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THE SPECTRAL THEORY OF SECOND ORDER
TWO-POINT DIFFERENTIAL OPERATORS
IV. THE ASSOCIATED PROJECTIONS
AND THE SUBSPACE S, (L)

JOHN LOCKER

ABSTRACT. This paper is the final part in a four-part
series on the spectral theory of a two-point differential oper-
ator L in L2[0, 1], where L is determined by a formal differ-
ential operator | = —D? + ¢ and by independent boundary
values Bi, Bz. For the family of projections {Qox}p_; U
{Qk}?’:ko U {Q;c,}l?;ko which map L?2[0, 1] onto the general-
ized eigenspaces of L, it is determined whether or not the
family of all finite sums of these projections is uniformly
bounded in norm. Equivalently, for the subspace Soo(L)
consisting of all uw € L2[0,1] with v = ZZ:l Qoru +
Z;ozko Qfu+ Ziozko Q}/u, it is determined whether or not
Soo(L) = Sso(L) = L2[0,1]. It is necessary to modify the
projections and Soo (L) in the multiple eigenvalue case.

1. Introduction. In this paper we conclude our four-part series
on the spectral theory of a linear second order two-point differential
operator L in the complex Hilbert space L%[0,1]. Let L be the
differential operator in L2[0,1] defined by

D(L) = {u € Hz[oa l] ‘ Bl(u) =0, i= 172}7
Lu = lu,

-(3) (3]

is a second order formal differential operator on the interval [0, 1] with
q € C[0,1], By, By are linearly independent boundary values given by

where

Bl (u)
B2 (u)

a1u’(0) + bru' (1) + aou(0) + bou(l),
c1u’(0) + dyu' (1) + cou(0) + dou(1),
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1474 J. LOCKER

and H?2[0,1] denotes the Sobolev space consisting of all functions
u € C10,1] with u' absolutely continuous on [0,1] and u” € L2[0,1].
From the boundary coefficient matrix,

_la b1 ao bo
4= C1 d1 Co do ’

we form the six determinants A;;, 1 < ¢ < j < 4, where A;; is the

determinant of the 2 x 2 submatrix of A obtained by retaining the ith

and jth columns. We also write L in the form

(1.1) L=T+S5,
where T is the differential operator given by

D(T)={ue€ H2[07 1| Bi(u) =0, i = 1,2},

Tu = —u",

and S is the multiplication operator given by D(S) = L?[0, 1], Su = qu.

In Part I [14] L and T are classified as belonging to one of five cases,
Cases 1-5, by imposing conditions on the boundary parameters A;;.
For Cases 1-4 the spectrum o (L) is a countably infinite subset of C, the
eigenvalues of L satisfy certain apriori estimates, and the generalized
eigenfunctions of L are complete in L?[0,1]. See Theorems 4.1, 5.1, 6.1
and 7.1 in Part I. Case 5 contains many degenerate cases; some partial
results are given for it in Section 8 of Part I.

The characteristic determinant A(p) of L is constructed in Part II
[15], and its crucial asymptotic formula (4.7) is derived on a half
plane Imp > —d. A complex number A = p? with Imp > —d and
|p| > 2€24||q||~ is an eigenvalue of L if and only if p is a zero of A, in
which case the algebraic multiplicity of A is equal to the order of the
zero at p. See Theorems 4.1 and 5.1 in Part II.

In Part III [16] the eigenvalues are calculated for Cases 1-4 using A.
The eigenvalues of L can be written as two infinite sequences {\} }72; ,
{2y, for an appropriate positive integer ko, plus a finite number of
additional points {Aox}}_; about which little is known. The A}, A}
satisfy asymptotic formulas in which the rates of convergence vary
with the case and with the smoothness of g. In Cases 1, 2A, 3A, 3B
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and 4 the Agg, A), A} are all distinct, and the corresponding algebraic
multiplicities and ascents are

(1.2) V) =mN) =1, v =m() =1

for k = ko, kg + 1,.... Case 2B contains all the multiple eigenvalue
cases, where we may have A, # A/ for some k with

(1.3) v(A,) =m(A,) =1 and v(A]) =m(\)) =1,
and X}, = A}/ for other k with
(1.4) v(A,) =2 and m(\,)=1 or m(\,) =2.

See Theorems 2.2, 2.3, 2.4, 2.6 and 3.2 in Part III.

Here in Part IV our goal is to study the projections which map
L?[0, 1] onto the generalized eigenspaces of L and to develop the basic
properties of the associated subspaces Soo(L) and Mo (L). Let us
proceed to introduce these quantities for L belonging to Cases 1-4. For
each A € Clet Ly = A\ — L, let m(X) denote the ascent of the operator
Ly, and let L(\) = (Ly)™™). Then for each A belonging to o(L), the
null space N'(L())) is the generalized eigenspace corresponding to the
eigenvalue ), its dimension v()\) is the algebraic multiplicity of A, and
to the topological direct sum decomposition

L?[0,1] = N(L(A)) @ R(L(N))
there corresponds the canonical projection @ which maps L?[0, 1] onto

N(L(X)) along R(L(N)).

Assume L belongs to Case 1, Case 2A, Case 3A, Case 3B or Case 4.
Let Q be the family of projections

Q = {Qor iy (LR Io2r, [J1QU 2k,

where the projection Qo maps L2[0, 1] onto N'(L(Agx)) along R(L(Ao))
for k =1,...,n; the projection @} maps L?[0,1] onto N'(L(\},)) along
R(L(N},)) for k = ko, ko + 1,...; and the projection @} maps L?[0,1]
onto N (L(A})) along R(L(\})) for k = kg, ko+1,... . The family Q is
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called the family of projections associated with L or the spectral famaily
of L. Tt is well known that

QokQoj = 0k Qor, QrQ% = 0 QL,  QpQT = 0x; Q%

1.5
T ua-o uei-o G-

for all &, j (see (3.3) in [6]). In terms of these projections we introduce
the subspaces

Soo(L) = {u € L?[0,1]

u=>Y Quu+ Y Qiu+ Q%U}
k=1

k=ko k=ko

and

Meo(L) ={u € L*[0,1] | Quru=0, k=1,... ,n;
Qu=Qiu=0, k=koko+1,...}

Implicit in the definition of Suo(L) is the fact that the two series
> hek, Qpu and 37 Qju are convergent for each u € Suo(L).
Clearly So(L) contains all the generalized eigenfunctions of L, and
from Part I,

(1.6) Soo(L) = L?[0,1] and M. (L) = {0}.

Also, as a simple consequence of (1.5) Su (L) is precisely the set of all
functions u € L?[0,1] which can be expanded in an infinite series of
generalized eigenfunctions of L.

In Section 3 we prove that the family of all finite sums of the
projections in Q is uniformly bounded in norm and S (L) = Seo(L)
for Cases 1, 2A and 3A, and then in sharp contrast, we show in
Sections 5 and 6 that the projections in Q are unbounded in norm
and Soo(L) # Soo(L) for Cases 3B and 4. These results are based
on special integral representations of the projections in Q. Indeed, in
Part III we constructed two sequences of circles {I' }22, , {T'}}32,, in
the p-plane having centers p, 1 and fixed radius §. For each k > ko
the characteristic determinant A has a unique zero pj, inside I') and a
unique zero pj inside I'}, with p}, p{ zeros of order 1 and X, = (p},)?,
N = (p})*. In addition, for each point p on T} or '}, A(p) # 0, so
the point A = p? belongs to the resolvent set p(L) and the resolvent
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Ry(L) = (M — L)™' exists. Under the mapping A = p? the circles
I}, T} are mapped one-to-one onto smooth simple closed curves A}, A}
in the A-plane for k > ko. From the simple geometry of the I',I'}, it is
obvious that A}, A} contain A}, A}, respectively, in their interiors and
no other points of o(L). Therefore,

1 1
Qu=o— [ RiL)dA=— [ 2R.s(L)dp,
271 Al 271 T
(1.7) 1 * 1 *
V= [ Ry(L)d\=-— [ 2pR,(L)dp
271 A;c’ 211 F;el

fork:ko,ko—f—l,....

Next, assume L belongs to Case 2B, so there is the possibility of
multiple eigenvalues. For this case the family of projections assoctated
with L or the spectral family of L is given by

Q = { Qo o1 | HQk ik

where Qoy, is the projection of L]0, 1] onto N'(L(Aox)) along R(L(Ao))
and @y is the projection defined as follows: if A}, # A}, then Qj :=
Q) + Q) where Q}, QY are the projections of L%[0,1] onto N(L()\})),
N(L(XY)) along R(L(N,)), R(L(\})), respectively, and hence, Qj is
the projection of L?[0,1] onto

N(L(AL)) @ N(L(Ag))  along  R(L(AL)) NR(L(AK));

if \j, = A}, then Q = @), = Q} where Q} = Q) is the projection of
L2[0, 1] onto N'(L(X,)) along R(L(X})). For these projections we have

(1.8) QorQoj = 0k Qok, QrQ;j = 0k Qk, QokQ; =0
for all k£ and j, and we can form the subspaces

U= ZQOkU+ Z Qku}

Soo(L) = {u € L*0,1]
k=1 k=ko

and

Moo(L):{ueLz[O’l]|Q0ku:0a k:]-a y 15
Quu=0, k=ko ko +1,...1.
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As in the previous cases it is easy to show that

(1.9) Soo(L) = L?[0,1] and M (L) = {0}.

In our treatment of Case 2B in Part III, we constructed a sequence
of circles {I'y }72; with centers . and fixed radius J such that A has
two zeros p), and p} inside I'y, with X, = (p})? and A} = (p})?, where
either pj # p} and X, # A with p} and p} both zeros of order 1, or
Pk = pi and A; = X}/ with p}, a zero of order 2. Also, for each point p
on 'y, A(p) # 0 and XA = p? € p(L). The mapping A = p? maps the
circle I'y, in a one-to-one manner onto a smooth simple closed curve Ay
in the A-plane; Ay contains the eigenvalues A}, A} in its interior and no
other points of o(L), and hence,

1 1
1.10 = — Ry(L)d\ = — 2pR 2 (L) d
( ) Qk 2mi A )\( ) 2 I p P2( ) P
for k = ko, ko + 1,... . In Section 4 we will show that the family of all

finite sums of the projections in Q is uniformly bounded in norm and
Soo(L) = Sso(L). These results are valid in spite of the fact that it is
possible to have

Q%I = 0o and ||Q}]] = 00 as k — oco.

This unusual phenomenon has been studied in [13] for the special case
q(t) = 0.

In Section 2 we have collected all the basic results which are used
in the sequel to treat the various cases: Theorem 2.1 relates the
resolvents Ry(L) and Rx(T), Theorem 2.2 develops uniform bounds
on the projections associated with L in terms of uniform bounds on
the corresponding projections associated with 7', and Theorems 2.3
and 2.4 establish the equivalence of the projections being uniformly
bounded and S, (L) being closed. Then in Sections 3—-6 we proceed
on a case-by-case basis to study the family of projections Q associated
with L and the subspaces Soo(L) and Mo (L). The general strategy
used in each case is as follows:

(i) Introduce the circles I}, ') and Ty, for k = ko, ko+1, ..., thereby
establishing the geometry.
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(ii) Determine the decay rate of ||R,2(T)|| for p on I'}, T and
Iy. For Case 3B it is also necessary to find the decay rate of
|R,2 (T) SR, (T)|.

(iii) Utilize Theorem 2.1 to estimate the norms of Q}, — P}, Q) — P}/

and Qy — Py, where P}, P;' and P are the corresponding projections
for T.

(iv) Apply Theorem 2.2 to derive the uniform boundedness of the
projections associated with L for Cases 1, 2A, 2B and 3A, or show the
projections to be unbounded for Cases 3B and 4.

(v) Use Theorems 2.3 and 2.4 to prove that Se (L) is closed in
Cases 1, 2A, 2B and 3A, and is not closed in Cases 3B and 4.

2. Mathematical preliminaries. All of the above results for the
differential operator L are also valid for the differential operator 7', and
in fact, we can use the same circles I'},I'},I'; and the same smooth
simple closed curves A}, A}, A for both L and T (see Part III). Let us
briefly summarize the results for 7' that are needed in the sequel.

First, assume that T belongs to Case 1, Case 2A, Case 3A, Case 3B
or Case 4. Then for k > ko the characteristic determinant A of 7" has
a unique zero g inside '}, and a unique zero g inside I'}/, with g}, and
Py both zeros of order 1. The two sequences

Ne= (k) M=(AR)?,  k=koko+1,...,

consist of distinct eigenvalues of 7" with v(\;) = m(\},) = 1, v(X{) =
m(A}) = 1, and account for all but a finite number of the points in o (T').
For T we introduce the projections P[, P}, k = ko, ko + 1,..., which
map L?[0,1] onto N(T'(X,)), N(T(X)) along R(T'(X)), R(T(AF)),
respectively. The Py, P;/ satisfy

(2.1) PP} = b Py, PP} = 0P, PP/ =0

for all £ and j, and have integral representations identical to those in
(1.7) with L replaced by T, and hence,

Qr—Pr=5— | 2p[Ry2(L) — R,2(T)]dp,
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for k = ko, ko + 1,... .

Second, suppose 1' belongs to Case 2B where multiple eigenvalues
are possible. Then A has two zeros pj, and p} inside each circle Ty, for
k > ko, where either g} # pj/ with g} and g}, both zeros of order 1 or
Py = Pi with g} a zero of order 2. The two sequences

Ne= (1) M=) k=koko+1,...,

are made up of eigenvalues of T', accounting for all but a finite number
of the eigenvalues. In [11] Case 2B is subdivided into Cases V-VIIL.
For T belonging to Case VII or Case VIII, we have 5, # 5 and \; # X/
for all k > ko, with v(\},) = m(\,) = 1 and v(\{) = m(\{) = 1; here
we introduce the projections Py, k = ko, ko + 1,..., where P, maps
L?[0,1] onto

N(T(N) @ N(T(AY) along  R(T(AL) N R(T(XL)).

On the other hand, for T belonging to Case V or Case VI, g}, = p}
and N, = M/ for all k > kg, with v(\,) = 2, m(X\,) = 1 in Case V,
and m(X,) = 2 in Case VI, and in this true multiple eigenvalue case
we introduce the projections Py, k = ko, ko + 1,..., where P, maps
L2[0,1] onto N (T(X})) along R(T(X,)). Throughout Case 2B the Py
satisfy

(2.3) PyPj = 61 P

for all k£ and j, the integral representation (1.10) is valid for each P
with L replaced by T', and

(2.4) Qr — Pp= QLM | 20Ry2 (L)~ Rz (1)) dp

fork:ko,k0+l,....

The basic properties of the projections Py, P}/, Py, for T have already
been developed in [11] and [13]. Using (2.1)—(2.4), we will show that
the projections @), Q},Qx for L are perturbations of the projections
P/, P/, P, for T', and hence, they have analogous properties. The key to
estimating the integrands in (2.2) and (2.4) is provided by the following
theorem, which is a modification of Theorem 3.1 in Part I.
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Theorem 2.1. If A € p(T) N p(L), then
(2.5) RA(L) — RA(T) = RA(T)SRA(L) = RA(T)SRA(T)[L + SRA(L)]-

In addition, if |[RA(T)|| < (1/2)||S||7", then |[Rx(L)|| < 2[|RA(T)]|
and

(2.6) IRA(L) = RA(D)|] < 2/ S| |RA(D)].

Alternately, if ||[Rx(T)SRA(T)|] < (1/2)[[SII7", then [|RA(L)]| <
2/|RA(D)I] + ISII7* and

(2.7)  [[BA(L) = BA(T)]] < 2(1 + [[S|H[BA(T)IDIIRA(T) SRA(T)] -

Proof. Clearly Ly = T — S. Multiplying this result by Rx(L) on the
right and by R,(T") on the left, we immediately obtain the first part of
(2.5). The second part is a simple application of the first part.

If || RA(T)|| < (1/2)]|S]|~", then from the first part of (2.5),
1BAL)I < [BA@)+ IR DIIS] RAL)]
< IRAD)I|+ S lIBAL)]
or [|RA(L)] < 2|[RA()]], and hence,
IRA(E) — Ra(D)I] < [IRADIISI IRAD)]] < 21181/ RA(DIP

On the other hand, if ||[Rx(T)SRA(T)|| < (1/2)||S]]71, then from the
second part of (2.5),

IRA(L)| < [[RA(T)I| + %I\SI\’l[l + ISTHIRA(L)]

or ||[Rx(L)|| < 2||RA(T)|| + ||S]|~1, which yields

1RA(L) = Ra(D)|| < |IBA(T)SRAT)|[L + [[SII2IRA(T)]] + [1S]]7)]
= 2(L+[ISI[IBA(D)IDIBA(T)SEA(T)]]. B
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To effectively use (2.6) or (2.7), we must be able to control the norms
of Ry(T) or Rx(T)SRA(T) for points A = p? with p on the circles
[, T4, Tk. One useful result in this direction is given by equation (3.7)
in Part I:

1 elbl
- = {6] Aua| [p|* + 4] Ara + Az |p]
2|pl |A(p)| 10l

+2|A1q — Aozl [p| + 4] A1s] |p| + 4| A2a| |p| + 6] As4]}

g B <

for all A = p? € p(T') with p = a +ib and b # 0. Equation (2.8) will be
used in treating Case 4.

In handling Cases 1-3 we will need a variation of (2.8) which allows
b = 0. Indeed, take any point A = p? € p(T) with p = a+ib # 0. Then
by (3.1)—(3.3) in Part I the Green’s function for T is given by

G(t,s5;\) = L 50)

ipA(p)
for t # s in [0, 1], where
|E(t,530)| < el®{2[Ara] [p[® + | Ara + Asa| [p]
+ [A14 — Ass| |p| + 2[Ass| [p| + 2| Aza |p] + 2| Asy|}

for ¢ # s in [0,1]. Therefore, we conclude that

€
IRAT)|| < —— {2l Ara|[p* + [A1a + Azs][p]
ol 1A (p)]

+ [A1a — Aas||p| + 2| Ass] [p| + 2[A2al [p| + 2| Az4]}

(2.9)

for all A\ = p? € p(T) with p = a+ib # 0. In Case 3B it will be necessary
to supplement (2.9) with estimates for the norm of Ry(T)SR(T) (see
Section 5).

Our principal perturbation theorem for the projections is given in
[13, Theorem 3.1].

Theorem 2.2. Let {Py}72, and {Qr}52, be sequences of projections
on a Hilbert space H. Assume that
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(1) PkPj = 6ijk: fO’I" k‘,] = ].,2, e .

(ii) The family of all finite sums of the Py, is uniformly bounded in
norm by a constant M > 0.

(i) 3252y 1@k — Pl < oo

Then the family of all finite sums of the Q s uniformly bounded in
norm by the constant

[SS) 1/2 [SS)
N = M+4M2[Z 1@k — Pk||2} + > 11Qk — Pl

k=1 k=1

The equivalence of the projections Q},Q},Qr being uniformly
bounded and the subspace S, (L) being closed is established in the
next two theorems. These theorems are variations of Lemma 3.4 and
Theorem 3.6 in [6]. The second proof is similar to the first, but simpler,
and is omitted.

Theorem 2.3. Let the differential operator L belong to Case 1,
Case 2A, Case 3A, Case 3B or Case 4. Then there exists a constant
N > 0 such that |[3°3L, Qill < N and ||30L, QFll < N for
m = ko, ko + 1,... if and only if

Soo(L) = 8o (L) = L?[0,1].

Proof.  First, assume that there exists an N > 0 such that
||ZZL:I¢0 Q| < N and HZZL:]C() QY| < N for all m > ko. Take any
function u € L?[0,1] = Soo(L). We assert that the series >-.° , Qju is
convergent. Indeed, for any € > 0 we can choose z € S (L) such that

[lu — z|] < e/(3N), and then for this z we select an integer ng > ko
such that || 378 Qpz|| < /3 for all ¢ > p > ng. It follows that

é@;u H( Z Qi — i;cz;,)(uz)

S N

q
> Qi
k=p
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for all ¢ > p > mng. This establishes the assertion, and the same
argument shows that the series Z,;“;ko Q) u is convergent.

Now for any z € Sy (L), we have

u—ZQOku— ZQku— ZQ

k=ko k=ko
< lw =2l + Zon(u—Z)
k=1
|5 e a] | S et
k=ko —ko
< [l—i— +2N}|u—z|.

Since the quantity ||u — z|| can be made arbitrarily small, we conclude
that
u—ZQOkH Zka ZQ u € Soo(L).
k= k:o k= kO

Second, assume S, (L) = L?[0,1]. Then for each u € L?[0,1] the
series > 7, Qu and )72, Qu are convergent, and

= lim
m—r 00
o0
> at
k=ko
and hence,
sup Z Q|| < oo, sup Z Qlu
m>ko — m>ko —_

By the Principle of Uniform Boundedness,

m m
/ 1
sup E Q% sup E Q% a
m>ko k=ko m2>ko k=ko
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Theorem 2.4. Let the differential operator L belong to Case 2B.
Then there exists a constant N > 0 such that ||}, Q|| < N for
m = ko, ko +1,... if and only if

Soo(L) = Soo(L) = L?[0,1].

3. The projections and S, (L) for Cases 1, 2A and 3A.
Suppose the differential operators L and T belong to Case 1, Case 2A
or Case 3A, so the A;; satisfy:

Case 1. A1z # 0.
Case 2A. A12 = O, A14 + A23 7& 0, A14 + A23 7é ;(Alg + A24).
Case 3A. A12 =0, A1 +A23 =0, A34 # 0, A13+A24 =0, A1z = Aoy.

The conditions in Case 3A are equivalent to A1s = A3 = A1y = Aoz =
Agy =0, Azyq # 0, which correspond to Dirichlet boundary conditions.

Proceeding as in Part III (Section 2), let o = 1 and ny = —1 for
Case 1 and Case 3A, and let & and 79 = 1/& be the roots of the
quadratic polynomial

Q(Z) = i(A14 + A23)22 + 2i(A13 + A24)Z + i(A14 + A23)

for Case 2A, where & # no and || < 1. Fix a real number d with
0 < —1Inlé| < d, and form the horizontal strip

Q={p=a+ibecC||b <d}.
Then the circles I}, T’} are given by
k=1p€C|lp—ml| =75} k=1peCllp—pr|l =10}
for k = ko, ko + 1, ..., where the centers are
Wy = 2km, = (2k+1)m
for Case 1 and Case 3A, and

,U;C = (2]{371' + Arggo) — Z.ln|£0‘,
i = (2km + Argno) + i In &
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for Case 2A, the radii are equal to a constant ¢ with 0 < § < 7/4
(see Part III for the additional geometric conditions satisfied by ¢ in
Case 2A), and the positive integer ky has been chosen sufficiently large.
The I'},, I}/ lie in the interior of 2, and for an appropriate constant m
equations (2.30) and (2.13) in Part III give

~ mo _ mo _
(3.1) |A(p)| > 706 WolP,  1A(p) > 706 plr

for all p on the circles I'},, '} for k > ko, where the integer p is equal
to 2, 1 and 0 for Cases 1, 2A and 3A, respectively. It follows that if p
lies on one of the circles I'},I'}, k > ko, then A = p? € p(T) N p(L).

Next, the estimate (2.9) immediately yields

n

ol

for all p on I'}, T} for k > ko. Choose an integer ng > ko such that

(3-2) |12 (T <

71 1 -1
. — < =
(3.3) o < 5lIsl

for all a € R with a > zg := 2ngm — 7 — 6. Then for k£ > ny and for
any point p = a + b on I'},, T'}/, we have

lpl > |al = a > 2kr — 7 — § > 2y,

and hence, ||R,2(T)|| < (1/2)]|S]|~*. Thus, from (2.2), (2.6) and (3.2),
the projections Q,, P}, satisfy

1 4978
Cprp< L Al
1@ kH_27T %r 76
_a2s)
2k —mw—0

for all k& > ng, with a similar estimate for the Q}/, P;/. We conclude
that

2 2
(34) I -PlI<2,  Qk-Pll<]

fork:ko,ko—f—l,....
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Finally, utilizing Theorems 1.1 and 2.1 of [11] in Case 1, Theorems
3.1 and 4.1 of [11] in Case 2A, and Theorem 10.1 of [11] in Case 3A,
there exists a constant M > 0 such that

> x > #

keEK keK

(3.5)

<M

< M,

for all finite subsets K of {kg,ko + 1,...}. Applying Theorem 2.2
together with (3.4), there exists a constant N > 0 such that

> QL > Qi

keEK keEK

(3.6) <N, <N

for all finite subsets K of {ko,ko + 1,...}. From (3.6) it is immediate
that the family of all finite sums of the projections in Q is uniformly
bounded in norm, and by Theorem 2.3

The above results are summarized in the following theorem which,
together with Theorems 2.2, 2.3 and 2.4 of Part III, comprise our
spectral theory for L belonging to Case 1, Case 2A or Case 3A.

Theorem 3.1. Let the differential operator L belong to Case 1,
Case 2A or Case 3A, let Q be the family of projections associated with
L, and let Soo(L) and Mso(L) be the corresponding subspaces defined
in terms of Q. Then the family of all finite sums of the projections in
Q is uniformly bounded in norm, and

Soo(L) = Soo(L) = L?[0,1] and M (L) = {0}.

4. The projections and S (L) for Case 2B. Assume that the
differential operators L and 1" belong to Case 2B, where the boundary
parameters satisfy

A =0, Ay + Az #0, Ay + Azz = F(Aiz + Azs).
Then the quadratic polynomial

Q(Z) = i(A14 + A23)(Z + 1)2
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has the double root £y = 79 = £1, and there is a possibility of multiple
eigenvalues. Following Part III (Section 2), we take any constant d > 0
and form the horizontal strip

Q={p=a+ibecC|b <d}.
For this case the circles
Fk:{pEC||p—[l,k|:5}, k=ko,ko+1,...,
have centers
pr = 2km + Arg o
and constant radii § satisfying 0 < § < 7/4. The 'y, are situated in the
interior of , and by equations (2.30) and (2.13) in Part III,

~ mo _ moy _
(1) ()2 e ol [A()] 2 el

for all p on I'y, for k > k.

The analysis of the projections closely follows the analysis of the
previous section. Indeed, for the resolvent (2.9) yields the decay rate
n
el

for all p on Ty, for k > ko, and combining this with (2.4) and (2.6), we
obtain the key estimate

(4.2) [|Rp2(T)]] <

(4.3) \|Qk_Pk\|g%, k=koko+1,....

But by earlier work (see Theorems 5.1, 6.1 and 7.1 in [11] and Theorem
4.1 in [13]) there exists a constant M > 0 such that

> P

keEK

(4.4)

<M

for all finite subsets K of {ko, ko + 1,...}, and applying Theorem 2.2
once more, there exists a constant N > 0 such that

> Qk

keEK

(4.5) <N
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for all finite subsets K of {ko, ko +1,...}. We conclude that the family
of all finite sums of the projections in Q is uniformly bounded in norm,
and by Theorem 2.4,

(4.6) Soo(L) = Soo(L) = L]0, 1].

The main results of this section are collected in the following theorem.
Combined with Theorem 2.6 of Part III, they make up the spectral
theory for the multiple eigenvalue case.

Theorem 4.1. Let the differential operator L belong to Case 2B,
let Q be the family of projections associated with L, and let Sy (L) and
Moo (L) be the corresponding subspaces defined in terms of Q. Then the
family of all finite sums of the projections in Q is uniformly bounded
in norm, and

Soo(L) = Soo(L) = L?[0,1] and Mo (L) = {0}.

5. The projections and S, (L) for Case 3B. Unlike the other
cases, for Case 3B the norm of R,>(T) does not go to 0 as k — 00
for p on the circles I'},, I}/, and our earlier methods must be modified.
Assume the differential operators L and 1" belong to Case 3B:

A2 =0, Aja+ A3 =0, A3y #0,

(5.1)
A1z + Aay =0, Ayz # A

It is well known (see Theorem 2.1 in [10]) that

A12Aszs — A13Ass + A1 Az =0,

which together with (5.1) yields A2, — A2, = 0 or A;4 = FA;3. Thus,
for this case

{ A =0, A3 #0, A3y # 0,

5.2
(5.2) Ay = FAus, Apg = £ A3, Agy = —Ays,

and everything can be expressed in terms of the two parameters A;3
and A34.
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As in Part III (Section 2) choose a real number d with d > 1 and

60 1 —1

Ll g

o s,

where By = (2/|As4|){12]|A13| + 6|As4]}, and form the horizontal strip
Q={p=a+ibeC|b <d}.

For Case 3B the circles '}, T}/, the centers p, pj. and the constant radii
d are the same as in Case 1 and Case 3A. The I'}, I} lie in the interior
of Q, and by equations (2.30) and (2.13) of Part III,

A mo _ mo _
(5.3 A= M0, |AG) 2 e
for all p on the circles I'},,I'} for k > k¢. Combining (5.3) with (2.9),
we obtain the estimate
e?pl

(mo/2)e~|p|
for all p on I}, T} for k > ko.

Next, we show that the decay rate (5.4) is the best possible for
Case 3B. From Part I (see (1.2) and (3.1)—(3.3)) the characteristic
determinant of T is given by

A(P) = —Ags€" + Azae™"

(5.4) 1R, (T)]| < {6]A1s| + 2| Asa[} ==

for p € C, and for A\ = p% # 0 in p(T) the Green’s function for T can
be written as

é(t s )\) _ g(taSEP) j(t,s;p)
o Alp)  ipA(p)

for ¢ # s in [0, 1], where

fI(t, s;p) = L Ay3etP(17t75) £ g emir(1-t=s)
+ Ap3etP =) — A zemt(t—s)

for t # s in [0, 1],

1 3 1 .
J(t,s;p) = §A3461p(1+t_5) + §A34€_”)(1+t_5)

1 ) 1 )
_ZA ip(l—t—s) _ ZA —ip(1—t—s)
2 34€ 2 34€
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for 0 <t<s<1,and
- 1 ) 1 :
J(t,s;p) = —A34e”)(1_t+5) + —A34e_”)(1_t+5)

1 )
_ —A346 p(l—t—s) _ A34e—zp(1—t—s)

for 0 < s <t < 1. Clearly |A(p)| < 2| Azyled for p € Q, and
|H (t,s;p)| < 4|Aisled, |J(t,s;p)| < 2|Azsle? for t # s in [0,1] and
for p € Q.

Take any point p = a + ib on one of the circles I}, I'} for k > ko, and
consider the function

u,(t) = e, 0<t<L1

Clearly |u,(t)| = e b < e, ||u,|| < €4, and

(5.5) Ry (T)]| = I pHHR 2(T)up|| > e | Rp2 (T)u,|l,
where
R, (T)u,(t) = 7 / H{(t, s;p)ei* ds
(5.6) + sz / J(t, 5 p)et®® ds
= %vp(t) + w,(t)

with v, (t) = £#09) + ¢ and [lw,|| < 70/lp| < 70/al. Now
v,()2 = e 2= 4 26 coga(1 — 2t + e 20t
v ()]
> 2e 2 4+ 2¢ P cosa(l — 2t),

sina
T > 972 T

|v,] > > 272 + 2¢

and hence, by (5.5) and (5.6),

i (0 2 {8 gl s

—d ‘A13‘ —2d 2¢* 1z Y0
>e ST 2e - — - — .
2|Asale a a
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It follows that there exists an integer k1 > kg such that

_ Ajs| _
5.7 R (T)|| > a. Al d.—
(5.7) IRy (T)| 2 7 5Pt e i o

for all points p on I}, '} for k > k.

In view of (5.7), it is no longer possible to force the condition
[|Ry2(T)|| < (1/2)||S]|* on the circles T}, T’} and use (2.6) in Theorem
2.1 to estimate the projections. However, we can still obtain the
alternate condition [|R,2(T)SR,2(T)|| < (1/2)||S||* for p on the
I, T with k sufficiently large, thereby permitting us to use (2.7) in

Theorem 2.1 to estimate the projections. Let us proceed to develop
these ideas.

Take any integer k > ko and any point p on I'},I'}. Then the
operator R,2(T)SR,2(T) is an integral operator on L?[0,1] with L*-
kernel K (t, s; p?) given by

1
Rty ) = [ 60,6 ma(€)GE 5 67) e
0
for t,s € [0, 1], which upon simplification becomes

= oy Al leZip
K50 = 1050 | eeate) ae

{e—ip(2—t—s) F e—ip(l—t+s) 4 e—ip(l—l—t—s) _ e—ip(t+s)}

[As)® [T o
BE D € ae)ee
{eip(thfs) F 6ip(1715+s) + eip(1+tfs) - eip(t+s)}

(5.8)

+0(t, 5 0%)

for t,s € [0,1], where f(-,-; p?) is bounded and measurable on [0,1] x
[0, 1] with ||6(-, *; p?)||ec < 73/|p|- Earlier we showed that (see (2.4) in
Part IIT)

62d

1
(5.9) \ [ et df‘ < g =l + il + 111,
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where § is an arbitrary function in C'[0,1], and replacing p by —p,
we see that this estimate is also valid for the integral fol e~ 2Pl q(€) dE.
Therefore, combining (5.3) and (5.9) with (5.8), we conclude that

|R@af)§u{mqm>||mwm+||m 1@

for t,s € [0,1], and

(5.10) [|Rp2(T)SR,2(T)|| < 74{|q — qlloo + ﬁ[lldlloo 117 + 1]}

for all p on I}, T} for k > ko.

Finally, we turn to the projections Q},Q%, k > ko, and P[, P/,
k > ko, associated with L and T, respectively. In (11.12) of [11] we
showed that

2| Aq3]
| Asal

2|A
@kr), 2] > 22l o 11y,

5.11 Pl >
RV VA o

for all k > ko. Choose a function ¢ € C*[0,1] satisfying

A

R 1 _
Yallg = dllee < 18117,
Ayl
160(1 + 71]|S||)| Asal’

(5.12)

Yallg — §lloo <

and for this fixed ¢ choose an integer ny > ko such that

Lo
slllalloo + 1d'loo + 1] < ZIISIH,

| A1s]
= 160(1 + 71[|S]])|Aszal

2
(5.13) k”

51dlloo +11d'loo +1] <

2k7r

for all & > ny. Then for £ > ng and for p on I'}, from (5.10), (5.12)
and (5.13), we obtain

L on—
(5.14) 1Rp2 (T)SR2(T)I| < 511117,
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and by (2.7), (5.4), (5.10), (5.12) and (5.13), we get

2(1+ISI)[A1s] ~ |Aus]

5.15 R :(L)— R :(T)|| < = ’
(5:18) 1B (L) = Ry (D < G55, 181D Agal — 361l

and hence, by (2.2),

1 | A | A
5.16 =Pl < =—-2(2km +6) - 278 < 2km
( ) HQk kH— o ( ) 4(5|A34| — |A34‘( )
for all k > ng. It follows from (5.11) and (5.16) that
’ / I ! |A13|
(5.17) 1@kl = 1Pl = Q% — Pell = 1 (2k)
| As4l
for k = ng,ng+ 1,. .., and similarly,
A
(5.18) Q= 2k 4 1y
| A4
for K = ng,ng + 1,.... Thus, the norms of the Q},Q) are growing

at the same rate as the norms of the P, P}/, and as an application of
Theorem 2.3, we have

(5.19) Soo(L) # Suo(L) = L*[0, 1].

We summarize the above results in the following theorem. Together
with Theorem 2.4 of Part III, they make up our spectral theory for
Case 3B.

Theorem 5.1. Let the differential operator L belong to Case 3B, let
Q be the family of projections associated with L, and let Soo(L) and
Moo (L) be the corresponding subspaces defined in terms of Q. Then
the projections in Q are not uniformly bounded in norm,

Q%I — 0 and ||Q}]] — oo as k — oo,

and

Soo(L) # Soo(L) = L*[0,1] and M (L) = {0}.
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6. The projections and S, (L) for Case 4. Suppose the
differential operators L and 1" belong to Case 4, the logarithmic case,
where

A2 =0, Ayq + Az =0, Azq #0, Az + Agy #0.

In setting up this case we follow Part III (Section 3). Let p =
—2i(A13 + Asq)/Ass; choose constants o and 8 with 0 < a < 1/2,

B> 2, and
650

| A34|8

where By = 2|A14| + 2|A13]| + 2|A24| + 2|As4], and set & = [1 +
(|u?/a?)]*? and n = [(82/|u|?) + 1]*/?; and introduce the logarithmic
strip

1
< 2118t
< SISl

Q=dpzarivec|ja> < and w2 oy < gy Il ]
|1l B el

The circles
r=1{p€Cllp—pl =0}, r={p€C|lp—pl =5},
k = ko, ko + 1,..., now have their centers at the points

pr, = (2km — Arg p) +iln |p|(2kT — Arg ),
pr = —[(2k + 1)7 + Arg p] + iIn |p[[(2k + 1)7 + Arg u],
and have constant radii § satisfying 0 < 6 < 7/4 and 0 < & <

(In2)/(|p| + 1). From equations (3.31), (3.22) and (3.27) in Part III,
the characteristic determinants satisfy

~ am am
60 AR > Al A()] > ZE Al

for all points p = a + ib on I'},, '} for k > ky.

Take any point p = a + ib on one of the circles I}, T} for k > ko. It
follows from (6.1) that A = p? belongs to p(T) N p(L),

lo| > 2kmr —m— 6>k
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and
lo| < (2km +27) + In |p|(2k7m + 27) + 6 < (1 + |p|)(4kw)

because k > ko > 2 and |p|(2kn + 27) > 8 > 2 by (3.11) in Part III,
and

1
3 In|p| < [b]

by (3.5) in Part III. Thus, by (2.8) and (6.1)

2 2
(6.2) IR (T)|| < 22 < 28 < 20

Next, for the projections P}, P/, it has been shown that there exists
a constant 9 > 0 such that

k
. P Pl > vg—
(6.3) 1B = v007s 1B 2 0

for all k > ko (see (9.25) in [11]). Select an integer ng > ko such that

[\

168(1 + |p)7||S1/(271)*
Ink

o1
6a) < lis, <Ly

=
w
N | =

for all k > ng. Then from (6.2) and (6.4), ||R,>(T)|| < (1/2)]]S]|7* for
p on I',, T for k > ng, and for the projections Q},, P}, equations (2.2),
(2.6), (6.2) and (6.4) yield

1 2

1Qk — Pl < = -2(1 + |u]) (4kr) - 2/|S)| - | 2 -27r6

(6.5) 2 Ink
1k

< Ty
=2k
for all k > ng, and hence, by (6.3) and (6.5),

1k
. N> P = 1O — PL| > =g ——
(6.6) 1@ > 1L~ 1@k — PAII > 3o
for k = ng,ng + 1,... . Similarly,
k
(6.7) QK] > —70

Ink
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for K = ng,ng+1,..., and by Theorem 2.3,
(6.8) Sxo(L) # Seo(L) = L?[0,1].

The spectral theory for Case 4 is contained in Theorem 3.2 of Part III
and in the following theorem, which summarizes the results of this
section.

Theorem 6.1. Let the differential operator L belong to Case 4, let
Q be the family of projections associated with L, and let So(L) and
Moo (L) be the corresponding subspaces defined in terms of Q. Then
the projections in Q are not uniformly bounded in norm,

1Qkll —> 00 and ||Q}|l — o0 as k— oo,

and

(L) # Soo(L) = L*[0,1] and M (L) = {0}.
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