ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 27, Number 2, Spring 1997

ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS
OF A CLASS OF SELFADJOINT SECOND ORDER
LINEAR SYSTEMS

CHAO-LIANG SHEN

ABSTRACT. Suppose P(z) is an N X N positive definite
real matrix-valued C'!-function on 0 < z < oo such that P'(z)
is also positive definite for = sufficiently large. We prove that
if Trace [P(z)] — oo as * — oo, then the second order linear
system y''(z) + P(z)y(«) = 0 has a nontrivial solution which
tends to zero in norm at infinity. Do all nontrivial solutions of
the system tend to zero in norm at infinity? For this question
we find a criterion. And applying this criterion we prove
that if P(z) = Q2(z), where Q(z) is a real symmetric matrix
polynomials of degree > 1, and with positive definite leading
coefficient, then the question has an affirmative answer.

1. Introduction. In this paper we study the asymptotic behavior
of the solutions of the following self-adjoint second order linear system

(1.1) y'(z) + P(z)y(z) =0,

where P(z) is an N x N positive definite matrix-valued function on
[0, ), y(x) is an R"-valued function, 0 is the zero vector in R". We
are interested in the questions of finding sufficient conditions which
guarantee the existence of a nontrivial solution yo(z) of (1.1) such that
limg 00 ||yo(2z)|| = 0, where ||yo(x)]| is the norm of yo(z), and of finding
sufficient conditions which guarantee that the norm of any nontrivial
solution of (1.1) tends to zero in norm as z approaches infinity. We
notice that, for the case N =1, i.e., P(z) in (1.1) is a scalar function,
these questions had been studied by many mathematicians, notably
Milloux, Hartman, Lazer, Meir, Willett and Wong (see [1, 3, 5, 6]
and the references in these papers and book). In [3], for the case
N =1, Hartman used the Liouville transformation to transform (1.1)
to a first order differential system, then he observed the related first
order system and proved the Milloux theorem which says that if the
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scalar function P(z) is monotone and satisfies P(z) — oo as z — oo,
then the differential equation (1.1) possesses a nontrivial solution y(z)
satisfying y(z) — 0 as * — oco. We note that if the scalar function P(z)
satisfies the condition of the Milloux theorem, then the scalar equation
(1.1) is oscillatory at infinity, and hence for the scalar equation (1.1),
i.e., the case N = 1, every nontrivial solution has infinitely many zeros
in (0,00). Based on this oscillation result, Meir, Willett and Wong [6]
proved that if the scalar function P(z) is a C3-function which satisfies
the condition of the Milloux theorem and the condition that, for some
0<ax<l,

(12) [ 1@ i = o @)

Zo

as  — 0o, then y(z) — 0 as © — oo for every solution y(x) of (1.1)
in the case N = 1. On the other hand, we note that for the case
N > 1, there is no Liouville transformation for (1.1). Furthermore,
when N > 1, even if (1.1) is oscillatory at infinity, it might happen
that (1.1) might possess a nontrivial solution which only possesses
finitely many, or no, zeros in (0,00) (see Kaper and Kwong’s work
[4] for oscillation theory of (1.1) in case N > 1). Thus, for (1.1), the
case N > 1 is quite different from the case N = 1. Nevertheless, the
ideas of Hartman, Meir, Willett and Wong do play important roles
in this paper. Following some of their ideas and using some results
of Rosenblum [8] on the operator equation BX — XA = @Q to obtain
some necessary estimates, we prove the following theorems among other
results:

Theorem 3.1. Let P(x) be an N x N positive definite matriz-valued
CY-function on [0,00) such that P'(z) is positive definite for x > xo,
where xg > 0 and Trace P(x) — 0o as ¢ — oo. Then the equation (1.1)
has a nontrivial solution yo(x) such that ||yo(x)|| = 0 as © — oo.

Theorem 4.1. Suppose P(z) is an N x N positive definite matriz-
valued C3-function on [0,00), pn(z) is the smallest characteristic value
of P(z). If P'(z) is positive definite for x > gy, where g > 0,
pn(z) = 00 as x — oo, with

(i) [[P"(2)[| = o(pn (2)),
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(i) [, ILP~2/2()" |l dt = o(py” (),
(i) [ I[PY2(0) = P=Y/2(@)[PY2(0)) PY2(¢) | dt = o(py” (x))

as x — 00, then the solutions of (1.1) tend to zero in norm as x — oo.

Theorem 5.1. Suppose Q(z) = Z;L:O I Aj is an N x N real sym-
metric matriz-valued function with positive definite leading coefficient
A, and P(x) = Q*(z). Let y(x) be a nontrivial solution of (1.1). Then
lly(x)|| tends to zero as x approaches infinity.

The paper is arranged as follows. In Section 2 we state and prove
some technical lemmas which shall be used later in this paper. In
Section 4 we also prove a differential criterion for a positive definite
matrix-valued function P(z) to be a commuting function, i.e., P(z)
and P(y) commute for any z and y in the domain of P; this result
(Theorem 4.3) is of independent interest. The main results are proved
in Sections 3, 4 and 5.

2. Some lemmas. Given a vector y € RY, an N x N matrix A,
and an N X N matrix-valued function P(z), we shall use the notation
llwll, IAll, P'(z), P"(x) and P"'(z) to denote the norm of the vector y,
the operator norm of A, the first, the second, and the third derivative
of P(z) with respect to , respectively. In this section we state and
prove some technical lemmas which shall be used later.

In this paper all matrix-valued functions shall be assumed to have
real entries.

Lemma 2.1 [3]. Let A(t) be an N X N real matriz-valued continuous
function on [0,400). Suppose that lim;_,~ [|2(t)|| exists for all solutions
2(t) of the first order system

(2.1) 2 (1) = A1)z (1),

where z(t) are RN -valued functions. Then (2.1) has a nontrivial
solution zo(t) such that lim;_, ||2(t)|] = 0 if and only if the following
condition holds:

(2.2) lim [ /tt Trace (A(s))ds] -~ o

t—o0
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for some tg > 0.

Lemma 2.2. Suppose P(z) is an N x N positive definite matriz-
valued C*-function on [0,00) and y(z) is an RY-valued nontrivial
function which satisfies the following second order linear system

(2.3) y'(z) + P(z)y(z) =0

forx > 0. Let
Q1lyl(z) = (P~ (2)y' (2), y'(2)) + [ly (@) ]I,
Q2lyl(z) = Iy (@)]I* + (P(2)y(z), y(z))-

If P(x) is a C'-function such that P'(zx) is positive definite for all
z > 0, then Qi[y](xz) is a decreasing function and Q2[y](x) is an
increasing function.

Proof. Since P'(z) is positive definite,

L) = (P y) + 2P ) + 200,

=—(P'P'P YY) —2(y,0) +2(y,0)
— 7<P’P71y’,P71y’> S 0‘

Thus Q1 [y](z) is decreasing. The assertion for Q2[y|(z) is proved by a
similar argument. O

Lemma 2.3. Let P(z) be an N X N positive definite matriz-valued
C-function such that P'(z) is also positive definite. Let PY/?(z) denote
the positive square root of P(z). Then we have

_ Trace [P(z)]}
2.4 Trace [P~ Y?(z)]' PY?(z)] < —{—.
(2.4) ace [ (z)] ()] < 2 Trace [P(2)]
Proof. Since P~1/2p1/2 = [ P1/2pl/2 = P we have

(P—1/2)1P1/2 +P—1/2(P1/2)/ — 0’
(P1/2)1P1/2 +P1/2(P1/2)/ — P,.
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Hence we have
Trace [(P’1/2)’P1/2] — _Trace [P71/2(P1/2)’],
and

Trace [P'P~!] = Trace [P~Y/2P' P~1/2]
= Trace [P’l/Z{(Pl/z)’Pl/2 + P1/2(P1/2)'}P’1/2]
— Trace [Pfl/Z(Pl/Z)I + (P1/2)1P71/2]
= 2Trace [Pfl/z(P1/2)’]_

Thus we have
(2.5) Trace [(P~Y/?)'PY/? = —27"Trace [P'(z) P~ (z)].
Now let p1(z) be the largest characteristic value of P(z). Then we have

p1(z) < Trace [P(z)],
[P (@)]"/2 P~ ()[P(2)]'/* = py ! (x) P! (),

and hence the following inequality holds:
(2.6) Trace [P~ ! (z)P'(x)] > {Trace [P(z)]} '{Trace [P(z)]} .

Then (2.4) follows from (2.5) and (2.6). O

Lemma 2.4 [8, Theorem 4.3]. Let A and B be two N x N matrices.
If there exist two real numbers a and b such that a > b, B+ B* < bl,
A+ A* > al, where I is the N x N identity matriz, then for any N x N
matriz QQ, the matriz equation

(2.6.1) BX —- XA=Q

has a unique N X N matriz solution X which can be represented as
follows

(2.6.2) X=- /000 exp(tB)Q exp(—tA)dt.
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Furthermore,

(2.6.3) X1l < [QlI/[2(a - b)]-

Lemma 2.5. If P(z) is an N X N positive definite matriz-valued
Cl-function defined on a compact interval J, py(z) is the smallest
characteristic value of P(z), then

(2.7.1)  [PYV%(2)] = /0 h exp[—tPY?(x)|P'(z) exp[—tPY*(x)] dt,

and

(2.7.2) P2 @)|| < 1P (2)]l/ 80 (@))-

Proof. Since P'/2P/2 = P, we have
PY2(PY/2) 4 (pY2y pl/2 = pr|
which implies
(2.8) (—PY2)(PV2) — (P2 PR =P,

Since PY/2(z) > pi/*(z)I, —PY2(z) < —px*(x)I, (2.7.1) and (2.7.2)
follow from (2.8), (2.6.2) and (2.6.3) with B = —P'/2, A = P'Y/2 and
Q = —P' in (2.6.1). a

3. Milloux theorem for second order linear systems. In this
section we shall use Lemma 2.1 to prove the following Milloux theorem
for second order linear differential systems.

Theorem 3.1. Let P(z) be an N X N positive definite matriz-valued
Cl-function on [0,00) such that P'(z) is positive definite for x > xy,
where xg > 0, and Trace [P(z)] — oo as © — oo. Then the equation
(1.1) has a nontrivial solution yo(z) such that lim,_, ||yo(z)|| = 0.
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Proof. Let

(3.1) 2(2) = col (y(z), P~/*(2)y' (),

where y(z) is any solution of (1.1). Then z(z) satisfies the following
first order linear system

1/2
(3'2) Z,(m): _121/2 [P—1/2(I;.)]1P1/2(1.) Z(x)

Write (3.2) as 2’(z) = A(z)z(z). Note that, by Lemma 2.2,

: 2
Tim [|2(a)

exists for any solution of (3.2). Thus, it follows from Lemma 2.1 that
if the following condition

(3.3) lim Trace [(P~Y/2(t))' PY?(t)] dt = —c0

T—r0o0 zo
holds, then (3.2) possesses a nontrivial solution zo(z) such that
|z0()|| — 0 as z — co. We can write zo(z) =col (yo(z), P~ 1/3(x)yh(x)).
Then yo(z) is a solution of (1.1) with ||yo(z)|| — 0 as £ — co. On the
other hand, by Lemma 2.3 we have

/z Trace [(P~2(t)) PY/2(t)] dt < —27'log{Trace [P(2)]}z,-

Thus the condition that Trace[P(z)] — oo as ¢ — oo implies (3.3)
holds, and the proof is complete. a

4. The asymptotic behavior of the solutions of (1.1). Suppose
P(z) is an N x N positive definite matrix-valued C3-function on [0, 0).
Let pi(z) > p2(x) > --- > pn(z) be the characteristic values of
P(z). We shall assume that P’'(z) is positive definite. Then p;(z)
are increasing. We shall also assume that py(2) — co as z — oo.

Let z(z) be as in (3.1),

R(z) = diag [PY/*(x), PY*(z)).
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Then by (1.1) we have

(R(z)z(z), 2(z))" = {((PY?)y,y) — (P~2(PY/2) P2y, y)}
+ (PR Y ) = (P72 ),

which implies that

[(Rz,2) = (P~2)"y/ )]

Yy,
= {{(P'?)'y,y) — (PTY2(P'2) P2y, y)}
_ <( 1/2)// / >
= {((PY?)y,y) — (P~12(P'/?) P2y, y)}
— 27 (PR y, )] + 2 (P2 ).

Thus we have

(4.1) [(Rez,z) — (P73 'y y) + 27 (P2 "y, )]
= {{(PY?)y,y) — (P7Y2(PY/2) P2y, )}
2Py,

Now, integrating (4.1), we have
(4.2)
(R(x)z(x), 2(z))
= Cyy + (PT2(2))'y (2), y(2)) — 27 ((P7*(2))"y(x), y())

sot f (PR (), (1)) de
+ [P RO) - PR PO PO} 0, u(0) e

Suppose there is a nontrivial solution y(z) of (1.1) such that

Qi) = lly@)II* + (P~ (2)y' (), ¥/ (2))

decreases to [ > 0 as ¢ — oo. Then as [ > 0, for any £ > 0, there exists
zo > 0 such that

(4.3) 1< @Qulyl(z) <I(1+¢)
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for all x > xy. Note that we have

(4.4) [((P7Y2(2))y (x), y(@))|
= (=P~ (@) (P2(x)) P72y (2), y(x))]
< P2 @) (P2 (@) | 1P~ (2)y () ly ()]
< 271 |[P7H2 (@) (P2 () | Quly)(x)
<27 [P (@) (P2 () |l1(1 + €)

for x > x¢, and
(4.5) (Pfl/Z(x))// _ (P71/2)/l(x0) n /E(P,1/2(t))/1/ dt.

By (4.2), (4.3), (4.4) and (4.5) we have, as (Rz,z) > p ||z\|2 =
p/2Qu[y], that

(4.6)
loy*(@) < Ko +27 1| (P71/2)"(20) U1 + ¢)
+ 271 P (2) (PY2(2))'||U(1 + )

([ >>"'||dt) (1+9)

= | [y - prae ey P ajio ),

where K is a constant. By (4.6), we have the following result.

Theorem 4.1. Suppose that P(x) is an N x N positive definite
matriz-valued C®-function, P'(zx) is positive definite for x > zo and
pn (z) is the smallest characteristic value of P(x) such that py(x) — 00
as © — oo. If P(z) satisfies the following conditions:

(i) [|[P"(2)]| = o(pn (2)) as © — oo,
(i) [ [I(P72/2(8)" ]| dt = o(py*(x)) as = = oo,

(i) J3, (P2 = Po(O(PYA@)Y P2 dt = olpy*(@)) as
T — 00,
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then the solutions of (1.1) tend to zero in norm at infinity.

Proof. It suffices to prove that, under the assumptions of this theo-
rem, if y(z) is a nontrivial solution of (1.1), then we have Q;[y](z) — 0
as ¢ — 00. Suppose there were a nontrivial solution y(x) of (1.1) such
that

lim Qq[y](z) =1>0.

T—>o0

Then, for € > 0, there exists zg > 0 so that for > zg (4.6) holds. By
Lemma 2.5 the condition (i) implies that

lim py"/%(2)|P~/%(x)(PY?(x))'|| = 0.

T—r0o0

Thus, by (i), (ii) and (iii), (4.6) implies that [ < 0, which is absurd.
O

Remarks. (1) Readers will probably think that if we assume that P!/2
and (P'Y/2)" commute, then (iii) will be unnecessary. But the author
wants to point out, and will show later in Theorem 4.3, that under the
latter assumption, and assuming further that P(z) is real analytic and
has distinct characteristic values, the function P(x) can be diagonalized
simultaneously for all z, and then the equation (1.1) becomes N second
order scalar differential equations, and this will reduce the problem to
the case treated by Meir, Willett and Wong in [6].

(2) Let P(x) = [a;j()], a;j = aj;. By the Gerschgorin theorem in
linear algebra, if we let

n(z) = min{ajj(x) —%laﬂc(w)l tj=1,... ,N},

then py(z) > n(z). Thus Theorem 4.1 has the following corollary,
which is easier to use in practice.

Corollary 4.1.1. Suppose Q(x) is an N X N positive definite matriz-
valued C3-function on [0,00), P(z) = Q*(x), n(z) as above, P'(z) is
positive definite, n(x) > 0 and tends to infinity as x — co. If
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(i) [[P"(2)] = o(n(z)) as z — oo,
(i) [, 1@ (1)l dt = o(n*/?(x)) as & — oo,
(i) [; 77 2(O1QMQ' (1) — Q'(H)Q(t)lldt = o(n(x)) as & — oo,

then every nontrivial solution of (1.1) tends to zero in norm as x — oo.

Lemma 4.2. Suppose that P(z) is an N X N positive definite matriz-
valued C*-function defined on a compact interval J. Then [PY/?(z)]’
and PY*(x) commute for all x in J if and only if P'(z) and P(x)
commute for all x in J.

Proof. Since P(z) > 0 for all z in the compact set J, there exist
b > a > 0 such that o(P(z)) C [a,b] for all z in J, where o(P(z))
denotes the spectrum of P(z). Now let Q(z) denote PY/%(z). If Q(z)
and Q'(z) commute, then

Conversely, if P'(z) and P(z
function f(t) on [a,b] we have

P'(x)f(P(x)) = f(P(x))P'(z)
for all z in J. Since a > 0, f(t) = t'/2 € Cla,b]. Thus, we have

commute, then for any continuous

P'(z)PY*(z) = PY*(z)P'(z)
and hence
[(PY/2) PL/2 4 pY/2(pl/2y]pl/2 — p1/2[(pl/2y pl/2 | pl/2(pl/2).
Notice that the latter implies that
(PY/2)'P = P(P'?)".
Therefore, for f(t) = t*/? we have

(PY2(x))' f(P(x)) = F(P(x))(PY*()),
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which is what we want to prove. a

Theorem 4.3. Suppose that P(x) is an N x N positive definite
matriz-valued real analytic function in an open interval J such that the
characteristic values of P(x) are all distinct for all x in J. Then P(x)
is a commuting function, i.e.,

P(wl)P(mg) = P(xg)P(xl)
for all 1 and x5 in J if and only if P'(z) and P(x) commute for all x
in J, or equivalently, [P'/%(z)]" and P/?(x) commute for all x in J.
Proof. If P(z) is a commuting function, then P(z)P(y) = P(y)P(z)
implies that

[P(y) — P(2)]P(z) _ P(2)[P(y) - P(z)]
y—x y—2x

Letting y approach z we have P'(z)P(z) = P(x)P'(x). Conversely,
suppose P(z) and P’(z) commute. Then, by Rellich’s theorem |7,
Chapter I, Theorem 1], there exists an orthogonal matrix-valued real
analytic function U(z) and a diagonal matrix-valued real analytic
function D(z) = diag [p1(z), ..., pn(z)] such that

(4.7) P(z) =U*(z)D(z)U(z),

(4.8) P'(z) =U*(z)D'(z)U(z).

By (4.7) and applying (4.8), we have
P' = -U*U'U*DU +U*D'U + U*DU’
=-U*U'P+ P' + PU'U’,
i.e., we have
(4.9) PlU*U'| = [U*U'|P

in J. Since, for each z, the characteristic values of P(x) are distinct, it
follows from [2, Chapter 8, Corollary 1 to Theorem 2] that (4.9) implies
that

(4.10) U*(2)U'(z) = f(P(x); 2),
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where, for each z in J, f(t,z) is a polynomial in ¢-variable. Since
the entries of U(z) are reals, the coefficients of f(¢; ) are reals. Then
it follows from (4.10) that U*(z)U’(x) is symmetric for each z in J.
Therefore, we have

U*(z)U'(z) = U™*(z)U(x)

for all z in J. Hence (U*)' = U*U'U*. But as (U*) = (U7!) =
—U*U'U*, we have (U*(z)) =0 for al z in J, i.e., U(z) is a constant
matrix. Let U(z) = Uy for all z in J. Then P(z) = U} D(z)Up, which
implies that P(z) is a commuting function. u]

5. Second order linear systems whose coefficients are matrix
polynomials. In this section we shall apply Theorem 4.1 to study
(1.1) for the case that P(z) is a matrix polynomial. We shall prove the
following result.

Theorem 5.1. Suppose A, A,_1,...,A1,A9 are N x N real sym-
metric matrices, A, is a positive definite matriz, where n > 1. Let
Q(z) = 2" A, +---+xA; + Ay, P(z) = Q*(z), and y() be a nontrivial
solution of (1.1). Then we have lim,_, ||y(z)|| = 0.

Proof. Note that under the assumption of Theorem 5.1 there exists
zo > 0 so that both Q(z) and Q'(z) are positive definite for z > z.

Given an N X N real symmetric matrix A we shall use the notation
p1(A) > p2(A) > --- > pn(A) to denote the characteristic values
of A. For P(z) as that in Theorem 5.1, let ny(z) be the smallest
characteristic value of Q(z), pn(z) be the smallest characteristic value
of P(z). Then for x > zg, pn(z) = n%(x). Let y, be a characteristic
vector of Q(z) corresponding to ny(z), ||y.|| = 1. Then by the
minimum principle we have

77N($) = mn<Anywa yz> +---+ x<A1yzayz> + <A0yzayz>

Let p(z) = Yo un(4;)a, q(z) = 325 m(JAj])2?, where [A4;] =
(454,12, |A
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x > mo, Q(z), Q'(z) and P'(z) are positive definite, p(z) and ¢(z)
are strictly increasing, p(z) — oo as x — oo, ¢'(z), ¢"(z) and ¢"'(z)
are nonnegative and nondecreasing for x > z, and

(5.1) PN (@) = (@) 2 p(a),
(52) Q@) <q(@), [P@)<d@), Q@) <p ()
(5.3) Q@) <d (=),  P(@)] < 2q(z)¢ (),
(5.4) 1Q"(@)I| < ¢"(x),
(5.5) Q" (@)l < ¢"' (=),
for £ > xg. Thus we have, by (5.1), (5.3) and deg(¢') = deg (p) — 1,
ha
o IP@I _ 2@ (@)
pn(z) = pAz) 7
and hence
(5.6) I1P()]| = o(pn (2)) as z — o

Now, by computation, we have

(Q—I)III _ 3Q—1QIQ—1QIIQ—1 + 3Q—1QIIQ—1QIQ—1
_ 6Q—1QIQ—1QIQ—1QIQ—1 _ Q_lQIHQ_l-

Thus, by (5.2), (5.3), (5.4) and (5.5), we have

(5.7)

IP=2 ()" |
<p (2)[6p(z)q'(z)g" (z) + 6(¢(x))* + p*(z)q" ()]
= h(z)/[p(=))*,

where h(z) is a polynomial of degree < 3n — 3. Thus, we have

(53) [ P o) de = o),
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and it follows from (5.8) that

69 [N = o) as o
zo
Finally, we note that as Q' (z)Q(z) — Q(z)Q’(x) is a matrix polynomial
of degree at most 2n — 2, p(x) is a polynomial of degree n,

I[PY2(@)) = P42 (@) (P2 ()] P2 ()|
<R @) 1Q@)Q (z) - Q' (2)Q(2)] = O(="~?).

Hence, as deg (p) = n, p}f > p, we have

[/EH[P”Z(t)]'—P1/2(1‘)[P1/2(t)]'P1/2(t)IIdt o (@) = 0@@™).
Thus we have

G.10) [P - PO P di = oo (@)

o]

as ¢ — oo. By (5.6), (5.9) and (5.10), Theorem 4.1 tells us that
Theorem 5.1 holds. |
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REFERENCES

1. L. Cesari, Asymptotic behavior and stability problem in ordinary differential
equations, Third Edition, Springer Verlag, New York, 1971.

2. F.R. Gantmacher, Theory of matrices, Chelsea, New York, 1977.
3. P. Hartman, On a theorem of Millouz, Amer. J. Math. 70 (1948), 395-399.

4. H.G. Kaper and M.K. Kwong, Oscillation theory for linear second order
differential systems, in Oscillation, bifurcation and chaos (F.V. Atkinson, et al.,
eds.), Canad. Math. Soc., Conference Proceedings, 8 (1986), 187-197.

5. A.C. Lazer, A stability condition for the differential equation y"' + p(z)y =0,
Michigan Math. J. 12 (1965), 193-196.

6. A. Meir, D. Willett and J.S. Wong, A stability condition for y'' + p(z)y = 0,
Michigan Math. J. 13 (1966), 169-170.



634 C.-L. SHEN

7. F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach,
New York, 1969.

8. M. Rosenblum, On the operator equation BX — XA = 0, Duke Math. J. 23
(1956), 263-269.

INSTITUTE OF MATHEMATICS, NATIONAL TSING Hua UNIVERSITY, HSINCHU,
TAIWAN 30043, REPUBLIC OF CHINA



