mathfrak{p} of O_K satisfy the conditions of the theorem. For the proof we will use the following lemma.

Lemma. Let K, \mathfrak{p}, H, E and M be as in the statement of Theorem 2. Let E be given by a model (3) over H and $u \in E[\mathfrak{p}]'$. Let $\mathcal{C} \subset O_K$ denote a fixed reduced residue system mod \mathfrak{p} . Then for any $i, g, k \in \mathcal{C}$, with $g \neq \pm i \mod \mathfrak{p}$ and $k \neq \pm i \mod \mathfrak{p}$,

(7)
$$w_{igk} = \frac{x([k]u) - x([i]u)}{x([g]u) - x([i]u)}$$

is a unit in the ring of integers of M.

Proof of Lemma. We give two proofs. The first follows easily from the work of Kubert and Lang. First note that w_{igk} is independent of transformations (4) of a model as in (3). In particular, we can take E to be defined by the model

$$y^2 = x^3 - (g_2/4)x - (g_3/4), g_2, g_3 \in H.$$

To this model we can standardly assign a complex period τ , so that the complex points (x,y) of E are parameterized by $(\wp(z,\tau),(1/2)\wp'(z,\tau))$ for $z\in \mathbf{C}/(\mathbf{Z}+\mathbf{Z}\tau)$, where \wp is the Weierstrass \wp -function. Now let T be a variable in the upper-half complex plane and $L=\mathbf{Z}+\mathbf{Z}T$. Let p be the rational prime below $\mathfrak p$. Kubert and Lang [7, Chapter 2, Section 6] have shown that if r,s,t are in (1/p)L/L but not in L, and if $r\neq \pm s$, $r\neq \pm t \mod L$, then

$$\frac{\wp(t,T) - \wp(r,T)}{\wp(s,T) - \wp(r,T)}$$

is a unit in the integral closure of $\mathbf{Z}[J(T)]$ in the field of modular function of level p, where J(T) is 1728 times Klein's modular J-function (see [1]). Specializing T to τ , J becomes the j invariant of E, which is an algebraic integer; therefore, taking t = [k]u, s = [g]u, and r = [i]u, we get that w_{igk} is a unit.

For what follows, it makes sense to give a second proof, which is a modification of an argument given by de Shalit [2, pp. 53–54]. Note that, by (5), the expression

$$\varepsilon_{ki} = \frac{(x([k]u) - x([i]u))^6}{\Delta(C)}$$

is independent of transformations (4) of models as in (3). Let q be any prime of M not over $\mathfrak p$ and M_q the localization of M at q. Since E has potentially good reduction at q, we can find a finite extension N of M_q over which E has a transformed Weierstrass model C' (with coordinates x' and y') with good reduction at the maximal ideal Q of the ring of integers of N. Hence $\Delta(C')$ is unit at Q. Furthermore, x'([i]u) and x'([i]u) are integral at Q, and noncongruent mod Q, since the $\mathfrak p$ -torsion injects when reduced mod Q, and $k \neq \pm i \mod \mathfrak p$. Note

that the p-torsion injects if Q does not lie over \mathfrak{p}^{ρ} because then the characteristic of the residue field at Q is prime to p, and if Q lies over \mathfrak{p}^{ρ} and $\mathfrak{p}^{\rho} \neq \mathfrak{p}$, then the p-torsion injects anyway since the reduction of E at any prime over \mathfrak{p}^{ρ} is ordinary (the normalization of (6) shows that if $\alpha \in O_K$ is prime to \mathfrak{p} , then $[\alpha]$ is étale). Hence

$$\frac{(x'([k]u) - x'([i]u))^6}{\Delta(C')} = \varepsilon_{ki}$$

is a unit at Q. We conclude that w_{igk} , being a sixth root of $\varepsilon_{ki}/\varepsilon_{gi}$, is a unit at all primes q not lying over \mathfrak{p} .

Now let \mathcal{P} be any prime of $H(E[\mathfrak{p}])$ above \mathfrak{p} and \mathfrak{P} its restriction to H. Let $R_{\mathfrak{P}}$ and $R_{\mathcal{P}}$ be the rings of integers in the completions $H_{\mathfrak{P}}$ and $H(E[\mathfrak{p}])_{\mathcal{P}}$ of H at \mathfrak{P} and $H(E[\mathfrak{p}])$ at \mathcal{P} , respectively. By abuse of notation, we denote their maximal ideals by \mathfrak{P} and \mathcal{P} , respectively.

Since E has good reduction at \mathfrak{P} , and the residue characteristic of \mathfrak{P} is not 2 or 3, there is a model for E of the form

$$(8) y^2 = x^3 + ax + b, a, b \in R_{\mathfrak{P}},$$

which has good reduction at \mathfrak{P} . Since we took $K \neq \mathbf{Q}(\sqrt{-3})$, we have $a \neq 0$ in $R_{\mathfrak{P}}$, but since we also took \mathfrak{p} prime to j, a is not $0 \mod \mathfrak{P}$ as well.

Note that, by our normalization of (6), $E[\mathfrak{p}]$ is contained in E_1 , the $H(E[\mathfrak{p}])_{\mathcal{P}}$ -points of E which reduce to the origin mod \mathcal{P} . The points in E_1 can be parameterized by the points in a formal group. Using the model (8) for E, t = -x/y is a local parameter at the origin, and we have expansions

(9)
$$x = \frac{1}{t^2} - at^2 + (d^o \ge 4), \quad y = -\frac{1}{t^3} + at + (d^o \ge 3),$$

where $(d^o \geq n)$ denotes a formal power series with coefficients in $R_{\mathfrak{P}}$, all of whose terms have total degree at least n. If v_1 and v_2 are independent generic points of E and v_3 is the sum of v_1 and v_2 under the group morphism of E, then setting $t_i = t(v_i)$, we have

$$t_3 = \mathcal{F}(t_1, t_2),$$

where \mathcal{F} is a formal power series in two variables with coefficients in $R_{\mathfrak{P}}$. Now \mathcal{F} defines a formal group over $R_{\mathfrak{P}}$, and the map $u \to t(u)$ defines an isomorphism

(10)
$$E_1 \cong \mathcal{F}(\mathcal{P}),$$

from the $H(E[\mathfrak{p}])_{\mathcal{P}}$ -points of E in the kernel of reduction $\operatorname{mod} \mathcal{P}$ to the points of \mathcal{F} which lie in \mathcal{P} .

Let $\alpha \in O_K$. From our normalization of (6), we have

$$[\alpha]t = \alpha t + (d^o \ge 2),$$

where $[\alpha]t$ denotes the pullback of t under the action of $[\alpha]$. Note that $[\alpha]t$ has coefficients in $R_{\mathfrak{P}}$ since (8) has good reduction at \mathfrak{P} . So if π is a uniformizer for \mathfrak{p} in O_K , then $E[\mathfrak{p}]$ corresponds via (10) to the zeros of $[\pi]t$. By the \mathfrak{P} -adic Weierstrass preparation theorem [11, p. 115], we can write

$$[\pi]t = \Pi^n f(t)u(t),$$

where u is a unit power series over $R_{\mathfrak{P}}$, Π is a uniformizer in $R_{\mathfrak{P}}$ for \mathfrak{P} , $n \geq 0$, and $f \in R_{\mathfrak{P}}[t]$ is a distinguished polynomial, i.e., $f \equiv t^d \mod \mathfrak{P}$, where d is the degree of f. Since our model for E has good reduction at \mathfrak{P} , $[\pi]$ has finite height $\mod \mathfrak{P}$ so n = 0. Hence $E[\mathfrak{p}]$ corresponds to the zeros of f, and we have $d = \#E[\mathfrak{p}] = N\mathfrak{p}$. Since ord $\mathfrak{p}\pi = 1$ and \mathfrak{p} is unramified in H, f(t)/t is an Eisenstein polynomial over $R_{\mathfrak{P}}$. Therefore, if $u \in E[\mathfrak{p}]'$, t(u) is a uniformizer for \mathcal{P} in $R_{\mathcal{P}}$. By (11), for $\alpha \in (O_K/\mathfrak{p}O_K)^{\times}$,

$$\frac{t([\alpha]u)}{t(u)} \equiv \alpha \mod \mathcal{P}.$$

Hence, by (7), the lead term in the t(u)-adic expansion of w_{igk} is

$$\frac{1/(k^2t(u)^2) - 1/(i^2t(u)^2)}{1/(g^2t(u)^2) - 1/(i^2t(u)^2)} = \frac{(i^2 - k^2)g^2}{(i^2 - g^2)k^2}.$$

So w_{igk} is a unit at \mathcal{P} as well, so is a unit in $H(E[\mathfrak{p}])$, and hence in M.

Proof of Theorem. We will maintain the notation as in the proof of the lemma. First of all, since f(t)/t has degree $N\mathfrak{p}-1$, and is

irreducible by Eisenstein's criterion, we have $[H(E[\mathfrak{p}]):H] \geq N\mathfrak{p}-1$. On the other hand, if G is the Galois group of $H(E[\mathfrak{p}])/H$, then we have an injection $G \to (O_K/\mathfrak{p}O_K)^\times$, given by $\sigma \to \alpha$ if $\sigma(u) = [\alpha]u$ for any $u \in E[\mathfrak{p}]'$. Hence $[H(E[\mathfrak{p}]):H] = N\mathfrak{p}-1$, and $H(E[\mathfrak{p}])/H$ is totally ramified at any prime over \mathfrak{p} . Since M is the fixed subfield of $\langle -1 \rangle \subseteq G$, $[M:H] = (1/2)(N\mathfrak{p}-1)$, and so $\delta_{\mathfrak{p}} = h(N\mathfrak{p}-1)$, and M/H is totally ramified at any prime over \mathfrak{p} (which all also follows from class field theory if $j \neq 1728$).

Fix $u \in E[\mathfrak{p}]'$. Let $i, g \in \mathcal{C}$ with $i, g \neq \pm 1 \mod \mathfrak{p}$ and $g \neq \pm i \mod \mathfrak{p}$. Then from the lemma, we have that

$$w_{ig} = \frac{x(u) - x([i]u)}{x([g]u) - x([i]u)}, \qquad w_{gi} = \frac{x(u) - x([g]u)}{x([i]u) - x([g]u)}$$

are units in M, so

$$w_{ig} + w_{gi} = 1$$

gives the solution (w_{ig}, w_{gi}) to (2). (For other diophantine applications of this solution to the unit equation, see [7, Chapter 8]). We will show that, for $k, l \in \mathcal{C}$, $k, l \neq \pm 1 \mod \mathfrak{p}$, $l \neq \pm k \mod \mathfrak{p}$, then if $w_{ig} = w_{kl}$, then either $(k^2, l^2) \equiv (i^2, g^2) \mod \mathfrak{p}$ or $(k^2, l^2) \equiv (1 - g^2, 1 - i^2) \mod \mathfrak{p}$. As in the proof of Theorem 1, we want to compute the first two nontrivial terms in the \mathcal{P} -adic expansion of w_{ig} using t(u) as a uniformizer.

Let E be defined by a model as in (8). Continuing the computation of \mathcal{F} as in [9, p. 114], we get

$$(12) \quad \mathcal{F}(t_1, t_2) = t_1 + t_2 - 2at_1t_2(t_1 + t_2)(t_1^2 + t_1t_2 + t_2^2) + (d^o \ge 7).$$

A simple induction using (12) shows that, for all $n \in \mathbb{Z}$,

(13)
$$[n]t = nt - 2a\left(\frac{n^5 - n}{5}\right)t^5 + (d^o \ge 7).$$

It is an easy, if somewhat painful, exercise to show that (13) holds for all $n \in O_K$. (One notes that the n for which (13) holds form a ring containing \mathbf{Z} , so one needs only to verify that (13) holds for $n = \eta = \sqrt{d}$ or $n = \eta = (1 + \sqrt{d})/2$, whichever η generates O_K over \mathbf{Z} for some $d \in \mathbf{Z}$. To show that η satisfies (13), we first show that

satisfies (13) using $[\sqrt{d}][\sqrt{d}] = [d]$. Then (13) also holds for $1 + \sqrt{d}$ and 2, so one deduces that if $\eta = (1 + \sqrt{d})/2$, then (13) holds for η by using $[2][\eta] = [1 + \sqrt{d}]$.

The first two nontrivial terms of the t(u)-adic expansion of w_{ig} can be read off from

$$\begin{split} \frac{(1/t(u)^2 - at(u)^2) - (1/t([i]u)^2 - at([i]u)^2) + O(t(u)^4)}{(1/t([g]u)^2 - at([g]u)^2) - (1/t([i]u)^2 - at([i]u)^2) + O(t(u)^4)}, \\ &= \frac{(i^2 - 1)g^2}{i^2 - g^2} \bigg(1 + \frac{a}{5}i^2(1 - g^2)t(u)^4 + O(t(u)^6) \bigg), \end{split}$$

which follows from (9), (13), and a Mathematica calculation. Here $O(t(u))^n$ denotes an element of $t(u)^n \mathbf{R}_{\mathcal{P}}$. Let a bar denote reduction mod \mathfrak{p} . Let $\alpha = i^2$ and $\beta = g^2$, so if $w_{ig} = w_{kl}$, with $\gamma = k^2$ and $\delta = l^2$, then we get

$$(\bar{\alpha}-1)\bar{\beta}/(\bar{\alpha}-\bar{\beta})=(\bar{\gamma}-1)\bar{\delta}/(\bar{\gamma}-\bar{\delta}).$$

Now since a is not $0 \mod \mathfrak{P}$, and since $H(E[\mathfrak{p}])/H$ is totally ramified over \mathfrak{P} , we have ord $p\mathfrak{p} = N\mathfrak{p} - 1 > 4$, so we also get

$$\bar{\alpha}(1-\bar{\beta})=\bar{\gamma}(1-\bar{\delta}).$$

Solving, we get $(\bar{\gamma}, \bar{\delta}) = (\bar{\alpha}, \bar{\beta})$ or $(\bar{\gamma}, \bar{\delta}) = (1 - \bar{\beta}, 1 - \bar{\alpha})$, so we get $(k^2, l^2) \equiv (i^2, g^2) \mod \mathfrak{p}$ or $(k^2, l^2) \equiv (1 - g^2, 1 - i^2) \mod \mathfrak{p}$. Hence there are at most eight pairs (k, l) so that $w_{ig} = w_{kl}$. Hence the number of solutions $m_{\mathfrak{p}}$ of (2) in M is at least

$$\frac{1}{8}(\#\mathcal{C} - 2)(\#\mathcal{C} - 4) = \frac{1}{8}(N\mathfrak{p} - 3)(N\mathfrak{p} - 5)$$
$$> \frac{1}{16}(N\mathfrak{p} - 1)^2$$

since $N\mathfrak{p} > 12$. Since $\delta_{\mathfrak{p}} = h(N\mathfrak{p} - 1)$, we have

$$m_{\mathfrak{p}}>rac{1}{2^4h^2}\delta_{\mathfrak{p}}^2.$$

Remarks. 1) The conditions $K \neq \mathbf{Q}(\sqrt{-3})$ and \mathfrak{p} prime to j can presumedly be dropped. Without these conditions the degree 7 terms in the expansion of \mathcal{F} would have to be investigated.

2) I do not know if $w_{ig} = w_{kl}$ ever occurs without $(k, l) \equiv (\pm i, \pm g) \mod \mathfrak{p}$. The extra possibility $(\gamma, \delta) \equiv (1 - \beta, \alpha) \mod \mathfrak{p}$ may just be an artifact of the proof. Certainly, if $i^2 + g^2 \equiv 1 \mod \mathfrak{p}$, the eight possibilities coalesce into four.

Corollary. Let $\varepsilon > 0$, and $c(\varepsilon) > 0$ be an arbitrary constant. Then there are infinitely many imaginary quadratic fields K_i , each with infinitely many extensions M_{ig} , such that if m_{ig} is the number of solutions to (2) in M_{ig} and $\delta_{ig} = [M_{ig} : \mathbf{Q}]$, then

$$m_{ig} > c(\varepsilon)\delta_{ig}^{2-\varepsilon}$$
.

These M_{ig} can be chosen to be distinct.

Proof. Let $K_i \neq \mathbf{Q}(\sqrt{-3})$, $\mathbf{Q}(\sqrt{-1})$ for $i \in \mathbf{N}$ be some ordering of the (all but two) imaginary quadratic number fields. Let O_{K_i} be the ring of integers of K_i , H_i the Hilbert class field of K_i , and h_i the class number of K_i . Let E_i be an elliptic curve defined over H_i with normalized complex multiplication by O_{K_i} . Let \mathfrak{p}_{ig} , $g \in \mathbf{N}$, be some ordering of the prime ideals of O_{K_i} which satisfy the conditions of Theorem 2, with the additional conditions that \mathfrak{p}_{ig} not be ramified over \mathbf{Q} , and that $N\mathfrak{p}_{ig} - 1 > (c(\varepsilon)2^4h_i^2)^{1/\varepsilon}/h_i$. These include all but finitely many primes of O_{K_i} . Then if $M_{ig} = H_i(x(E_i[\mathfrak{p}_{ig}]))$, Theorem 2 implies that

$$m_{ig} > \frac{1}{2^4 h_i^2} \delta_{ig}^{2-\varepsilon} (h_i (N \mathfrak{p}_{ig} - 1))^{\varepsilon} > c(\varepsilon) \delta_{ig}^{2-\varepsilon},$$

where m_{ig} is the number of solutions to (2) in M_{ig} and $\delta_{ig} = [M_{ig} : \mathbf{Q}]$.

For the last part of the corollary, we first note that $M_{ig} = M_{ik}$ implies that g = k, for if $\mathfrak{p}_{ig} \neq \mathfrak{p}_{ik}$, then \mathfrak{p}_{ig} ramifies in M_{ig} but not in M_{ik} . Suppose now that $M_{ig} = M_{kl}$. Since M_{ig} is the ray class field over K_i of modulus \mathfrak{p}_{ig} , the only primes of H_i which ramify in M_{ig} are the primes above \mathfrak{p}_{ig} , which do so totally, so have a ramification index of $(1/2)(N\mathfrak{p}_{ig}-1)>2$ over H_i . Since H_i/K_i is unramified, the only primes in M_{ig} not above \mathfrak{p}_{ig} which are ramified over \mathbf{Q} have a ramification index of at most $[K_i:\mathbf{Q}]=2$. Therefore, in M_{ig} , there is a distinguished set of primes with a ramification index over \mathbf{Q} greater than 2 (namely the primes above \mathfrak{p}_{ig}), and we can recover H_i from M_{ig}

as the inertial subfield in the Galois closure of M_{ij} over \mathbf{Q} of any of these primes, since \mathfrak{p}_{ig} is unramified over \mathbf{Q} . And since H_i/K_i is unramified, the discriminant D_{H_i} of H_i over \mathbf{Q} uniquely determines the absolute value of the discriminant D_{K_i} of K_i over \mathbf{Q} , via $D_{H_i} = D_{K_i}^{[H_i:\mathbf{Q}]/2}$. Since an imaginary quadratic field is uniquely determined by the absolute value of its discriminant, we can conclude that if $M_{ig} = M_{kl}$, then k = i and we have already noted that this forces l = g.

Remarks. Since there are only finitely many imaginary quadratic fields of given class number, for a given δ , there are only finitely many of the M_{ig} with $[M_{ig}:\mathbf{Q}] \leq \delta$.

Acknowledgment. I would like to thank E.B. Burger for useful discussions on this material.

REFERENCES

- 1. T. Apostol, Modular functions and Dirichlet series in number theory, 2nd edition, Springer-Verlag, New York, 1990.
- 2. E. de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Academic Press, Orlando, 1987.
- 3. J-H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.
- 4. J-H. Evertse, K. Györy, C.L. Stewart and R. Tidjeman, S-unit equations and their applications, in New advances in transcendence theory, Cambridge, 1988.
- On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
- 6. P. Erdös, C.L. Stewart and R. Tidjeman, Some diophantine equations with many solutions, Comp. Math. 66 (1988), 37-56.
 - 7. D.S. Kubert and S. Lang, Modular units, Springer Verlag, New York, 1981.
- 8. T. Nagell, Quelques problèmes relatif aux unités algébriques, Ark. Math. 8 (1969), 115-127.
- 9. J.H. Silverman, *The arithmetic of elliptic curves*, Springer Verlag, New York, 1986.
- 10. ——, Advanced topics in the arithmetic of elliptic curves, Springer Verlag, New York, 1994.

UNIT EQUATION

 ${\bf 11.}$ L. Washington, $Introduction\ to\ cyclotomic\ fields,$ Springer Verlag, New York, 1982.

Department of Mathematics, Campus Box 395, University of Colorado at Boulder, Boulder, Colorado 80309-0395 $E\text{-}mail\ address:}$ grant@boulder.colorado.edu