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A REVERSED MEIR’S INEQUALITY
AND SOME RELATED RESULTS

C.E.M. PEARCE AND J. PECARIC

ABSTRACT. Reversed versions are developed for Meir’s
inequality and some related results.

1. Introduction. In 1981 Meir [4] proved the following theorem for
nondecreasing sequences.

Theorem A. Let ag,ay,...,0,_1 and p1,p2,...,Pn be nonnegative
real numbers satisfying

(1.1) O0=ap<a;<ay<---<ap1,
(12) a; — a;—1 gpi, i:l,...,nfl,
and

(1.3) P11 <p2 < < Dn-

If r and s are real numbers with r > 1 and s > 2r + 1, then

n—1 1/(s+1)
(1.4) {(s +1)> ai(pi +Pi+1)/2]

i=1

n—1 1/(r+1)
<|e+n T arpere

i=1

Theorem A is sufficiently complicated for its history to be worth
noting. This began with Klamkin and Newman [3] noting in 1976 that
the striking elementary identity

2o
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extends to
n n 2
3
>ai<[Ya].
j=1 Jj=1
where (a;) is a nondecreasing sequence with ag = 0 and a; —aj_; < 1.

This result turned out to be quite hard to prove in comparison with
the integral inequality

/ @) dx < I ’ f(a) dwr

for a function f € C! with f(a) =0 and 0 < f'(x) < 1 on [a,b], which
appeared in the 1973 Putnam Competitions. Klamkin and Newman
conjectured further the result

(1.5) [(s +1) iaf] e [(T +1) ia] v

i=1
for s > r > 0 and the a; satisfying the same conditions as before,
to which their first result reduces for r = 1, s = 3. We remark
parenthetically that even for a; = 4, (1.5) is a nontrivial discrete
analogue of the ‘continuous’ identity

z 1/(s+1) x 1/(r+1)
[(s+1)/ g dt] _ [(r+1)/ tT dt} .
0 0

Klamkin and Newman were able to establish their conjecture for the
case s = 2r + 1. Thus, for r > 1, Theorem A gives the second Klamkin
and Newman result under the relaxed constraint s > 2r +1 and further
allows weights.

In 1986 G.V. Milovanovié¢ and I.Z. Milovanovié [5] presented an inter-
esting refinement of Theorem A. Their result is as follows.

Theorem B. If the numbers a;, ¢ = 0,1,...,n — 1, p;, =
1,2,...,n, r and s satisfy the assumptions of Theorem A, then

(16) (541X ailme+pen)/2+ DN oz g

i=1 i=1

- (s+1)/(r+1)
< [r+1 Z (pi + Pi1 /2}
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Pecari¢ [6] showed that the conclusion of Theorem A remains valid if
assumption (1.3) is replaced by p; < pp,i=1,...,n—1.

Recently, Alzer [2] proved a further result by a different method.

Theorem C. Let ag,ay,...,a,_1 and p1,p2,... ,Pn be nonnegative
real numbers satisfying (1.1) and (1.2) and

Di < Dn; 1=1,2,...,n—1.

If r and s are real numbers with r > 1 and s > 2r + 1, then

s+1)(s—71) — &
0< CHDEDN gy, a)
i=1
n—1 (s+1)/(r+1)
(1.7) < [(r—i- 1> al(p: +pi+1)/2]
i=1
n—1
—(s+1) ) ai(pi+pit1)/2.
=1

In the next section we first consolidate these results. Our consoli-
dation leads to some reverse inequalities for suitable domains of the
parameters. In particular, these suggest that the constraint s > 2r 4+ 1
cannot always be avoided in Meir-type inequalities.

2. Results. In fact, the proofs from both [4] and [5] implicitly give
the following result.

Theorem 1. Let ag,as,...,0,—1 and p1,p2,... ,P, be nonnegative
real numbers satisfying (1.1) and (1.2). If r and s are real numbers
withr > 1 and s > 2r + 1, then (1.6) is valid.

Further, if

n—1

(2.1) > al NPl —p) 20
=1
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applies, then (1.7) and (1.4) hold, too.

Remark. Of course, on using the identity

n—1
> ai N ply —pd) =ai (k- p})
=1

(2.2) .
+ > (a5 = a0} - ),
i=2
we conclude from p? > p? and af_l > af:ll, i=1,...,n—1, the truth
of (2.1).

Similarly, we can prove reversed versions of the previous results. We
begin with the following result.

Theorem 2. Let ag,as,...,0,—1 and p1,p2,... ,P, be nonnegative
real numbers satisfying (1.1) and

(23) a; — ;1 zpi, i:l,...,nfl.

If 7 and s are real numbers with 0 <7 <1 andr < s < 2r+ 1, then
(1.6) holds with the inequality reversed.

Further, if the reverse inequality to (2.1) holds, then the inequalities
reverse to (1.4) and (1.7) hold too.

Proof. Without loss of generality, suppose that a; > 0. Let us
consider Stolarsky’s means E defined by

vz —y

) u?év7 uv#()? x?éy,

E(u,v;z,z) = lim E(u,v;z,y) = .
y—z

u:| 1/(u—v)

E(u,v;m,y): [axv_yv

It is well known [7] that E(u,v;®,y) is increasing in u and v. So we
have for ¢ € {1,... ,n — 1} that

E(r+1,1;a;-1,a;) > E(2r,r;0;_1, a;),
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which implies

1
Q= et > T (e — i )@ +aly)
r+1
> "2 S pilal + aly),

2
Hence, we get, for j € {1,... ,n — 1} that

J
a1 = Y - ot

i=1
r+1 d
> =D pila] +aiy)
i=1
1 T
= (r+ 1) 4j = 5pjna;

1
=(r+1) [Aj—l + 5pja§],

where )
j
Aj =" al(pi +pit1)/2
i=1
and we set Ag = 0 (the usual convention).
This implies

r+1
4(Lj

1 1
(24) L4 +4)< a“1@+ (3s1 - y)].

2 “r4l
Let ¢ = (s+1)/(r + 1). Since 1 <t < 2, we obtain
E(t,1;4;-1,4;) < E(2,1; 4,1, 4;),
which leads to
(25) (A5 —Af1)/[H(A; — Aj-1)] < (45 + 4;-0)/2)

From (2.4) we have

r+1
1+ ——(pjs1—pj) >0,
+ q; (PirL =PI
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so we conclude from (2.4) and (2.5) that

(r+ 1) (A — AL_) <Hr+1)(4; — A;_p)al DY
(26) r + 1 t—1
|14+ ———(Pj+1 — pj)

4aj
On applying Bernoulli’s inequality
1+2)*<l4az, z>-1, 0<a<l

with 41
T s—r
T da; (pJ+1 pJ) an Q& 1

)

we get from (2.6) that

(r+ D!(AG = A_y) < 8+ 1)(4; = Aja)af O
r+1

L (1)
J

(Pj+1 —Pj) |5

whence

s+1
(r+1)H(A — AL_y) < a3 (p;j + pj+1)

(s+1)(s—r) o
+ SO a2, - )
Summation over j = 1,2,... ,n — 1 finally yields the desired reverse
inequality to (1.6). u]
Corollary 1. Let ag,a1,-..,a,—1 and p1,p2,... ,Pn be nonnegative

real numbers satisfying (1.1), (2.3) and

(2.7) pL>p2 >t > Do

If r and s are real numbers with 0 < r <1 andr < s < 2r + 1, then
(1.4) holds with the inequality reversed.

Proof. Tt is clear that (2.7) gives a reverse inequality in (2.1). o
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Corollary 2. Let ag,a1,... ,a,_1 and p1,p2,...,Pn be nonnegative
real numbers satisfying (1.1) and (2.3). Then reverse inequalities apply
to (1.4) and (1.7) if either

()0<r<1<s<2r+landp; >pn,i=1,...,n—1, or

(ii))0<r<s<landp; <p1,i=2,...,n holds.

Proof. We have the reverse inequality in (2.1) in case (i) as a simple
consequence of (2.2), while if (ii) holds, we have a reverse inequality in
(2.1) as a consequence of the formula

n—1
> i i —pf) = ai i (02 — pi)
i=1

n—2

SR - a0
k=1

Remark. For a result related to Corollary 1, see [1].
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