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Let K be a number field of degree § over the rationals Q and S a
finite set of places of K containing the archimedean places M. Let
Us denote the group of S-units of K and U the group of units. Let
s = #S. Then, for a,8 € K*, the (two variable) S-unit equation is

(1) ax + Py =1, z,y € Us.

In its simplest form, & = 8 = 1 and S = M,; we call the resulting
equation

(2) r+y=1, z,y € U,

the “unit equation.” For a general reference to S-unit equations, see
[4]. Evertse has shown that the number of solutions to (1) is at most
3 x 7%t25 [3]. The dependence of the bound on s is interesting. An
equivalence relation on S-unit equations is given in [5], and it is shown
there that for fixed K and S, there are only finitely-many equivalence
classes of S-unit equations with more than two solutions. Yet, it is
shown in [6] that with K = Q, « = 8 = 1, (1) can have more than
exp(C's'/?/log(s)) solutions, for some constant C' > 0. (A conjecture
for the correct dependence on s of the number of solutions to (1) with
K =Q and a = =1 is also given in [6].)

On the other hand, it is unknown how the number of solutions to (2)
should depend on §. Nagell has shown that, for any § > 5, there are
infinitely many number fields K of degree § over Q with at least 6(25—3)
solutions to (2) [8]. (This bound is twice what Nagell stated, but Nagell
did not distinguish between the solutions (e1,¢2) and (e2,€1) to (2).)
There is considerable room between Evertse’s and Nagell’s bounds; the
purpose of this paper is to produce sequences of number fields where

Received by the editors on June 13, 1995, and in revised form on February 29,
1996.
Partially supported by NSF grant DMS-9303220.

Copyright ©1996 Rocky Mountain Mathematics Consortium

1017



1018 D. GRANT

the number of solutions to (2) grows quadratically in §. Our examples
come from cyclotomic and elliptic units, and we use mainly only well-
known facts about these units. The first example of such a sequence of
fields comes from:

Theorem 1. Let p be an odd prime and ¢ a primitive pth root of 1.
Let K = Q(() and 6§, = [Q(C) : Q] = p— 1. If my is the number of
solutions to (2) in K, then

mPZJZ/Q.

Proof. The proof follows easily from classical facts about cyclotomic
units (see [11]). Let 1 < i, ¢ < p— 1 with ¢ # g. Note that
vig = (1 —¢%)/(¢9 — ¢*) is a cyclotomic unit, so

Lo¢  1=¢

¢I—¢ =g
gives the solution (v;g,vg;) to (2). Now let 1 <k, 1 <p—1, with k # L.
We want to show that v;q = vy if and only if (¢,9) = (k,1).

Let A = 1 — ¢, which generates the lone prime in Z[(] above p. Let
Z[(]» denote the completion of Z[(] at A. We can compute the first two
terms in the A-adic expansion of v;4 by

B (< /O
O A=)/(1-0-(1=¢9)/(1-¢)
i—1 rm i-1 rm
_ Zm:O C or Zm:O C
P D ARG
depending on whether ¢ > g or i < g. So
D D¢ SV YL =A™
vig = =5 — or ) —.

In either case,
. i—i(i—1)A/2+0(N\?)
B T g G- 1)/2—glg— 1)/2)A T O(N?)
i(1— (i —1)A/2) + O(\?)
(i—9)I— (i +g-1)A/2) +O(N?)

<é> (L+g)/2) + O(\?),
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where O(\?) denotes an element in A2Z[(],.

Suppose that v;g = vy, Then

()03 = () ) e

So if we let a bar denote reduction modp, then i/(i — g) = k/(k — 1),
and since (p)Z[¢] = (A\)P~', p—1 > 2, we also have that g/2 = [/2.
Therefore, § = | and hence i = k. So (i,9) = (k,1).

Therefore the solutions (vjg,vg;) to (2) are distinct, and we can
conclude that the number of solutions m, to (2) in K is at least

(p—1(p—2)=06p(6, ~1)>62/2. O

We can get a similar result for towers of fields generated by torsion
points on elliptic curves with complex multiplication. We refer the
reader to [9] and [10] for the following facts about elliptic curves and
the theory of complex multiplication of elliptic curves. Let K be any
field. Recall that an elliptic curve E over K can always be defined by
a Weierstrass model

(3)  C:y®+arzy + azy = > + axx® + agx + ag, a; € K.
The discriminant of the model is nonzero and is given by

A(C) = —b3bg — 8b3 — 27bz + babybs,
where

by = a% + 4ao, by = 2a4 + ayas, b = ag + 4ag,

2 2 2
bg = aja¢ + 4azas — arazas + azaz — ay.

The j-invariant j and invariant differential w of E are given by

(b2 — 24by)* da

= —=— w=-——\
J A(C) 2y+aiz+as
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Fixing the point at infinity, the choice of Weierstrass model over K is
unique up to transformations of the form

T :uzx'—}-r, y:usy'—}-uzsx'—l—t,
r,s,t € K, ue K*.

(4)

If C' is the resulting Weierstrass model relating z’ and y’, then

(5) A(C") = u™2A(C).

Over a field of characteristic not 2 or 3, E has a model of the form
v =a®+ax+0, a,be K,

and the j-invariant of F is zero if and only if a = 0. Now let K be
a number field and Ok its ring of integers. Let p be a prime of Ok,
K, the completion of K at p, and R, the integers of K,. We will let
p also denote the maximal ideal of R,. We say that a model C' of E
over K, with coefficients in R, is a model defined over R, and that
it has good reduction if the reduced equation modp defines an elliptic
curve over Ry, /p. This happens if and only if A(C) is a unit in R,. We
say that E has good reduction at p if it has a model over R, which has
good reduction. If such a model exists it can always be obtained from
a given Weierstrass model via a transformation as in (4). We say that
FE has potential good reduction at p if there is a finite extension field
N of K,, whose maximal ideal of its ring of integers we denote by ‘B,
such that F obtains good reduction at 3 over N. Any elliptic curve
over a number field K has only finitely many primes at which it does
not have good reduction.

Let K be an imaginary quadratic field, O its ring of integers and
h its class number. We will let a” denote the complex conjugate of an
ideal a of Ok. Let H be the Hilbert class field of K, so [H : K| = h.
Then there exists an elliptic curve E defined over H with complex
multiplication by Ok, i.e., there exists an injection

(6) i:Og — End (E).

(Indeed, there are h many isomorphism classes of such E over an
algebraic closure of Q.) We write [a] = i(a)). We can (and will) always
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assume the injection is normalized by [a]*w = aw for all & € Ok, where
[a]*w denotes the pullback of w under the action of [@]. The complex
multiplication forces E to have everywhere potentially good reduction,
which occurs precisely when the j-invariant of F is an algebraic integer.
Let O denote the origin on E. Let p be a prime ideal of Og. Then we
let E[p] denote the elements « € E such that [a]x = O for all o € p.
We let E[p]" denote E[p] — O. We let H(E[p]) be the field generated
over H by the z— and y—coordinates of all the points of E[p].

We will let M = H(z(E][p])) denote the field generated over H by all
the z-coordinates of points in E[p] (which is the field generated over H
by all even functions of points in E[p]). A major result of the theory
of complex multiplication is that M is the ray class field over K of
modulus p, so long as K is not Q(v/—3) (in which case j = 0), or
Q(+v/—1) (in which case j = 1728) [10, p. 135].

Theorem 2. Let K # Q(v/—3) be an imaginary quadratic field
of class number h, and let Ok be its ring of integers. Let H be the
Hilbert class field of K and E an elliptic curve defined over H with
complex multiplication by Ok, so then the j-invariant j of E is a
nonzero algebraic integer. Let p be a prime ideal of Ok, prime to j,
with Np > 12 (hence p is prime to 6), such that E has good reduction
at all primes of H above p. Then if M = H(x(E[p])) and my is the
number of solutions to (2) in M, then §, = [M : Q] = h(Np — 1), and

I
my 2 24h25|3’

where Ny denotes the norm of p from K to Q.

Note that all but finitely many primes p of Ok satisfy the conditions
of the theorem. For the proof we will use the following lemma.

Lemma. Let K,p,H,E and M be as in the statement of Theorem
2. Let E be given by a model (3) over H and u € E[p]’. Let C C Ok
denote a fixed reduced residue system modp. Then for any i,g9,k € C,
with g # +i mod p and k # +i mod p,

2([k]u) — z([i]u)

Yok = 2 ((glw) — 2(([{u)

(7)
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s a unit in the ring of integers of M.

Proof of Lemma. We give two proofs. The first follows easily from
the work of Kubert and Lang. First note that w;g; is independent of
transformations (4) of a model as in (3). In particular, we can take E
to be defined by the model

v =2 — (92/4)x — (93/4), 92,95 € H.

To this model we can standardly assign a complex period 7, so that the
complex points (z,y) of E are parameterized by (p(z,7), (1/2)'(z, 7))
for z € C/(Z + Zt), where p is the Weierstrass p-function. Now let T’
be a variable in the upper-half complex plane and L = Z + ZT'. Let p
be the rational prime below p. Kubert and Lang [7, Chapter 2, Section
6] have shown that if r, s, ¢ are in (1/p)L/L but not in L, and if r # +s,
r # £t mod L, then

p(ta T) 7 P(T, T)

p(sa T) - @(7‘, T)

is a unit in the integral closure of Z[J(T)] in the field of modular
function of level p, where J(7") is 1728 times Klein’s modular J-function
(see [1]). Specializing T to 7, J becomes the j invariant of E, which is
an algebraic integer; therefore, taking t = [k]u, s = [g]u, and r = [i]u,
we get that wigy is a unit.

For what follows, it makes sense to give a second proof, which is a
modification of an argument given by de Shalit [2, pp. 53-54]. Note
that, by (5), the expression

o (@(Mu) — = ([ilu)"
o A(C)

is independent of transformations (4) of models as in (3). Let g be
any prime of M not over p and M, the localization of M at q. Since
E has potentially good reduction at ¢, we can find a finite extension
N of M, over which E has a transformed Weierstrass model C’ (with
coordinates z' and y’) with good reduction at the maximal ideal @ of
the ring of integers of N. Hence A(C’) is unit at Q. Furthermore,
2'([k]u) and z'([i]u) are integral at @, and noncongruent mod @, since
the p-torsion injects when reduced mod@, and k& # +i mod p. Note
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that the p-torsion injects if ) does not lie over p” because then the
characteristic of the residue field at @) is prime to p, and if @ lies over
p? and p” # p, then the p-torsion injects anyway since the reduction
of E at any prime over p” is ordinary (the normalization of (6) shows
that if & € Ok is prime to p, then [a] is étale). Hence

(@' ([k]u) — 2’ ([i]u))®
A(C7)

= Eki

is a unit at Q. We conclude that w;gx, being a sixth root of ex; /ey, is
a unit at all primes ¢ not lying over p.

Now let P be any prime of H(E[p]) above p and P its restriction to
H. Let Ry and Rp be the rings of integers in the completions Hgp
and H(E[p])p of H at B and H(E[p]) at P, respectively. By abuse of
notation, we denote their maximal ideals by ‘B and P, respectively.

Since E has good reduction at I3, and the residue characteristic of ‘3
is not 2 or 3, there is a model for E of the form

(8) v =a2® +ax +0, a,b € Ry,

which has good reduction at B. Since we took K # Q(v/—3), we have
a # 0 in Ry, but since we also took p prime to j, a is not 0 mod [ as
well.

Note that, by our normalization of (6), E[p] is contained in Ej, the
H(E[p])p-points of E which reduce to the origin modP. The points
in F; can be parameterized by the points in a formal group. Using the
model (8) for E, t = —z/y is a local parameter at the origin, and we
have expansions

1 9 1
(9)  e=g-a+(@d>4), y=-gtat(d23),
where (d° > n) denotes a formal power series with coefficients in Ry, all
of whose terms have total degree at least n. If v; and v2 are independent
generic points of £ and vz is the sum of v; and vy under the group
morphism of E, then setting ¢; = t(v;), we have

ts = F(t1,t2),
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where F is a formal power series in two variables with coefficients in
Ryg. Now F defines a formal group over Ry, and the map u — ¢(u)
defines an isomorphism

from the H(E[p])p-points of E in the kernel of reduction mod P to the
points of F which lie in P.

Let o € Ok . From our normalization of (6), we have
(11) [a]t = at + (d° > 2),

where [a]t denotes the pullback of ¢ under the action of [a]. Note that
[a]t has coefficients in Ry since (8) has good reduction at . So if 7 is
a uniformizer for p in O, then E[p] corresponds via (10) to the zeros
of [r]t. By the PB-adic Weierstrass preparation theorem [11, p. 115],
we can write

[t =TI £ ()u(t),

where u is a unit power series over Ry, Il is a uniformizer in Ry for B,
n >0, and f € Ry[t] is a distinguished polynomial, i.e., f = t¢ mod B,
where d is the degree of f. Since our model for E has good reduction
at P, [r] has finite height modP3 so n = 0. Hence E[p] corresponds
to the zeros of f, and we have d = #FE[p] = Np. Since ordpm = 1
and p is unramified in H, f(t)/t is an Eisenstein polynomial over Rgy.
Therefore, if u € E[p]’, t(u) is a uniformizer for P in Rp. By (11), for
a € (OK/pOK)Xa

= a mod P.

Hence, by (7), the lead term in the ¢(u)-adic expansion of wigy is

/(B t(w)?) = 1/(t(w)?) _ (i - k?)g?

1/(g°t(w)?) = 1/(@t(w)?) (@ - g*)k>

So wjgk is a unit at P as well, so is a unit in H(E[p]), and hence in M.
o

Proof of Theorem. We will maintain the notation as in the proof
of the lemma. First of all, since f(¢)/t has degree Np — 1, and is
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irreducible by Eisenstein’s criterion, we have [H(E[p]) : H] > Np — 1.
On the other hand, if G is the Galois group of H(E[p])/H, then we
have an injection G — (Ok /pOk)™, given by 0 — « if o(u) = [a]u
for any u € E[p]’. Hence [H(E[p]) : H] = Np — 1, and H(E[p])/H is
totally ramified at any prime over p. Since M is the fixed subfield of
(-1) CG,[M:H|=(1/2)(Np—1), and so §, = h(Np—1), and M/H
is totally ramified at any prime over p (which all also follows from class
field theory if j # 1728).

Fix u € E[p]’. Let i,g € C with 4,9 # £1 mod p and g # +i mod p.
Then from the lemma, we have that

(w) = 2(lglu)

) — () e
& z 2((iJu) — «([g]u)

z((glu) — z([i]u)’

are units in M, so
Wig + Wy = 1

gives the solution (w;g, wg;) to (2). (For other diophantine applications
of this solution to the unit equation, see [7, Chapter 8]). We will
show that, for k,l € C, k,l # £1modp, [ # +k mod p, then if
Wiy = Wy, then either (k%,1%) = (i, g?) mod p or (k?,1%) = (1—g¢*,1—
i?) mod p. As in the proof of Theorem 1, we want to compute the first
two nontrivial terms in the P-adic expansion of w;, using t(u) as a

uniformizer.

Let E be defined by a model as in (8). Continuing the computation
of F asin [9, p. 114], we get

(12)  F(ty,ta) = t1 +to — 2atyta(ty + t2) (3 + tity +t3) + (d° > 7).
A simple induction using (12) shows that, for all n € Z,

n577’L

(13) [n)t = nt — 2a< >t5 + (d° > 7).

It is an easy, if somewhat painful, exercise to show that (13) holds
for all n € Og. (One notes that the n for which (13) holds form
a ring containing Z, so one needs only to verify that (13) holds for
n=mn=+/dorn=mn=(1++/d)/2, whichever i generates Ox over Z
for some d € Z. To show that 7 satisfies (13), we first show that v/d
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satisfies (13) using [v/d][v/d] = [d]. Then (13) also holds for 1+ +/d and
2, so one deduces that if n = (14+/d)/2, then (13) holds for 7 by using
[2]ln] = [1 + Vd].)

The first two nontrivial terms of the ¢(u)-adic expansion of w;, can
be read off from

(1/t(w)?* — at(u)?) — (1/t([i]w)* — at([i]u)?) + O(t(u)*)
(1/(lg)w)? = at({glw)?) — (1/t([iJu)?* = at([Ju)?) + O((w)*)’
_ Vg <1 + 21— gt + O(t(u)6)>,

i2792

which follows from (9), (13), and a Mathematica calculation. Here
O(t(u))™ denotes an element of ¢(u)"Rp. Let a bar denote reduction
mod p. Let @ = 4% and 3 = ¢?, so if w;; = wy, with vy = k% and § = [2,
then we get

(@-1)8/(@=p)={-1)/(7 —9).
Now since a is not 0 mod ‘B, and since H(E[p])/H is totally ramified
over ‘3, we have ord pp = Np — 1 > 4, so we also get

a(l—pB)=7(1-9).
Solving, we get (¥,9) = (a,f3) or (¥,8) = (1 — 3,1 — @), so we get
(k2,1%) = (12, 9%) mod p or (k?,12) = (1—g?,1—142) mod p. Hence there
are at most eight pairs (k,[) so that w;; = wy;. Hence the number of
solutions my, of (2) in M is at least

S(HC — 2)(HC —4) = £(Np = 3)(Np - 5)

1 2
> 1—6(Np -1)

since Np > 12. Since d, = h(Np — 1), we have

1 2
mp > W{% 0

Remarks. 1) The conditions K # Q(1/—3) and p prime to j can
presumedly be dropped. Without these conditions the degree 7 terms
in the expansion of F would have to be investigated.
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2) T do not know if w;; = wp ever occurs without (k,l) =
(£i,+g) mod p. The extra possibility (v,d) = (1 — 8,a) mod p may
just be an artifact of the proof. Certainly, if i> + g = 1 mod p, the
eight possibilities coalesce into four.

Corollary. Let ¢ > 0, and c(¢) > 0 be an arbitrary constant.
Then there are infinitely many imaginary quadratic fields K;, each
with infinitely many extensions M;,, such that if m;y is the number
of solutions to (2) in M,y and 0;y = [M;4 : Q], then

Mig > C(é‘)(;izgis.

These M;q can be chosen to be distinct.

Proof. Let K; # Q(+/=3),Q(v/—1) for i € N be some ordering of the
(all but two) imaginary quadratic number fields. Let Ok, be the ring of
integers of K;, H; the Hilbert class field of K;, and h; the class number
of K;. Let F; be an elliptic curve defined over H; with normalized
complex multiplication by Og,. Let p;g, g € N, be some ordering of
the prime ideals of Ok, which satisfy the conditions of Theorem 2,
with the additional conditions that p;; not be ramified over Q, and
that Np;y — 1 > (c(¢)2*h2)1/¢/h;. These include all but finitely many
primes of Ok,. Then if M;, = H;(x(E;[pi4])), Theorem 2 implies that

1 . _ B
Mig > 24—}7,26129 s(hz(Nplg — l)) > C(&)J?g 6,

where m;g is the number of solutions to (2) in M;, and 0;4 = [M;g : QJ.

For the last part of the corollary, we first note that M;, = My
implies that g = k, for if p;; # pix, then p;; ramifies in M;, but not
in M;. Suppose now that M;; = My,;. Since M, is the ray class field
over K; of modulus p;4, the only primes of H; which ramify in M;,
are the primes above p;4, which do so totally, so have a ramification
index of (1/2)(Np;g — 1) > 2 over H;. Since H;/K; is unramified, the
only primes in M;, not above p;; which are ramified over Q have a
ramification index of at most [K; : Q] = 2. Therefore, in M;,, there is
a distinguished set of primes with a ramification index over Q greater
than 2 (namely the primes above p,4), and we can recover H; from M;,
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as the inertial subfield in the Galois closure of M;; over Q of any of these
primes, since p;4 is unramified over Q. And since H;/K; is unramified,
the discriminant Dpg, of H; over Q uniquely determines the absolute
value of the discriminant Dk, of K; over Q, via Dp, = D[Ig_“Q]/ ?. Since
an imaginary quadratic field is uniquely determined by the absolute
value of its discriminant, we can conclude that if M;; = My, then
k = ¢ and we have already noted that this forces [ = g. u]

Remarks. Since there are only finitely many imaginary quadratic
fields of given class number, for a given §, there are only finitely many
of the Mig with [Mzg : Q] S 0.

Acknowledgment. I would like to thank E.B. Burger for useful
discussions on this material.
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