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MODULE TYPES
JOHN DAUNS

ABSTRACT. The direct sum decomposition of torsion free,
i.e., nonsingular modules, into direct summands belonging
to saturated classes of modules is developed here for the
first time for arbitrary not necessarily torsion free modules.
The previous classification of modules into types I, 11, I11,
molecular, continuous molecular, and bottomless is extended
to all modules from the previous torsion-free case. It is shown
that there exists a contravariant functor X applicable to any
associated ring R with identity—where X(R) is a complete
Boolean lattice. Each element A € X(R) is a saturated
class of right R-modules. The above six classes of modules
are special examples of a general phenomenon—a universal
saturated class. These have various functorial properties
connected with the functor 3. It is shown that there is a
class of pairwise disjoint universal saturated classes one for
each cardinal number.

0. Introduction. A saturated class of unital modules A over some
ring R is a class of modules closed under isomorphic copies, submodules,
direct sums, and injective hulls. In previous studies by Goodearl and
Boyle [23], Rios and Tapia [36] and the author [13, 14, 15] the modules
were required in addition to be torsion-free, that is, nonsingular. One of
the objectives of this article will be to extend presently existing theory
for torsion-free modules this theory to arbitrary modules including
torsion and mixed. There are (infinitely) many examples. In fact, it is
shown in this article that, for a fixed ring R and any given nonempty
class of R-modules T, this class T generates a clearly describable unique
saturated class (Proposition 2.5).

The saturated classes used here are special cases of the more general
Wisbauer classes o[M] [38] as well as the natural classes used very
recently by Page and Zhou [33, 34, 35, 39]. On the other hand,
various special cases of torsion-free saturated classes have been used
by different authors, for a long time, in different contexts without
abstractly formalizing this concept [32, 28, 23, 22, 3, 7, 8, 9].
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The classes C' and D of continuous and discrete modules [9] or types
I, II and III are just a few examples. There are some others.
However, the above examples have at least three remarkable additional
features. First of all, they are definable over any ring (with unity)
without exception. Secondly, every torsion-free injective module M
over any ring decomposes uniquely as a direct sum into fully invariant
direct summands, eg, M = Mc® Mp, or M = M;® M & Mjgr.
Surprisingly, the third property has been formulated and systematically
analyzed in its full generality only very recently [11, 13-17] because
to do so requires the concept of a universal saturated class. The latter
was first defined in [13, 14]. And this third property is that the
above classes (C, D or I,1I and I1I) have various associated functorial
properties. Suppose that N = No & Np = N;y & Ny & Nyyy is an
injective module over a ring S, and ¢ : R — S is a surjective ring
homomorphism. Thus ¢ induces an R-module N, on the set N = IN,,.
Then the previous direct sum decompositions of N as an S-module
are also at the same time the same corresponding decompositions of N
viewed as the R-module N,,. There is one difficulty. As an R-module
N, need not be injective. For this and many other reasons, the author
has advocated the theory of saturated classes, and in particular types
I, IT and III for not necessarily injective modules [14].

The previous method of classification of operator algebras and
torsion-free modules M into types I, I1, I11 would have to be based on
the central idempotents of the ring Endg M where M is the injective
hull of M [31, 28, 3, 23]. For actual concrete applications, frequently
it is not possible to compute the injective hull M from M. And even
if this could be done, it may be impossible to calculate Endg M. To
circumvent these difficulties, here all the definitions and results will be
for arbitrary modules, injective or not.

It was shown in [11, 16] that there is a contravariant functor X
from rings R,S,... to complete Boolean lattices, where each point
of ¥(R) is a torsion-free class of saturated modules, and appropriate
ring homomorphisms ¢ : R — S induce lattice homomorphisms
©* : 3(S) — X(R). There are two other functors = and Z which
are isomorphic to ¥, but each having distinct advantages where each
one can be used in ways that the others cannot [11-14]. For example,
every ring R (with 1 € R) actually always contains a completely unique
complete Boolean lattice Z(R) ideals of R [13-15]. Even though
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> 27T = E, we can do things with Z very simply which we cannot
with ¥ or E, and of course conceptually “Z” is very different from X or
E. In [16] as well as [17] it was shown that if the torsion-free hypothesis
was omitted, we still got a functor from rings to complete lattices. But
then, and several years afterwards, it was not known whether these
resulting lattices were even modular. All previous techniques of proof
used in the torsion-free case failed. It is one of the main objectives of
this article to show that the class X(R) of all saturated classes of right
R-modules is a complete Boolean lattice in a natural way (Theorem I).
The partial order on X(R) is class inclusion, the meet of A1, Az € X(R)
is A1 A Ay = A; N Ay just intersection. The join Ay V Ay is not the
union, however.

The main results are labelled as propositions, theorems, and their
corollaries. If T is any class of modules, the first Proposition 2.5
and Corollary 2.6 give explicit descriptions of the saturated class
(T) generated by T, i.e., the smallest saturated class containing Y.
Given any finite or infinite set I' of saturated classes I' C 3(R), the
second Proposition 2.11 gives workable descriptions of infimum I'" and
supremum I, i.e., AT, VI' € £(R). However, Theorem I is needed to
prove that (®;crN;) = Vier(N;) € 3(R).

Suppose that I' C X(R) is any finite or infinite pairwise disjoint set
with VI' = 1 € X(R). Theorem II shows that for any R-module M,
there is an essential submodule ®,erM(,y € M with M) € v € T,

alternatively, M = E(@'\/er‘ﬁ(v)) where “~” and “E” denote right

—~

R-injective hulls, and M(,) € v € I'. In the general case the M, are
no longer unique as was the case when M was torsion-free [15, p. 58].

However, the M, are superspective (in the sense of Mohamed and
Miiller [32, p. 12]).

The problem in Section 4 is to extend the definitions of types I, I,
and IIT to all modules, not just the torsion-free injectives (as in [23]).
In this, but even more so in related similar problems, it is not clear that
there exist unique extensions—written types I, II, or I1I with small
t—of the definitions to cover also torsion modules. The next problem
is to show that the extended classes of type I, IT and III are actually
saturated classes. Both problems require another general method of
building saturated classes (Theorem III). Perhaps later this theorem
or some modification of it could be applied to other classes of modules
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which are not quite injective, but injective in some relative sense, e.g.,
as in [33, 34, 35 and 39]. Then in Section 4 in a similar way the
definitions of continuous (C'), discrete (D), molecular (A), continuous
molecular (C'A), and bottomless (B) modules are extended to the
general not necessarily torsion-free case. The extended definitions
result again in saturated classes, i.e., points of X(R). The above five
classes of modules, i.e., A, B, C, D and C'A, where defined and studied
in the torsion-free case in [11], where to the author’s best understanding
B, A and CA first appeared. They were discovered (and defined) by
means of the functor Z = 3. This again shows that parts of the older
theory of types I, II and I1I are merely special cases of the more
general theory of saturated classes. (Although E(R) = 3(R), the points
of Z(R) could be called unsaturated classes.) The present approach in
no way generalizes most of [23] or even attempts to do so, particularly
all of Chapters VI-XIV of [23]. Also, it is beyond the scope of this
article to describe the connection between the present article and the
remarkable work [36]. There remain many open problems which arise
from this article, and it is not yet clear whether the extended theory of
saturated classes (including the torsion modules) has been cast in its
optimal form. In particular, perhaps some of the present theory could
also be applied or extended to the natural classes of Page and Zhou
[33, 34, 35 and 39]. The author hopes to return to these questions
later.

Section 5 shows that ¥ is a contravariant functor (Theorem IV). As
already stated earlier, for every ring R we have these classes, I(R),
II(R), III(R), C(R), D(R), B(R), A(R) and CA(R). Section 6 shows
that the functions I, II, 111, C, D, B, A and CA are universal
saturated classes. The direct sum decomposition property of the latter
classes mentioned earlier is shown to be a special case of a general
phenomenon of universal saturated classes (Theorem V). It happens
when ¥ is a finite direct sum, or a product of subfunctors corresponding
to the given set of classes (e.g., X=X X1 Xy, 0or ¥ =X dXp,
or X =Yca®Xp ®Xp). Theorem V is proved for a finite for infinite
class A;, ¢ € I of universal saturated classes such that for any ring R,
{i | A;(R) # 0} is a set, and {A;(R) | i € I} C X(R) is a pairwise
orthogonal subset with sup{A;(R) | i € I} = 1 € X(R). Then any
module M contains an essential direct sum ®;c;M; < M, M; € A;(R)
as guaranteed by Theorem II, i.e., M= E(@ieI]\Z), J\Z € A;(R). Then
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also ¥ =[[{Za, | i € I} where XA, < S is a subfunctor related to A;.
For a long time it was not known whether there were basically only
a finite number of universal saturated classes or a set of these with a
bounded cardinality, or an improper class. One new consequence of the
theory in this article is that they form a proper class. For every cardinal
N, the class of modules Ay of local Goldie dimension R is a universal
saturated class containing both torsion and torsion-free modules (6.18).
A module M is said to be of local Goldie dimension R, if every nonzero
submodule 0 # V < M contains a nonzero submodule 0 # W < V
such that the Goldie dimension in the sense of [18] is N.

1. Preliminaries. A brief summary of some of the notations,
terminology, conventions, and abbreviations used is given all at once in
the same place.

Notation 1.1. Right unital R-modules are used over an arbitrary
associative ring R. The notation “M = Mpg” means that M is a right
R-module and “V = Vp” or just Vp that V is a right module over
a ring T, and similarly for left modules V = 7V. Submodules K of
M are denoted by K < M or K < M, or occasionally by K C M,
K C M when the set theoretic containment is to be emphasized; large
submodules are denoted by “<,” while A <£ B means that A < B
but A is not essential. A complement P < @ is any submodule of P
which does not have a proper essential extension inside Q; P is also
said to be closed in Q.

For z € M, z+ = {r € R | zr = 0} < R, and the inverse
image of K under the right R-map R — M, r — xr, is denoted by
'K ={reR|are K} = (z+ K)* < R. Similarly, for any subset
X C M, Xt ={r| Xr =0} < R; and hence, M+ < R where “<”
stands for ideals not only in R but other rings, too.

Right R-injective hulls of modules are denoted by both “ and
“E” as M = EM = E(M), where the latter is used if M is given by a
complicated formula. Thus M < M. The singular and second singular
submodules are Z(M) = ZM = {z € M | 2+ < R} < Zo(M) =
ZoM < M, where Z[M/ZM| = ZoM/ZM. A module M is torsion
if ZoM = M and torsion-free, abbreviated “t.f.” if ZoM = 0, which
happens if and only if ZM = 0. For Z and Z> see [11, pp. 52-55], as
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well as [16, p. 748].

The complement closure K of K in M is defined only if ZM C K by
Z(M/K)=K/K, where K < K < M. If K <R, then also K <R. For
complement closures, see [14, pp. 101-104].

Internal and external direct sums of modules are denoted by “®.” If
A; =2 A i eI, write ®{A; | i € I} = ®{A | I}. Internal and usually
nondirect sums of modules are denoted by “¥.” When the index set is
surpassed in UA;, NA;, @A; or Y A;, then it is understood that i ranges
over the largest possible index set. The notation “A < B” means that
there exists some not necessarily unique embedding of the module A
into the module B.

The cardinality of any set X is denote by |X|, while the set of all
subsets P(X) of X is a Boolean lattice (P(X),U,N,\,0 = @,1 = X)
and, completely equivalently, that is canonically, a Boolean ring, where
lattice and ring ideals and homomorphisms coincide.

The category of right R-modules is written as Modg, and the
category of torsion-free modules, where the morphisms are R-homo-
morphisms with closed kernels as t.f. Modg. Similarly, tor-Modg
denotes the full subcategory of Modpg consisting of all torsion modules.

Terminology 1.2. The terminology from Mohamed and Miiller
[32, p. 12, Definition 1.30] is used for direct summands A, B < M of a
module M; A and B are perspective if M = A@® C = B @ C for some
C < M; they are superspective if forany D < M, M =A@ D < M =
B® D. A decomposition of M as M = A; & As with certain properties
(say P) is unique up to superspectivity if for any other decomposition
M = B; @ By satisfying (P), A; and B; are superspective for i = 1 and
2.

Asin [7, p. 34], a module M is A-free if M does not contain a nonzero
submodule isomorphic to a submodule of A.

Since the following simple argument has to be used repeatedly later
on, and sometimes without mentioning that it is being used, it is stated
here. Its proof does not require that any of the modules in it be torsion-
free (see [13, p. 329] or [14, p. 101] or [15, p. 43]).
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Projection argument 1.3. Let W,,, v € I, be any indezxed family of
modules and 0 # £ € E(®yecrW.,y). Then there exist 0 #rg € R, y €T
and 0 # w € W,, such that 0 # érgR = wR < W., with (€rg)* = wt.

2. Saturated classes. For a given, fixed R-module M, let o[M]
be the full subcategory of Modpg subgenerated by M [38, p. 118].
S. Page and Y. Zhou define in [34, p. 634] an M-natural class K to
be a subclass K C o[M] closed under (a) submodules, (b) isomorphic
copies, (c) direct sums and M-injective hulls. (See also [39, p. 928];
and for M = R, [35, p. 2912].) An M-natural class is more general
than a saturated class of modules below in 2.2. If M is a generator of
Modg, e.g., M = R or M = ER, then the M-injective hull is just the
usual injective hull. In this case, when M = R, the above definition of
M -natural class becomes the same as the Definition 2.2 of a saturated
class. Every one of S. Page’s and Y. Zhou’s many theorems proved
for M-natural classes have immediate corollaries valid for saturated
classes obtained by specializing M to M = R. Their work is in a
quite different direction and does not overlap with this article because
they ask and answer very different questions. Definition 2.2 below is
completely identical to the definition of a ‘saturated class’ given in [15,
Definition 3.2]. However, later there, and in [13, p. 329], and [14,
p. 108] as well, in addition all modules were torsion-free, which in the
present context is nevertheless still a specialized kind of saturated class,
a so-called t.f. saturated class.

Definition 2.1. For any nonempty class of right R-modules A,
define a complementary class

c(A)=cA={W e Modg |VO£V <W,V ¢ A}
Modules W € cA are called A-free. Consequently,
c(cA)={N e Modgr |[VO#AW < N,J0£V <W,V € A}

Any module N possessing this latter defining property of ¢(cA) is said
to be A-dense. Such modules N may be thought of as being locally in
A.

For any module M and any class A, define Ma < M by Ma = X{V |
V <M,V € A}. Thus we also get M.y < M.



510 J. DAUNS

Definition 2.2. A nonempty class A of right R-modules is called
a saturated class if A is closed under (a) submodules, (b) isomorphic
copies, (c) arbitrary direct sums and (d) essential extensions. When
(a) holds, (d) is equivalent to the condition that (d') A is closed under
injective hulls. The term ‘saturated’ refers to property (a) mainly, but
also to (b). If A consists entirely of torsion-free, or torsion, modules
it is called a t.f. saturated class or a torsion saturated class. Clearly,
{(0)} and Modp are saturated classes. Since ZoE = EZj, so are t.f.
Modp and all torsion R-modules torModg.

Definition 2.3. For any R, the class of all saturated classes of
modules is denoted by X(R). For «o,8 € X(R), @ < B if and
only if o C [ defines a partial order on X(R) with smallest and
largest elements {(0)} = 0 € ¥(R) and Modg = 1 € X(R). For
A1, Ay € X(R) whenever their greatest lower and least upper bounds
exist in the poset X(R), they are denoted as Ay V Ag, A; AAs € X(R),
and similarly for infinite sups and infs.

Later it will be shown that the class ¥(R) actually is a set.

Notation 2.4. The intersection of any set of saturated classes is
again a saturated class. For any nonempty class of right R-modules
T, (YT) denotes the saturated class generated by T, i.e., (T) is the
nonempty intersection of all saturated classes containing Y. Again, it
will be shown later that the class of all saturated classes is a set, and
hence that above we are intersecting only a set of classes, and not a class
of classes. When v = {M} is a singleton, abbreviate ({M}) = (M).

Proposition 2.5. Let T be any class of modules, and (Y) the
unique saturated class generated by Y. Let X be the class of all modules
isomorphic to a submodule of some element of Y. Then the following
hold, where J is a set.

(i) (Y) ={Mg | 3N; € Y,j € J such that IM — E(D;csN;)}.
(i) (Y) ={Mg |3P; = N; € Y,j € J;3Pjecs P; < M}.
(iii) (T) = (X) =cc¥ = {Ng |[VO£W < N,30#£V <W,V € T}.

Proof. (i) The right side of (i) satisfies 2.2(a), (b) and (c). The proof
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that it also satisfies Definition 2.2 (d) is not difficult and is omitted.
Thus the right side of (i) is a saturated class which contains YT and is
necessary contained in (T).

(ii) Define Y to be the right hand side of (ii). Then Y is closed under
Definition 2.2 (b), (c) and (d) by definition. Since (Y) = (T), and since
Y remains the same if Y is replaced by T, it suffices to prove (ii) for T
replaced with Y. To prove Definition 2.2 (a) for Y, it has to be shown
that for any V < M €Y, also V € Y. Since @jcsP; < M €Y, also
EBjeJ(Pj N V) < V. But PNV < P; < N; shows that P, NV € T.
Thus V € Y and Y is a saturated class. Trivially, T C T C Y and
hence (Y) C Y. Since every element of Y is obtained by applying
Definition 2.2 (d’) first and 2.2 (a) second to modules belonging to Y,

necessarily Y C (T).

(iii) First some general comments. For any class T,
ccXY ={Ng |[VO#EW <N, J0#V <W,V €T}

That is, ccY consists exactly of the T-dense modules. Consequently,
hypothesis 2.2 (a) alone on Y is enough to guarantee that T C ccY.
Now suppose that T satisfies 2.2 (a) and (b). Clearly ccY is closed
under essential extensions 2.2 (d) and 2.2 (d'). Use of the projection
argument 1.3 shows that ccY is closed under submodules 2.2 (a). Lastly,
2.2 (b) on T always implies 2.2 (b) on ccY. Thus ccY is a saturated
class, and since T C ccY, also (T) C ccY.

Since T is closed under 2.2 (a) and (b), (Y) = (T) C ccY. In order
to prove the converse, take any N € ccY as in the above formula.
There exists by Zorn’s lemma ®,c;V; < N with V; € Y. Thus
N < E(®jec;V;) € (Y), and hence N € (T). Consequently, ccY C (T).
Thus (Y) = (T) = ccX. The last equality in 2.5 (iii) follows from the
fact noted above more generally that ccX consists of all the T-dense
modules.

For some one module M, the previous proposition is now specialized
to T = {M?}, and hence to (T) = (M). O

Corollary 2.6. For any module M, the saturated class (M) gener-
ated by M satisfies the following.

(iv) (M) = {Ng | forall0 # W < N, there exists a0 # V <
W such that V= P < M for some submodule P of M}.
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(v) (M) = {Ngr | there exists a set JJP; < N,P; — M,j €
J such that 3, ; Pj = ®jesPj < N}

Proof. (iv) If Y = {M}, then Y in 2.5 is the set of all submodules of
M and 2.5 (iii) reduces to (iv).

(v) Define Y to be the set in (v), Y = {N}. In (v), for N € Y and
for any j € J, P; € (M), also ®jc P; € (M), and hence N € (M).
Thus Y C (M). Conversely any N € (M) by 2.6 (iv) is easily seen
to contain an essential direct sum of submodules such that each direct
summand is isomorphic to a submodule of M. Thus N €Y, (M) CY.
Therefore (M) =Y. O

One of the more useful ways of defining a saturated class A € X(R)
is to find some easily describable cyclics which generate A.

Lemma 2.7. Let X C {E(R/L) | L < R} be a complete set
without repetitions of isomorphy classes of injective hulls of cyclic
R-modules. Define functions g : Modgr — X by g(M) = gM =
{E(R/m*Y) | 0 # m € M, E(R/m*) € X} and f : £(R) - X by
f(A) = fA={E(R/L) | E(R/L) € ANX}. Let My, My € Modg
and Ay, Ay € X(R) represent arbitrary elements. Then

(i) (My) = (M) < gMy = gMp;
(i) Ay = Ay & fA; = fAy;
(i) [S(R)| = [P(X)| < 2/P;
(iv) for all A € £(R), A = (Der/L)ef(a)R/L).

Proof. First note that for any module M, if ' C M is any subset such
that {E(R/z+) |z € T} C X is a set of representatives of isomorphy
classes of injective hulls of cyclic submodules of M without repetitions,
then gM = {E(R/z%) |z € T} C X and |gM| = |T).

(i) It suffices to show that for any module M, (M) = (M,),
where M, = ®{E(zR) | = € T}. Let ®{x;R | i € I} < M be
any essential direct sum of cyclics of M. Define M; = M, for all
i, and map ;R — M, = M; C @®;c;M;. Then this extends to
®icrz; R and from there to M — E(®rM,). Hence M € (M,), and
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(M) C (M,). For the converse, set M; = M for all t € T, and map
tR — M = M; C @icrM; by natural inclusions. This extends to
M, — E(®rM). Thus M, € (M) and (M,) = (M).

(ii) For any A € ¥(R) and any M € A, gM C fA =U{gN | N €
A}. Let fAy = fAs. Then for any M € Ay, gM C fA;. Then
M, € A, by the above proof of (i) and M € (M) = (M,) € A,. Thus
A; C Ay and by symmetry Ay C Ay, Ay = Ay, If Ay = Ay, then
trivially fA]_ == fAQ

(iii) By (ii), f : ¥(R) — P(X) is one-to-one. It is easy to see that
f is onto. Thus |X(R)| = |P(X)|. Each element E(R/L) of X is
determined by at least one subset L C R of R. Hence |X| < |P(R)|
and |P(X)| < |P(P(R)) = 2/P(H)I,

(iv) Set N = @{R/L | E(R/L) € f(A)}. Since for each E(R/L) €
f(A), R/IL < E(R/L) € A, N € A, and (N) C A. Conversely,
for any M € A, let T and M, be as at the beginning. Then there
exists a dense embedding @,crR/zt & @yerrR < M,. As above,
(M,) = (M). Since ®zerR/z+ < N, (M) = (DgerR/zt) C (N).
Thus M € (N) and A C (N). Hence A = (N). O

If below A were a t.f. saturated class, then it and ¢A would have
several additional useful properties and more structure. It would be
interesting to generalize (1) (iv) below in several ways.

Lemma 2.8. Let A be a saturated class and M any R-module. Then
(1) (i) cA is a saturated class;

(i) c(cA) =

(iii) ANcA = {( '}

iv) A is closed under homomor phic images whose kernels are com-
g
plement submodules.

(2) (i) Let N < M be any mazimal submodule of M with N € A.
Then for all D<M, NND =0= D € ¢(A).

(ii) there exist complements N,C < M with N&C < M and N € A,
C € ¢(A). For any such N, C < M,

(i) M=NaC, N el ec).
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Proof. (1) (i) The class
c(A)={Nr |[VO#V <N,V ¢ A}

is closed under 2.2 (a), (b) and (d), and moreover by 1.3, also under 2.2
(c). (ii) As in the proof of 2.5 (iii) and its notation, we have A C ¢(cA),
A=A = (A) = ccA = ccA. Conclusion (iii) is clear. (iv) Let M € A,
f:M — M/K with C € A by 2.2 (a), while M/K € A by use of 2.2
(b) followed by 2.2 (d).

(2) (i) By maximality of N, in view of 2.2 (c), for any 0 £ V < D,
V ¢ A. Hence D € ¢(A).

(ii) By Zorn’s lemma, there exists a maximal direct sum @;c;N; < M
of submodules N; € A. If then N < M is any complement submodule
with ®;c;N; < N, then also N € A. Now take C' < M to be any
complement submodule of M maximal with respect to NN C = 0 and
hence N @ C < M. By (2) (i), C € c¢(A).

(iii) Thus M = N & C with N € A, C € ¢(A), by 2.2 (d) or (d).
O

Notation 2.9. Above, for a fixed N, C need not be unique, not
even up to isomorphism; and to begin with, certainly N need not be
unique. Any such choice of complement submodules N and C of M
will be denoted by N = M(a) and C = M), even when possibly M
is torsion-free.

In the torsion-free case when ZM = 0, Ma = X{V | V < M,V €
A} < M is unique, Mp is a complement submodule of M, and Ma € A
([14, Main Corollary, 3.17] or [13, Theorem 2.2]). Thus Ma & M,a,
Ma € A, M.a € cA are three unique submodules of M. Note that
with ZM = 0 if fA is defined as fA = {V € A | ZV = 0}, then
Mpa = Mga. Here most of the time we will reserve the notation “Ma”
for the case when M(a) = M is unique.

Define J/\Z(A) and EM(A) by ]/\Z(A) = EM(A) = (EM)(A) = E(M(A)).
Thus M = M(A) ©® M(CA)-

Later the next result will be substantially generalized to any pairwise
disjoint set of saturated classes which generate Modg.
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Direct sum and uniqueness 2.10. For any saturated class A and
any module M, suppose that Ny & C; < M, N; & Co € M with
N1, Ny € A and Cy,C5 € cA. Then

(i) MeC=NoC, =

(11) N1 N2 and Cl 02

111 ere exists Dy < Ny, Dy < N3 and an isomorphism f : D; —

iii) Th D Ny, D N: d i hi D
D,.

(1v) for all M(a) ® M(cA) < M, in the decomp051t10n M= M(A) &

M(CA) the submodules M, A and MCA of M are unique up to superspec-
tivity.

(v) [M/Ma)](ay = 0.

Proof. (i) and (ii). Suppose that M = N; & C; = N2 & Cy are
all injective. Then Ny NCy = 0 and No NCy = 0 by 2.8 (2)(i). Let
N ®Cy ®D = M for some D < M. It can be proved from 2.8
(2) (i) that Ny € A and Cy € cA are maximal submodules of M
belonging to these respective classes. Use of 2.8 (2) (i) on Ny shows
that D € ¢(A), while 2.8 (2) (i) applied to C shows that D € A. Thus
0=D e AncA ={0)}. Hence M = Ny & C; and for any ¢ € Ny,
§=8&+n & eNym € Cg Then f(£) = ¢ defines a monic R-map
f ]Y\l — /]\\/'2 Conversely, N2 is isomorphic to a submodule N1 By
[5], N1 = Ns.

(iii) Now NV; & C; <« M K ]/\ZZ ZV,-@@, and let f : Nl — NZ
be an isomorphism. Since f is an isomorphism and N; < Z/\fl, also
fN1 < Ny, and (fNy) N Ny < Ny. Since the inverse image of a large
submodule is large, D; = Ny N f~1[(fN1) N N3] < Ny and fD; C Ns.
But since f : ]\71 — ]/\\72 is an isomorphism it maps the large submodule
D) <« N1 onto a large submodule Dy = fD; < N2 Then denote also
by f the restriction and corestriction f : Dy — Ds.

(iv) Let M= J/\fl 6961 = ]/\\72 6962 with ]Vi € A and 6, € cA arbitrary.
From the proof of (i), M = N; & C; & M = Ny ¢ C;. Thus N; and
N, are superspective.

(v) If K < M is a complement and (M/K)a =V/K, K <V < M,
let K W <« V. Then (K ® W)/K <« (M/K)a and W € A, In
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particular, if K = M(a) then M(A)®W € A and W = 0. Consequently,
[M/M(A)](A) =0. O

Recall that in the poset £(R), by definition, “<” is set inclusion.

Proposition 2.11. For any subsetT' = {v(i) | i € I} C X(R), define
a={M € Modg | there exist M; < M,M; € v(i),i € I; ;e M; <
M} and B = {N € Modg | forall0 #V < N, foralli € I,V ¢
~v(@)}. Then

(i) there exists infI" = AT = N;jery(i) = Nicry (i) € L(R);
(ii) there exist supT' = VI = V,e1y(7) = a € L(R);
(ili) aAf=0and a VB =1€X(R).

Proof. (i) Since N;ery(7) C ~(i) for all 7, the saturated class N;er7y(7)
is a lower bound of all the v(%). For any other lower bound § € ¥(R),
d C (i) for all 4 € I, and hence § C N;ecry(i). Thus Nicry(7) is the
greatest lower bound of the (7).

(ii) By its definition, the class « is closed under 2.2 (b) and (d). It
is easily seen to be closed under 2.2 (c). For any 0 # N < M € a,
it is asserted that N € a. Let S be the set S = {{N;}icr | N; < N,
Ni € y(i),i € I; ) ;1 Ny = @ier Ny < N} For {Nj}, {N;} € S, define
{N{} < {Ni} if for any j € I, N} C N;. Then {{0}; |i € [} € S # &,
and S is inductive. By Zorn’s lemma, let {N; | i € I} € S be a maximal
element so that ®;c;N; < N is a direct sum maximal in the above
sense. By definition of «, there exists @;c;M; < M € o, M; € (7).
If ®;c;N; < N, we are done. Otherwise there is a 0 # D < N with
(®icrN;) ® D < N. By the projection argument 1.3 there exists a
j € I and submodules 0 # A < DN (®ierM;), 0 # B < Mj; with
A = B € v(j). Thus (Picr,ix;Ni) ® (N; & A) < N contradicts the
maximality of {N; | ¢ € I} € S. Therefore D = 0 and N € «. Thus
a € X(R) is a saturated class. Since ¥(7) C « for all i, « is an upper
bound of the (). Suppose that (i) < §, i € I is any other upper
bound. Since § is closed under direct sums, and essential extensions,
a C 4. Thus « is the least upper bound of {y(7) | i € I}.

(iii) By (i), aAB =anp = {(0)} = 0. By (ii) applied to {a, 3} with
I =2, aV B ={Mg| thereexistsan A € o,B € 3,A® B < M}.
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We now show that any arbitrary M € Modpg belongs to a V 3. Let
A < M be a submodule that is maximal with respect to A € a. By
2.8 (2) (i) such an A exists, alternatively a Zorn’s lemma argument of
the type used in the proof of 2.8 (2) (ii) shows that A exists. (Then
A < M is a complement.) Let A® B < M for some B< M. If B=0,
then B € 8. Otherwise, for any 0 # V < B, V ¢ «a. For if V € «, then
A®V € a would violate the maximality of A. Thus B € 5. By 2.11
(i), M € aV = Modg =1 € I(R). o

Corollary 2.12. For any saturated class A € X(R), the element
cA € X(R) is unique with respect to A N cA = 0 € X(R) and
AV cA = Modg =1 € X(R).

Proof. Since “<” and “<” in the poset S(R) are defined by set
inclusion, and since A NcA = {(0)}, A AcA = 0. For any module M,
My € A CAVcA, and also M a) € cA C AV cA. Consequently,
May ® Mcay < M € AV cA = Modg. Now suppose that for some
T eX(R), ANY =0and AVY =1. Then ANT = {(0)} =0 € Z(R).
For any N € T, and any 0 # V < N, V ¢ A because V € T. Thus
T C {Ng| forall0 #V < N,V ¢ A} = cA. For any M € cA,
M e AVT. By 2.11 (ii) with I' = {A, T} we get that M; @ My < M
with My, € A and My € Y. Since M € cA, also M; € cA and hence
M; =0. Hence Mo < M €Y. ThuscA C Y and cA="7. ]

The proof that the distributive law holds in X(R) will hinge on the
next lemma.

Lemma 2.13. For any saturated class A and any chain C C A which
is a set, also UC € A.

Proof. Set B = U{A | A € A}. Form Ba) ® Bca) < B. Then
B(cA) = U{A N B(cA) | Ae C} For every Ac CC A, AN B(cA) €A,
and AN Ba) < Beay € cA. Thus ANBay € ANcA = {(0)}. Hence
B.a =0 and B € A.
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Lemma 2.14. For any a, 8,7 € 2(R),

aN(BVy)=(anB)V(aAy)

Proof. Always (o AB) V (A7) < aA(BV~7). It has to be shown
that for any M € a A (BV %), also M € (a AB)V (aA). Form the set
S={P,Q)|P+Q=P&Q<MPcalBQEcaA~}. Partilly
order § by (P,Q) < (P',Q') € S whenever P C P’ and Q C Q.
By 2.13, S is inductive. Also, ({0},{0}) € S # @. Thus, by Zorn’s
lemma, there exists a maximal element (P,Q) € S where P € anf
and Q € anN~. Take any V < M with P®Q &V <« M. Since
V<IMEea and M € BV~,alsoV € BV~ By 211 (ii) there
exist B € B8 and C € « such that B® C <« V. Then B € a A £,
C e€aNyand (P,Q) < (P® B,Q®C) € §. By the maximality
of (P,Q), B=0,C =0, hence V=10, and P® @ < M. Thus
Pe(anp) S (a@anpf)viary),Qeany C(anp)Vv(any),
and consequently, M € (a A B) V (o A ) again by 2.11 (ii). Thus
aA(BV7y) < (aAB)V(aAvy) and hence they are equal. O

Theorem 2.15. For a ring R with unity, let X(R) be the class of
all saturated classes (Definition 2.2) of R-modules partially ordered by
class inclusion. Then

(1) 2(R) is a set, |Z(R)| < 2/(PH),

(2) X(R) is a complete Boolean lattice with largest element 1 =
Modpg € E(R), smallest element 0 = {(0)} € X(R) under the following
lattice operations for any I C X(R) and A € X(R).

(i) AT' = infT = NI}

(ii) VI' = sup T is the unique saturated class (') € X(R) generated
by T'; alternatively,

VI =supl' = {M € Modg | 3@yer M" < M,M" € v €T},

(i) AAe(A) =0, AVe(A) =1 € E(R) where the complement c(A)
consists of all R-modules which are A-free, i.e., contain no nonzero
submodules belonging to A.
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Proof. (1). By 2.7 (iii). (2) (i), (ii). By 2.11 (i), (ii). (2) (iii). By
212. O

Remark 2.16. For any «, 3, or A € X(R), c¢(a), ¢f or cA were defined
in 2.1. By 2.15 (iii) and 2.11, ¢(a), ¢8 and cA are also the unique
complements of «, 3, A in the Boolean lattices X(R).

Corollary 1 to Theorem I, 2.17. For any ring R, and any
A € 3(R), define

tA={AeA|ZA= A}, fA={BeA|ZB =0}
Yy(R)={Ae€X(R)|VM € A, Z2M = M},
Ys(R)={A € X(R) |VM € A, ZM = 0}.
Then
(3) () A, 74 € S(R);
(i) tANFA =0, fAV fA = A;
(iii) Z(R) = X¢(R) @ Xf(R) is a lattice direct sum of complete and

convez sublattices; alternatively and equivalently a ring direct sum of
convex and complete ring ideals.

Proof. (3) (i). It is easy to check that the operations 2.2 (a), (b),
(c), (d) and (d’) preserve t.f. modules and torsion modules (but not
singular ones). (3) (ii). Since tA, fA C A, also tAV fA C A. Let
M € A. Take any C < M with ZoM & C < M. Then ZoM € tA,
Ce fAand M €tAV fA by 2.15, 2 (ii). Thus A =tAV fA.

(3) (iii). Since both 3;(R) and Y (R) are closed under arbitrary
suprema and infima (2.15 (2), (i), (ii)), and since their intersection
is zero, they are convex, orthogonal sublattices with X:(R) V X(R) =
{aVB|aecXyR),B €X¢(R)} =Zi(R) ®Xf(R) C X(R). The latter
inclusion is an equality by (3) (ii). O

In the next corollary some lattice theoretic concepts are related to
module theoretic properties. It merely scratches the surface; there still
remains a lot to be done in explaining the algebraic significance of
lattice order theoretic properties of X(R). Note that for A € X(R) and
for a module M, (M) is independent of the choice of My < M.
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Corollary 2 to Theorem I, 2.18. For any module M and any
saturated class A the following hold.
(i) AN (M) = (Ma));
(ii) A < (M) & A = (M(a))-
(iii) For o, B € X(R),

alAfB=0<+<= VM € Modg,

for all choice of My, Mgy < M, Moy N Mgy = 0.

Proof. (i) Note that (i) follows easily from (ii), and that “(ii) <” is
trivial.

(ii) =. Since Ma) € A, also (M) € A. Conversely, let
N € A C (M). Hence ®jesPj < N where P; = P/ < M, j € J.
In order to show that N € (M(a)), it suffices to show that for each
fixed j separately, for some A < Pj, A is isomorphic to a submodule
of M(a). Expand P; C @ to a maximal A-submodule Q@ < M. By
2.10 (iii), there is a D < @ and a monomorphism f : D — Ma). Let
A=Dn PJ/ < PJ/ Then A = f(A) < M(A) Thus <M(A)> =A.

(iii). Conclusion (iii) can be proved similarly, and is omitted. O

The proof of the next corollary uses heavily the fact that X(R) is a
complete lattice.

Corollary 3 to Theorem I, 2.19. For any family of modules

{N; |i eI},
(@) =\ () e S(R).

i€l i€l

Proof. Set M = ®;erN;. Since N; < M, (N;) < (M). Since X(R) is
complete by 2.11, it follows that Ve (N;) < (M).

It suffices to show that M € V,;cr(NN;), because in that case by 2.6
also (M) C Vier(N;). In 2.11 (ii), take M; = N; < M and take
I'={(N;) | i € I}. Then ®;erM; < M holds, in fact the two are
equal. Hence M € VT ]
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3. Direct sum decompositions. Recall that for a t.f. module
M and a t.f. saturated class A € Xf(R) C X(R), the complement
submodule Ma = 3{V | V < M,V € A} < M is the unique f.i.
maximal A submodule of M with M € A. In the absence of the
t.f. hypotheses, it is the failure of the later uniqueness property which
makes direct sum decompositions much more complicated, difficult and
challenging.

Theorem II, 3.1. LetT = {a,8,7,...} C L(R) be any finite or
infinite pairwise disjoint set (¢ A3 =0 if a # 8 € T') whose supremum
issupl' = VI' = 1 € X(R). For any module M, let {M ) | « € I'} be
any choice of mazimal o submodules, i.e., each M,y < M is maximal
with respect to Moy € a. Let Q C T' be any subset, and let K < M
be any complement submodule such that X{M | v € 2} < K. Note
that such a K always exists. Then

(1) (1) Zn,er My) = ®yerMy) < M

(i) K € VvQ is a mazimal supQ submodule of M. Hence, if
@yemoMy, < L < M is any complement submodule, then we may
take K = M(\/Q), L = M(c(vQ))’ M(VQ) D M(c(vﬂ)) < M where
GyeaMy < M) € Ve, DyemaMy < M (va)) € c(VQ).

(iii) In particular, if T = {a}, then there exists a @ eryzaMy K
Me(a)) € e(a), Mia) & M(e(a)) < M.

(2) (i) Superspectivity (see [32, p. 12]). Suppose that N* < M,
N* € a € I is any other choice of mazimal o submodules, and

PacaN® < N® € VQ is any complement of M (and hence a mazimal
VQ submodule of M). Then E(®yer\oN?) = E(M(vay))-

(@N”) ® < D M("r)) < N @ Moy < M
YEQ YET\Q

E(NQ) = E(M(VQ)); E( @ N'Y) = EM(C(\/Q)).
~yel'\Q

(ii) In particular, if @ = {a}, and if ®yery2aNY K N < M is
any complement, and hence N°“ € ca is caw mazimal, then

E(M)) = E(N%); E(Mq)) = E(N).
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Proof. (1) (i). Suppose by induction that the sum of any n distinct
M,s is direct, but that M(a(o)) N (M(a(l)) D - D M(a(n))) # 0 for
a(0),a(1),... ,a(n) € I'. Then by the projection argument, a nonzero
submodule 0 # V' < M4 (o)) is isomorphic to a submodule of some
Moy, V=2 U < Myy. But then U or V € a(0)Na(i) = a(0) Aa(i) =
{(0)}, a contradiction.

Let (®yerM(y)) ® P < M. Then P € Modg = VI' = 1 € £(R). By
2.11 (ii), there exist P, < P, P, € y € T, @ycr Py < P. If P # 0, then
some P, # 0. But then M, ® P, € v contradicts the maximality of
M-

(1) (ii) and (iii). By 2.11 (ii), K € VQ. If K were not a maximal
VI submodule of M, then K ; C < M for some C' € V§). Since K is
a complement, K <£ C, and K @ D < C for some 0 # D € VQ.
In view of 2.11 (ii) again, D € VQ implies that @®yecaDyw <K D
for some D, € w € Q. For some v € Q, D, # 0. But then
M,y # M,y ® D, € v contradicts the maximality of M,). Hence
K is a maximal VQ submodule of M.

In any complete Boolean lattice such as 3(R) for any subsets Q C T,
if VI = 1 then V(I'\Q) = ¢(2). The previous argument applied to I'\Q2
and L, in place of 2 and K, shows that L < M is a maximal ¢(V{2)
submodule of M. The rest of (1) (ii) and (iii) is clear.

(2) (i) and (ii). Since N € VQ is a maximal VQ while M (vq)) €
c(VR) is a maximal ¢(V§) submodule of M, it follows from 2.10 that
N®g M, (e(v)) < M. The remainder can now either be proved directly,
or deduced from 2.10. |

Corollary 1 to Theorem II, 3.2. In the above theorem, define
Moy = Z2M ), and let M(so) < M(q) be any complement submodule
such that M ;o) ® M(5o) < M. Then let ta, fa € X(R) be defined as
the unique elements such that o = taV fa, ta A fa =0, ta s torsion,
fa is torsion-free. Then {tv, fy |~y € T'} and {Ma), M(ta) | « € T'}
satisfy the hypotheses of the last theorem, and 2.19 (1) (ii) becomes
©yerMta) @ (©yerMyy) < M, de.,

(3) (i) M(ta) € ta is a mazimal too submodule of M and Moy € fo
is a maximal fa submodule of M; in particular, both are complements

mn M;
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(ii) ZoM & (@aerM(sa)) < M
(iii) Z2(®7€FM(7)) = GB'VEFM(t'y) < ZoM.

Proof. By definition, ta = e; Aa =1 and fa = g9 Aa = ez where
l=¢g1Vey=¢€1+e5 € Et(R) D Zf(R) = Z(R), €1 € Zt(R) = E(R)&‘l,
g2 € Xf(R) = X(R)ez. Moreover, ¢; = {M € Modg | ZoM = M},
while 3 = {M | ZM = 0}. Consequently, ZoM) € e1Na =1 Aa =
ta; and since ZoM(sq) =0, M(fq) Ee2Na=c2 Aa = fa.

By construction M ;) is a maximal ta submodule of M) and Msq)
a maximal fa submodule of M. Hence, both are complements
in M), which in turn is a complement in M. Since, in general, a
complement of a complement is a complement, both M(;,) and My,
are complement submodules also in M.

In order to see that M(;o) = Z2M(,) and M(;,) are maximal to and
fa submodules of M (and not merely of M), let Moy © C < Ny,
O#ZQC:CGtOZCOé, andM(fa)69D®Z2N2<<N2,O7éDEfa,
Z9D = 0, where Nl, N3 < M both are maximal o submodules of M. By

2.10 (11) M(a) = Ng Hence M(ta)®0 < Zle Z2M M(ta)
and Mfa @D@ZQNQ M(fa) @M(ta)

The identity map M(m) — M(m) extends to an isomorphism g :
]/\\71 — M(ta) (&) M(fa) = ]/\4\((1). Then gC N J/\i(ta) =0, and C =
(9C + Z/\/[\m )/M(m) is torsion-free, a contradiction.

In the second case, the 1dent1ty map M(fa) — M(fa) extends to
another isomorphism A : N2 — M(fa) &) M(m) = M(a). Now hD N

M(fa) =0,and D = (hD+M(fa /Mfa is torsion, again a contradiction.
]

Corollary 2 to Theorem 11, 3.3. In the last theorem and corollary,
let C < M be any complement submodule with ZoM & C <« M. Let
Cio € fa be the unique mazimal fo submodule Cro = L{V | V <
C,V € fa} < C. Choose in the last theorem the M, such that
Cra C M, for all « € T'. Then the last Corollary 3.2 holds with
Msy) = Cf"w i.e.,

(4) (1) ®yer(Z2M(y) @ Cpy) K ByerM(y) < M;
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(ii) ZQM(A/) (&) Cf—y < M("/)‘

@Z2M(~,) < ZyM, @Cﬁ < C;
yelr yel

all submodules in (4) are complements in M.

Proof. In order to apply the last corollary, it has to be shown that
Cfa < M(y) is a complement. However, Cy, < C is a complement,
and C < M is a complement. Hence Cf, < M is a complement, and
finally Cfo < M, is also. The rest of the proof is omitted. |

4. Types. The t.f. universal saturated classes in [14] and [15]
generalized and extended type I, 1] and I1] modules. Here all of the
latter, and more, will be extended to the torsion, or more appropriately
actually the general mixed case. To carry this out, a new method of
defining saturated classes different from the one in the last section is
needed. Some more theory is developed, which perhaps later could be
applied to several classes of modules which are close to being injective,
but not quite injective, of the kind one finds in [32]. Among other
things some specific examples of saturated classes will be given in this
section.

Definition 4.1. Let C be a nonempty class of modules closed
under isomorphic copies. A module M is essentially C-dense if for
any 0 # N < M, N contains a nonzero member of C. Define a class of
modules ess-C by

ess-C={N|3Ke(C,N <K}
Thus the terms “essentially C-dense” and “ess C-dense” are synonyms.

Recall that, for a nonempty class of modules D, a module M is D-free
if M contains no nonzero member of D. The module M is locally D-free
if every nonzero submodule of M contains a nonzero D-free submodule,
i.e., for any 0 2 A < M, there exists a 0 # B < A such that for every
04£C<B,C¢D.

In applications to types I, II and II1I, the class C will consist entirely
of injective modules of some specified kind. Relatively recently various
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classes of noninjective modules which in some sense are close to being
injective have received attention. [32, 33, 34, 35, 39, 26, 27, 29 and
30]. In order to later possibly apply the ideas in this article to these
or similar classes of noninjective modules, here in the next proposition
the theory is developed for not necessarily injective modules.

Sometimes it is difficult, if not impossible, to show that some given
class of modules is closed under submodules, or even essential submod-
ules. The first part of the next theorem has been specifically designed
for these classes, while the second part contrasts this with the addi-
tional information and simplifications which closure under submodules
provides.

Theorem III, 4.2. Let C be any nonempty class of modules closed
under 1somorphic copies. Denote the ess-C dense R-modules by D, i.e.,
D ={M € Modg | for all0# N < M, there exists 0 # K < N with
K € C}. Then

(i) D is a saturated class; and

(ii) ¢cD = {M € Modg | forall0 #£ A < M, there exists 0 # B <
A such that for all 0 # C < B,C ¢ C}; i.e., ¢D are precisely the locally
ess-C-free modules.

Now for (iii) and (iv) assume in addition to the previous hypotheses
that C is also closed under injective hulls and essential submodules.
Then

(iii) D are the C-dense modules, while
(iv) ¢D are the locally C-free modules.

(v) If C is also closed under submodules, then D = (C) and hence
cD are the C-free modules.

Proof. (i) Note that it is practically built into the definition of D
that it is closed under isomorphic copies, injective hulls, as well as
submodules. Let M; € D, i€ I, and 0 # N < ®;c;M;. Then for some
i € I, and some 0 # A < N, A= B < M;. Thus, since M; € D,
thereex1stsO7éD<BW1thD€C TherelsaO#K<AK D.
Hence 0 # K < A < N with K € C. Consequently, ®;c;M; € D and
D € X(R).
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(ii) Let X be defined as the righthand side of the equation in (ii).
Always, ¢cD = {M | forall0# A< M,A ¢ D}. But A ¢ D if and only
if there exists 0 # B < A, where B contains no nonzero submodule of
C. Thus ¢D = X.

(iii) Rewrite the definition of D as
D={M|V0#N<M,30#P<N,PecC}.

But, by the additional hypotheses on C, PeCandP< P implies that
P € C, and hence that D are precisely the C-dense modules.

(iv) For any nonempty C, by definition, the locally C-free modules
are the class Y, where

Y ={M|V0£A<M3I0£B<AY0£C<B,C¢Ch

In view of our assumptions on C, again C ¢ C if and only if C ¢ C.
Hence Y translates into Y = ¢D as in (ii). Since in (v) C is closed
under submodules the locally C-free modules coincide with the C-free
ones. o

Below the definition of the terms “square and square-free” are the
same as those in [32, Definition 2.34]. However, here “square dense”
modules are “square full” in the sense of [32, p. 35]. The latter is not
used here.

Definition 4.3. For any module M, a submodule N < M is an
(idempotent) square if N = P @ P for some P < N (with P >~ P @ P).
The module M is (idempotent) square-free if M contains no nonzero
(idempotent) squares.

According to our already defined and established terminology, M is
(idempotent) square dense if every nonzero submodule 0 # N < M
contains a nonzero (idempotent) square 0 # P®P < N (0 #£ P =
P@® P < N). Clearly, M is (idempotent) square dense if and only if M
is likewise.

Surprisingly, square-free as opposed to idempotent square-free mod-
ules behave quite differently in (1) and (3) below.
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Consequences 4.4. (1) Every square-free submodule of M s
contained in a mazimal square-free submodule of M. In particular,
every module contains a mazximal square-free submodule.

Proof. Note that (0) < M is a square-free submodule. Let Dy <
-+ < D; <..- <M be any ascending chain of square-free submodules
of M, and suppose that 0 # P® @ < U;D; with f : P — @ and
isomorphism. For any 0 # = € P, set y = fr € Q. Then z,y € D; for
some ¢, and hence xR+ yR = zR® yR < D; < M with zR =2 yR a
contradiction. O

Consequences 4.4. (2) For any A < B, A is (idempotent) square
dense if and only if B is (idempotent) square dense.

Proof. The property of a module M of being dense with respect to
any given class of modules whatsoever is inherited both by essential
submodules as well as essential extensions. o

Consequences 4.4. (3) (i) M is square dense if and only if every
direct summand of M is a square.

(i) If M is idempotent square dense then M is an idempotent square.

Proof. (3) (i) =. For M = N®N', let V = @i (Vi @ Va;) < N with
Vi; =2 Vo;, @ € I an ordinal indexed direct sum maximal in the partial
order under which W' = @c;(Wi; @ Wa;) = V whenever J C I and
Wi = Vij, Wa; = Vaj forallj € J. Then V@ C < N for some C' < N.
But by the square denseness of M NC' and the maximality of V', C' = 0.
Hence N = ‘/1 (&3] ‘/2, Where ‘/1 = E(@zEz‘/lz) & ‘/2 = E(®’L€I‘/22)

(3) (ii) =. In this case, in addition Vi; & Vo; 2 V3; & Va;, and hence
MW=V eV. O

Consequences 4.4. (4) In particular, M is square dense if and only
if M is square dense if and only if for all0 # N < M = N& N', N
contains a nonzero injective square.
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Definition 4.5. For an arbitrary injective module M, here N will
stand for any arbitrary possible nonzero direct summand of M. Then
M is directly finite if N 22 N & N for all summands N of M; M
is directly infinite if not directly finite. This means that there exists
a direct summand 0 2 N N X N < M = N & N’'; alternatively
0APZXP®P<M=P®P®M". The module M is abelian if no
nonzero direct summand N of M is a square, i.e., M = P@® PPV is
possible only if P = 0.

Next, M is type I if every N contains a nonzero injective abelian
submodule. It is type II1 if every N is directly infinite. Lastly, M is
type II if every summand N is not abelian, and every N contains a
nonzero directly finite direct summand.

The module M is defined to be purely infinite if it contains no direct
summand N which is fully invariant and directly finite.

A completely arbitrary module M will be said to have any of the
above in 3.3 listed properties or to belong to any one of the above
seven classes (directly finite, directly infinite, abelian, I, II, III or

purely infinite) if and only if M does.

The next remark shows that our present definition of “abelian”
generalizes the well-established old concept for t.f. injective modules.
Conclusion (iv) below is proved in [14, p. 113, 4.2]. Although stated
there for a t.f. continuous module, its proof there nowhere uses the
“continuous” hypothesis.

Remark 4.6. For any module M, (i), (ii), (iii) and (iv) are equivalent.
(i) M is abelian;

(ii) M is square free;

(iii) M is square free;

(iv) there does not exist an x,y € M\{0}, xR = yR, tRNyR = 0.

(v) If M is t.f., then (i)—(iv) are equivalent to the condition that all
nonzero isomorphic direct summands of M are equal.

Remark 4.7. In [32, Definition 1.24] a module is defined to be
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“directly finite” if it is not isomorphic to a proper summand of itself.
It is proved in [23, 3.1(c)] that for t.f. injective modules the definition
given here is equivalent to the [32] definition. There a module is defined
to be “purely infinite” if it is a square isomorphic to itself [32, Definition
1.3.2.]. Again, it is proved in [23, Theorem 6.2] that the two definitions
of “purely infinite” coincide on t.f. injective modules.

Corollary 1 to Theorem III, 4.8. For a ring R,

(i) locally directly finite, type I, type II, type III € %(R) are
saturated classes.

(ii) For any t.f. module M, M is type III if and only if M is type
IIT in the usual sense (as in [23]). Analogous statements hold for I,
11 and locally directly finite.

Proof. (i) Note that the square-free modules SF are the same as the
abelian ones, and the SF C DF, where DF are the directly finite ones.
These two classes are closed under everything except direct sums, i.e.,
they are closed under isomorphic copies, injective hulls and submodules.
Hence, by 3.2 (iii), type I, that is, the SF-dense, and the DF-dense or
the locally directly finite classes of modules are saturated classes.

Let now C in 3.2 be the class of injective idempotent squares. Then
type III are the ess-C dense modules, which are a saturated class by
3.2 (i).

Lastly type IT = ¢ (type I) N (locally directly finite) € X(R) because
it is the meet of two elements of X(R).

(ii) In the torsion-free case, the definitions of I, IT, I1I and directly
finite are equivalent to standard definitions. The proof of this is omitted
but is spelled out in more detail in [13, Definition 3.3]. o

Consequences 4.9. Let the lattice operations in X(R) be as in 2.11,
and let M be any module.

(a) type II V type II1 =square-dense modules.
(b) type I V type II =locally directly finite modules.
(¢) M € type III if and only if for all0 # N < M, N~NaoN.
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(d) M € type II V type III if and only if for all 0 # N < M,
N=ZP®P, some P<N.

(e) The directly infinite and the purely infinite modules are closed
under direct sums, essential extensions, but mot under submodules.
Hence, neither one is a saturated class.

Consequences 4.10. For any ring R, let I, I1, III € X(R) denote
type I, II and II1I modules. Let M be any R-module. Then

() INIT =0, INIIT =0, [IAIII=0; IVIIVIII=1¢c%(R).

(11) There exists an Mj @ My & M < M, My € I, Myr € 11,
My e I11.

(iii) In particular, M= ]\71 @ J/\/[\H @ J\//TIH 18 unique up to superspec-
tivity.

Proof. (i) Locally DF-dense modules by 4.9(b) is the element IVII €
Y(R). By 4.6 I = locally ess-SF-dense modules, while by Definition
4.5, I C locally SF-free; hence, I A Il = 0.

Note that DF = ess — DF. By 4.5, I,1I C locally DF-modules,
while 1] is DF-free; thus III N1 = 0, III NIl = 0. Moreover,
IIT = ¢(I Vv II). Consequently, (I VII)VIII=1.

(i) and (iii) follow by (3.1). O

Definition 4.11. A module W is atomic if W # 0 and for any
04V < W, (W) = (V), ie., if and only if (W) is an atom in the
poset X(R). More generally, a module A is molecular if every nonzero
submodule contains an atomic one, i.e., if and only if A — E(®;c1W;),
where all the W;, ¢ € I are atomic.

A module D is discrete if it contains an essential direct sum of uniform
modules; C' is continuous if it contains no uniform submodules; B is
bottomless if it contains no atomic submodules.

As in previous articles on t.f. modules, we will continue using
“A,B,C,D” as subscripts and superscripts for entities associated with
these classes, as well as “C'A” for the continuous molecular modules.
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Notation 4.12. We denote these classes of R modules by A(R), B(R),
C(R), D(R); write (CA)(R) = C'(R) N A(R) for the continuous molec-
ular modules.

Abbreviate the classes of all type I, IT or III R-modules as I(R),
II(R), ITI(R), also III;(R), I1I;(R), etc., as before. Thus, III(R) =
IIL,(R) V III;(R) € ¥(R) where I1I;(R) € X;(R) are the expected
previous type I1I modules including also noninjective ones. Since the
symbol “Type ITI” with capital “I” has long been traditionally used
for operator algebras and t.f. injective modules, we are not extending
its definition, i.e., Type I1I # I1I; if anything, Type 111 = I11;.

When the ring is understood and fixed, above the “R” is omitted,
e.g., My ® Mji; @& My instead of M](R) 3] M[[(R) @ MIII(R)a or as
in the previous sentence. When modules over several rings R, S with
identity are used, we write A(S), B(S),...,II1I(S) for classes of S-
modules. Let A,B,C,D,CA,I,11,II1, A, Ay,... ,111;,111; denote
functions from the class of all rings with identity to classes of modules,
e.g., the values of B at R and III at S are B(R) and ITI(S).

In the next corollary, the “R” has been omitted in A(R), etc. Also
its proof is easier than the I, 11,111 case because the classes of A—D
are naturally defined in terms of the partial order structure of X(R).

Corollary to Theorem 4.13. For any ring R and any R-module
M, the following hold

(i) A,B,C,D and CA € ¥(R) are saturated classes.
(iil) DC A, BCC.
(iili) CVD=1,CAD=0.
(iv) AVB=1,AAB = .
(vyCAVBVD=1,DANCA=0,DANB=0,CAAB=0;
(vi)C=CAV B, A=DVCA.
(vii) There exists an Mca ® Mp < Mo, Mc ® Mp < M; Mca &
Mp @& Mp < M.
(viii) M =Mc® Mp = Mca® Mg ® Mp uniquely up to superspec-
tivity.
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Proof. (i) By definition, D = ({U € Modg | U is uniform}) while
C = ¢(D). Hence (iii) automatically follows. Similarly, A = ({Wg |
W is atomic}) and B = ¢(A). Thus (iv) follows.

(v) Since D,CA C A, also DV CA C A. But CA C C, and
hence DACA C D AC =0. Since X(R) is a distributive lattice, A =
AN(CVD) = (ANC)V(AAD) = CAVD. Thus1 = AVB = CAVDVB.
The rest is clear, i.e., D,CAC A  ANB=0. So DAB=CAAB =0.

(vi) Again, by distributivity, C = CA(AV B) = (CAA)V(CAB) =
CAV B because B C C.

(vii) and (viii) follow from 3.1. O

5. Functors. Some facts about singular submodules are developed
for later use. Categories A* C A and B are defined so that ¥,%; : A —
A and ¥f : A* — B become functors. Universal saturated classes are
defined and their connection with direct sums and products of functors
explored.

Module categories 5.1. Here the symbol for any category is used to
refer to the disjoint union of its objects and its morphisms. As before,
Modpg denotes the category of unital right R-modules. Denote by t.f.
Modpg the subcategory of torsion-free modules, where the morphisms
have closed kernels. Similarly, torModg denote the full subcategory of
Modpg consisting of all torsion modules.

Ring categories 5.2. The category of all rings R,S,... with
identity and (a) identity preserving ring homomorphisms (b) which
are onto is denoted by A. Then A* C A is the subcategory having
the same objects as A, but where A* contains only those morphisms
(c) ¢ € A whose kernels ¢ 10 are closed right ideals.

Lattice category 5.3. Any function f : L; — Lo of complete
lattices Ly and Lo will be said to be complete if f preserves arbitrary
infima and suprema. Let B denote the category whose objects are
complete Boolean lattices L1, Lo, ... with smallest and largest elements
0 and 1. The morphisms f : Ly — Ls € B are zero preserving
(a) fO = O lattice homomorphisms, which are (b) one-to-one, and
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with (c) convex images fL; C Lo. Note that (c) is equivalent to
fLi ={y € Ly | y < f1}, and that (c) implies that fL; is complete,
that is, it is closed under arbitrary infs and sups. Moreover, (b) and
(c) imply that all f € B are complete. The degenerate Boolean lattice
{0} € B with 0 =1 is also allowed and used.

Remarks 5.4. (1) It would be tempting to say that, under the
contravariant functor, that properties 5.2 (a), (b) and (c) of ¢ € A*
are carried over into the dual properties 5.3 (a), (b) and (c) of X(&).
This will be the case for the first two (a) and (b), but surprisingly, not
the last one (c).

(2) The limited infinite distributive law for complete Boolean lattices
([4, Theorem 16] or [24, Lemma 10]) is available and is used here.

Next, some useful basic facts about Boolean lattices are stated in a
form in which they will illuminate subsequent results.

Facts 5.5. For any set X, recall that the Boolean lattices of
all subsets of X is written as P(X) = (P(X),Nn,U,\,X,¢). Let
Ly = (Ly,V,A,’,1,0) and Ly = (L2, V, A, ¢, 1,0) be Boolean lattices,
where the complement of b € Ly is b¢ € Lo, bAV =0, bV b =1 € L.
Assume that Ly = A @ B is a direct product of sublattices A, B C Lo.
Write 1l = eVe® =e+e’,ec A, 1 —e =¢° € B. Then A = eLo,
B=(1-¢e)Ly and Ly = eLs ® (1 — e)L,. Note that any convex subset
0 € A C Lo with a largest element is necessarily of the above form, and
conversely, A = {y € Ly | y < e}. For a € A, define a* = a® A e € A.
Then

(1) (A,V,A,*e,0) is a complete Boolean lattice. Let (A, [+],-,e,0)
be its associated Boolean ring [4, Theorem 19]. Then the ring structure
on A as an ideal of the Boolean ring Lo coincides with (A, [+], -, e, 0).

(2) For any Boolean lattices L;, Ly (complete or not), a zero preserv-
ing lattice homomorphism f : L1 — Lo is the same as a ring homomor-
phism of the associated Boolean rings L1, Ly which in general need not
preserve identities [24, Theorem 9].

(3) For a lattice homomorphism f : L; — L of complete Boolean
lattices Ly, Ly with f1 = 1 € Lo, the following are equivalent: (i) f
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preserves arbitrary sups; (ii) f preserves arbitrary infs; (iii) f is
complete.

(4) Next, assume that Ly,Ly € Band f € B, f : Ly — L. Define
e=fle€ Ly A=eclLyand B= (1—¢e)La, 1 —e =¢€° € Ly. Then
L = A @ B satisfies all of the above including (1). Let f4 be the
corestriction of f to its image f4 : Ly — A. Then both

(i) fa and f,' are identity and complement preserving (order
preserving) lattice isomorphisms of Boolean lattices Ly and A =
(A,V, A, e,0).

(ii) f preserves arbitrary infima and suprema.

Notation 5.6. An arbitrary identity preserving ring homomorphism
of A will be denoted as ¢ : R — S with kernel ¢='0 = I < R. For
simplicity it may be assumed without loss of generality throughout
here that ¢ : R — R/I = S is the natural projection. Right singular
submodules and right injective hulls with respect to the ring S are
denoted by Z°, Z5 and Es. In this section N will be a right S-module
(notation: Ng, or N = Ng, or N € Modg). The induced R-module
on N is denoted by Ny where n-r = n(¢r) = n(r + 1), n € N,
r € R. Since (ZN)g, (EN), are meaningless, define ZNy4 and ENy to
be ZN¢ = Z(N¢) and EN¢, = E(N¢,)

The set of large submodules of a module M over a ring R is denoted
by Lr(M), and for N, likewise Ls(N) over the ring S. Large right
submodules or right ideals with respect to rings other than R are
denoted by “<.,” for example large right S-submodules.

Observation 5.7. Any right S-modules N, N’ satisfy
(i) Homg(N, N') = Hompg (Ng, Nj).

(ii) The lattice of S-submodules of N is exactly the same as the
lattice of R-submodules of Ny4. The following properties in this lattice
coincide:

large S — submodule = large R — submodule;

right S — complement = right R — complement.
Moreover,

S—quotient module of N = R-quotient module of Ny.
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(iii) By (ii), Ny < (EsN)s. Hence there exists an embedding
Ny < (EsN)y < ENg. It follows from (i) that

(iv) EsN = {z € ENy | I = 0}; furthermore, (i) implies that

(v) (EsN)4 is a quasi-injective R-module. Hence, EN, contains one
unique S-injective hull of N as in (iii).

(vi) ¢ induces a covariant functor Mods — Modg which maps
N — Ny and which is the identity on morphisms. The image of this
induced functor is the full subcategory {V € Modg | VI = 0}, which
as a category is isomorphic to Modg via the functor induced by ¢.
This explains why above 5.7 (i) and (ii) hold. Let ¢* : £(S) — X(R)
by ¢*(AS) = ({N, | N € AS}) for AS € B(S).

The next lemma explores how singular submodules are mapped under
the above functor Modgs — Modg.

Lemma 5.8. For ¢ : R — S = R/I with I = ker ¢, let N, N¢,ZS
and Z5 be as above. Then
() Z5N C Z(N,);
(ii) Z5 N C Z2(Ny).

(i) If I < R is a right complement, then for any N = Ng
(a) Z5N = Z(N,); hence

(b) Z5 N = Z3(Ny); and in particular

(c) ZS(R/I) = Z(R/I), and Z5 (R/I) = Z»(R/I).

Proof. (i) For any n € N, since n] =0, anngn ={r+1¢€ S |nr =
0} = nt/I. If nt <#£ R, then for some 0 # B < R, n-® B < R.
But then (nt/I)® [(B+1)/I] < R/I shows that also n ¢ Z5N. Thus
Z5N C Z(N,).

(ii) Any quotient or submodule of N with respect to S is simultane-
ously also an R-module, and the S and R homomorphisms of these mod-
ules coincide. Let 7 be the natural projection m : N/ZN — N/ZN,
included by (i). Since Z° is a subfunctor of the identity functor on
Modg, it restricts and corestricts to give a map 7 : Z5[N/ZN] —
Z5[N/ZN,] C Z[N/ZN,)]. The last inclusion follows by (i).

(iii) (a) It suffices to show that for any n € Z(N,), Anngn = nt/I is
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a large right S ideal of R/I. Since I < R is a right R-complement, and
nt < R we know that nt/I < R/I as a right R-module. Since R/I is
also an S-module, and since the essential R and essential S-submodules
of R/I coincide, also n'/I <. S is large as a right S-ideal. (iii) (b)
and (c) follow from (a).

Lemma 5.9. For § = E/I with I < R a right complement, let
K =1+ ZR and as before K is defined as the complement closure of
K. Let ¢: R — S =R/I € A* be the natural projection. Then

(i) K< K<R and Z5(S) = K/I.

(ii) *Xp(S) = {A | forall M € A, there exists an index set J
and there exists an M — E(®;R/K)} C Xf(R).

Proof. (i) This is proved in [11, Proposition CJ.

(ii) Note that (R/K) € X(R) because for p € A*, Z5 (S) = Z2(R/I)
and hence Z(R/K) = 0. Write 1 =t + f =tV f € %,(S) & T4(9),
tAf =0, and £4(S) = fX(9). Since, for any N = Ng, Z5N =0
implies that ZN, = 0, ¢*X¢(S) C Sf(R). For any A% € $4(S), AS <
; hence " AS < " f = 0*((8/22())%) = ((5/22(8)),) = (R/E) by
(i). Therefore, for any N € AS, N, — E(&rR/K) for some I'. Since
(R/K)I =0 and for any J, ®;R/K < E(®;R/K), by 5.10 (i) ¢*f is
exactly the set in (ii). o

Lemma 5.10. For any A € X(S), define AJ = {N, | N € AS} C
Modg, and then let (Ag) € X(R) be the saturated class of R-modules
generated by Ag. For I<4R with S = R/I and any R-module M, define
Ay I ={me M |mI=0} <M. Then

(i) <A§> = {M € Modpg | there exists an N € Ag,N¢ < M};

(ii) (Ai> ={M | Anny I < M,AnnyI € A5}

Proof. (i) Since Ag to start with is already closed under submodules,
isomorphic copies, and direct sums, 2.5 (ii) translates into conclusion

(i)-
(ii) By 2.5 (i), (AZ) = {M | there existsan N € A% and M —
EN,}. Thus for M € (A%) and N as above, M NN, < Anny I < M.
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From 5.6 (ii) it follows that M N N, is a large S-submodule of the
S-module Annjy,I. Since M NN € A®, also Anny I € AS. a

Definition and Proposition 5.11. For any ¢ € A, define a
function ¢* : 5(S) — B(R) by ¢*A% = (A) for A% € £(S). Then

(i) ¢* is one-to-one.

(ii) ¢*A7 < ¢*A5 € B(R) & A7 < A§ € %(9) for any A7, A5 €
X(S).

(iii) ¢*(2(S)) is conver and upper directed in X(R).

Proof. (i) Suppose that ¢*Af = ¢*AS for some Ay, A5 € X(R). Tt
suffices to show that for any P € Af, also P € A5. The definition
of ¢* implies that, first, Py € ¢*AY = ¢*A5, and second, that there
exists some @) € A§ with Q, < Ps. By 5.7 (ii), likewise Qs <. Ps,
and by 2.2 (d), since Q € A3, also P € A5. Thus, ¢* is one-to-one.

(ii) From A C A5 € %(9) it immediately follows that ¢*Af C
¢*A5. Thus A7 < A§ = ¢*Ay < ¢*AS. Conversely, assume that
¢* A7 C ¢* A5 € X(R) for some A7, AT € £(9), and take any P € AY.
Then Py € ¢*A7 C ¢*Aj5. Hence there exists a Q € A5 with Qs < Py.
Again, by 5.7 (i), Qs <. Ps, and by 2.2 (d), also P € A5. Thus
A7 C A§. Hence A7 < AS & ¢*Af < ¢*A5.

(iii) Suppose that A € X(R) with A < ¢*Af € X(R) for some A{ in
¥(S). Define a subclass A5 C AY by A§ = {P € A{ | P, € A}. In
order to prove that A5 € ¥(S), we omit the proof of 2.2 (a), (b) and
(c) but show (d). So suppose that @ is an S-module such that P <. Q
for some P € A§. Since P € Af and P <. Q, also Q € A7. Now since
Py € A and Py < Qg, also Q4 € A. But then Q € A§ € £(S).

Next it will be proved that ¢* A5 = A. By definition of ¢*,

¢*A5 = {M € Modg | IN € AS, N, < M}
={M |3N € Mods, N, € A,N € A{, Ny, < M} C A.

The last inclusion holds because A is closed under essential extensions.
To show conversely that A C ¢*AS, take any M € A. Since A C ¢*AY,
M € ¢*Af. The latter means that W, < M for some W € Af{. But
W, < M € A implies that also W, € A. Hence W € A5. But then
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M € ¢*AS, and A C ¢*A5. Therefore ¢*A5 = A, and ¢*(X(S)) is a
convex subset of ¥(R), which is easily seen to be upper directed.

Corollary 5.12. For any ¢ € A, ¢* : £(S) — X(R) belongs to B,
and in particular is a complete lattice homomorphism.

Proof. Let ¢% be the corestriction of ¢* to its image A = ¢*X(S) =
{y € ¥(R) | y < e = ¢*1}, which is a complete lattice by 5.11
(i) and the completeness of X(R). But then ¢% : X(S) — A is
a bijective map of two lattices X(S) and A such that both ¢% and
¢* preserve order. Consequently, ¢% and hence automatically ¢* are
lattice homomorphisms. (See [4, Lemma 1.2].)

Theorem IV, 5.13. Let A* C A and B be the ring and lattice
categories of 5.2 and 5.3. Let ¢ : R — S € A be a surjective ring
homomorphism with kernel ¢ = I <R. Let X(S) = X(S) ® Z4(S)
be as defined in 2.2 and 2.17. Define 3(p) = ¢* as in 5.11. For
K =1+ ZR < R, let K be its complement closure, i.e., K < K<R
(see 1.1). Then

(i) ¥ : A — B is a contravariant functor. In particular, ¢* : £(S) —
Y(R) is a zero preserving monic lattice homomorphism (equivalently
ring homomorphism of associated Boolean rings) whose image p*%(S)
is convez (and hence complete) in X(R). Consequently, ¢* preserves
arbitrary infima and suprema. Moreover,

(i) p*2:(S) C Z4(R), and Ty < X is a subfunctor.

In (iii) and (iv) below in addition assume that ¢ € A*. Then the
following hold.

(iil) p*Xf(S) CXf(R), Xy < X is a subfunctor, and L =X, § Xy is
a direct sum of functors.

(iv) ¢*2f(S) = {A € B(R) | forall Mg € A, there evists an
index set J and there exists some M — E(®;R/K)}.

Corollary to Theorem IV, 5.14. For an arbitrary ¢ € A as
above, Z(R) = A ® B is a direct sum of unique conver sublattices A
and B where A = o*%(S). Let (A,V,A,* e,0) be the induced Boolean
lattice (see 5.5(1)). Then the corestriction ¢* : 3(S) — A is a complete
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isomorphism of Boolean lattices (equivalently isomorphism of associated
Boolean rings). In particular, *0 =0, p*(1s) = 14, and ¢* preserves
complements.

6. Universal classes and direct sums of functors. It was shown
that a pairwise disjoint set I' of elements of the lattice X(R) whose
join is VI' = 1 € X(R) give direct sum decompositions of R-modules.
In general, T" and the direct sum decomposition is only available for
the ring R. Section 6 will answer the following question. Just what
is it about certain sets of saturated classes like types I, II, III, or
C,D, or C,A,B,D which over any ring R or S always give direct
sum decompositions of injective modules over the ring in question, e.g.,
M=M=MeM&M,ocr M =C®D,or M = Mca®MpPMp.
In order to explain what is really going on, or what is so-to-speak behind
this phenomenon, first universal saturated classes are defined and
studied. Then it is shown, among other things, that the above direct
sum phenomenon over any rings holds if and only if 3 is a subdirect
product of subfunctors, e.g., X =X; X P Xror X=X @ Xp or
X =Yoa ®Ep D Xpg. Anticipating further developments, our direct
sum theorem in Section 3 was done for possibly infinite sets I', and here
we also develop the direct sum decomposition of ¥ as a direct product
of either finite or infinite number of subfunctors.

For ¢ : R — S = R/I € A as before, or A*, let ¢ : Modg — Modg
be the induced functor, where ¢#(Ng) = N, and ¥ is the identity on
morphisms. If N = Ny @ Ny; @ Nyyg is a type I, 11,111 decomposition
of Ng over S, then it turns out that it is also simultaneously the
corresponding decomposition over R, i.e., N, = (Ni)y, @ (Ni1)p ®
(Nr1r1)e. However, the functor ©# does not usually preserve injective
modules. Clearly, if R — S then for a universal saturated class A, the
class A(R) and A(S) over R and S have to be connected or interrelated
in some way, which is formulated and explained in general in this
section, so that {I,1I,1I1} or {C, D} or {C A, D, B} are merely special
cases of a very general and pervasive phenomenon.

Note that in (ii) below, upon taking injective hulls, the condition

(ii) could equivalently be formulated for direct sum decompositions of
modules.
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Observation 6.1. For ¢ : R — S € A, let A(S) € 3(S) and
A(R) € X(R) with *A(S) C A(R). Then the following conditions are
all equivalent:

(i) For all P € cA(S) = P, ¢ A(R).

(ii) For all N € Modg, for all Ny & Ny <. N, Ny € A(S),
Ny € CA(S) = th @Ngw < N<p with th € A(R) and N2<p € CA(R)

(iii) p*cA(S) C cA(R).

Proof. Trivially, (iii) < (ii) = (i). (i) = (iii). If (iii) fails, then there
is a V € cA(S) with V,, ¢ cA(R). By definition of the latter, there
exists a 0 # Pr <V, with Pgr € A(R). Since P C V € cA(S) viewing
P as an S-module, we conclude that P € c¢A(S). But then, by (i),
P =P, ¢ A(R), a contradiction. o

The next definition will correct an oversight, in [14], where the
condition 6.2 (b) below should have been included as part of [14,
Definition 3.13].

Definition 6.2. For any subcategory C C A, a C-universal satu-
rated class is a function A which assigns to every ring R with iden-
tity a saturated class of modules A(R) € C satisfying the following
additional coherence conditions relative to C. For any (surjective)
ring homomorphism ¢ : R — S in the category C and any modules
N € A(S), P € cA(S), the induced R-modules satisfy (a) N, € A(R)
and (b) P, € cA(R). An equivalent lattice theoretic definition is that
A is a C-universal saturated class if for every ¢ € C as above,

(a) p*A(S) € A(R) and (b) p*cA(S) C cA(R).

An A-universal saturated class will be called simply a wuniversal
saturated class.

For any function A:ring — saturated classes with A(R) € X(R) for
all R, define three more associated functions cA = ¢(A), A; and Ay
by (cA)(R) = c(A(R)), Ad(R) = H(A(R)) and As(R) = f(A(R)) as
in 2.17. For two or more such functions Aj, Ay, define A; V Ay by
(A1 V Ag)(R) = A1(R) V Az(R), and similarly for A; A Ay. Note that,
in general, (cA); # c(Ay).
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If A is a C-universal saturated class then so also is ¢A. The class of
all unital modules, which assigns Modpg to R, and its complementary
class {(0)} are trivially universal saturated classes.

Lemma 6.3. If A is a universal saturated class, then Ay and Ay
are A*-universal saturated classes.

Proof. (i) For ¢ : R — Sin A, forany N € Ay(S), N = Z§ N C Z,N,,
by 5.8. Hence, also N, = Z3N,, and consequently, p*[t(A(S))] C
t(A(R)) which by 6.2 says that ¢*A;(S) C A;(R). Here the additional
restriction that ¢ € A* is needed for the first time to conclude for
P € Ay(S) that also ZP, = 0 and hence that P, € A¢(R), and
©*(A¢(S)) € Af(R). Similarly, 6.2(b) follows.

Note that the previous lemma implies that c(A;),c(Ay), (cA); and
(cA)y are four more A*-universal saturated classes.

Notation 6.4. Let C C A be any subcategory (and, in particular,
C may be C = A). Even when A is a C-universal saturated class, if M
is an R-module and if either R is fixed, or understood from context,
we abbreviate A(R) = A and define “MA” by Ma = Ma(r)) as in
Section 2; similarly, M.A = Mc(A) = M((cA)(R))a MA; = M(At(R))v
etc.

Below, we use cA = A° and A(S)¢ = ¢(A(S)) interchangeably.

Consequence 6.5. Let C C A be any subcategory, and in particular
C may be C = A. If Ay and As are C-universally saturated classes,
then so are all their associated Boolean combinations:

(1) Al \Y Ag, Al A AQ and Al + Ag = [Al \ Az] AN [Al AN Az]c =
[Al AN CAz] \ [AQ AN CAl].

(ii) C-universal saturated classes are closed under arbitrary infima
and suprema.

Proof. (i) The proof for A; V Ay and A; A Ay is omitted. For any
¢ : R — Sin C, the map ¢* : ¥(S) — X(R) preserves arbitrary sups
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and infs. By 6.2,

*

¢*[A1(S) + A2(S)]

=y
>
=

S)V @™ Aa(S)] A ¢™{[A1(S) A A2(S)]}
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V A2(R)] A [cA1(R) V cAs(R)]
V Ay (R)]

1(R) + Az(R).
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De Morgan’s law gives (A; + A2)¢ = ([A1 V Ag] A [Ar A Ag])¢ =
[Al \ Az]c V [A]_ AN AQ] = [Ag AN Ag] V [A]_ A AQ] Then

e*[c(Ar + A2)(S)] = ¢*[cA1(S) A ez (S)] V @™ [AL(S) A Az(S)]
= {¢*[cA1(S)] A " [cA2(5)]}
VA{p " A1(S) A p*A2(5)}
< {cA1(R) AeAz(R)}V {A1(R) AN A2(R)}
=c¢(A1 + A2)(R)

as required. Hence A; + A is a C-universal saturated class.

(ii) For any family {Ay}, of C-universal saturated classes, since
¢ is complete ©*[(Vala)(S)] = Vap™(Aa(S)) < Vap™(Aa(R)) =
©*[(Vala)(R)]. For the complementary class, use of infinite De Mor-
gan’s rule gives

el Vaus)| | =o{ Akas]

[e% [e%

= Ne'leda(®)])
< NeAa(R)]

=c[é\Aa(R>],

and hence p*c Vg4 Ay(S) < ¢ Vg Ag(R). Thus V,A, is a C-universal
saturated class. The proof for AA, is also is similar, and is omitted.
O
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Definitions and notation 6.6. For any § € X(R), define ¥5(R) =
{z € Z(R) | x <0} =[0,0]. Then X(R) = Zs5(R) ® Zcs(R) is a lattice
direct sum of convex sublattices if ¥(R) is a Boolean lattice. For any
function A of rings to saturated classes such that A(R) € 3(R) for all
R, define a function YA : rings — B by Xa(R) = Ear)(R) = [0, A(R)].

Suppose that C C A is a subcategory, that X; : C — B, i € I, is a
class of subfunctors ¥; < ¥ of X restricted to C, where I can be finite,
a set, or a class. Assume that, for any R, (i) {i € I | Z;(R) # 0}
is always a set, and that (ii) X(R) = [];.; ¥i(R) are isomorphic as
Boolean lattices, where the operations in the latter are coordinatewise.
For any 4, view X,(R) C X(R) as a (convex) sublattice. Then let
1 — (e;)icr, where e; is the identity element in e; € X;(R). Then for
every y € X(R), y = sup{yAe; | i € I} = (y A ei)icr- Sometimes
for the sake of simplicity of notation we will replace “2” by “=" and
identify ¥(R) = [[;c; X:(R) under this isomorphism. Lastly, assume
that (iii) for any ¢ : R = S € C, ¢*%;(S) C X;(R) for all 3.

It is a straightforward consequence of the completeness of ¢* that
©* acts coordinatewise, i.e., for any z = (z;);er € X(9), p*z =
(go*mi)iel S E(R)

If (i), (ii) and (iii) hold, then ¥ is said to be a product of the
subfunctors ¥; < ¥, i € I, written as ¥ = [[;c; %; or ¥ = [[;c; %i. In
the case when I = {1,...,n} is finite, X is said to be a direct sum of
subfunctors, written as ¥ = 31 & --- ® X,,. In all these cases, strictly
speaking, it is X restricted to C.

Theorem V, 6.7. Suppose that A;, i € I, is a class of functions
mapping Tings to saturated classes as in the last definition.

(1) Then for a fized ring R the following three conditions (a), (b) and
(c) are all equivalent.

(a) For all M € Modg, for all M; € A;(R), if i # j, then
M; N M; = 0; and there exist M; € A;(R) such that ®;c;M; < M.

(b) sup{A;(R) | i € I} =1 € X(R) and A;(R) AN Aj(R) = 0 for
t#£jel.

(c) B(R) = [l;c; Xa,(R) is a lattice direct product of conver (and
hence complete) sublattices.

(2) Now assume, in addition, that A;, i € I, satisfy (1) (a), (b) and
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(c) for all rings R € C C A and for some subcategory C. Let R, S and
¢ : R — § € C represent any completely arbitrary element. Then the
following two conditions (d) and (e) are equivalent.

(d) For any i € I and any N € A;(S), N, € Ai(R).

(e) ¥ =[l;c; Xa; : C — B is a direct product of subfunctors ¥, < ¥,
i.e., equivalently p*Xa,(S) C XA, (R) for alli e I.

Proof. First note that, for any R, {A;(R) # 0 | ¢ € I} is a
set, and hence so also is {i | ¥a,(R) # 0}. (1) That (c¢) < (b) is
standard lattice theory, while (b) = (a) follows from 3.1 (applied with
I'={Ai(R)#0|teI}. (1) (a) = (b). If A;(R) ANA;(R) # 0, then
there exists a 0 # M € A;(R) N Aj(R). Define M; = M and M; = M.
Then 0 # M = M; N M violates (a). Hence A;(R) A Aj(R) = 0.

In order to show that V,c;A;(R) = Modr = 1 € X(R), let
M € Modg be arbitrary. Let @;c;M; < M be as in (a). Then
(M;) < A;(R) all i, and

M € (M):<@Mi> =\ AR =1

i€l el

(2) (d) = (e). By 1(c), Z(R) = OXA,(R) for any R. Let AS €
YA, (S). Hence AS C A;(S). Then by definition of p*, p*AS = ({N,, |
N € AS}). By hypothesis (d), it now follows that N,, € A;(R). Since
all the generators of p*A® belong to A;(R), we have p*A% < A;(R)
or p*A% € [0,A;(R)] = Za,(R). Hence ¢*Xa,(S) C Xa,(R). Since
#" : Ther ©a,(5) = [L,es Sa, (R) by hypothesis (1) (a), (b), (c) and
since p* € B is complete, and since the Boolean lattice operations in
each component are coordinatewise, ¥ = [[..; Za, is a direct product
of subfunctors.

(2) (¢) = (d). For i € I and N € Ay(S) as in (2) (d), N, €
P*((N)®) € ¢*Ea,(8) € Ta,(R) = [0,Ai(R)] or N, € o*((N)®) C
A;(R), and N, € A;(R).

If T is finite, I = {1,...,n}, then everywhere in the last theorem
the product can be replaced by the finite direct sum “®I_;.” If we
start out with some one universal saturated class A in which we are
interested in, we can still apply the last theorem as is described in the
next corollary. ]

i€l
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Corollary to Theorem V, 6.8. Let C C A be a subcategory S, a
ring (1 € S), and N = Ng are S-module. Then there ezist

(i) two complement submodules N; < N, with Ny & Ny <. N,
Es(N) = FsN; @ EgNy, N1 € A(S), Ny € CA(S)

(ii) Forany p : R — S € C, (EsN), = (EsN1), ®(EsN2), < EN,
with (EsN1), € A(R) and (EsNs), € cA(R).

(i) ¥ = XA ® Zea : C — B is a direct sum of subfunctors ¥ a,Xca
of ¥ restricted to C, i.e., p* : £(S) = Ba(S) ® Xea(S) = L(R) =
YA(R)®X.a(R) where these are lattice direct sums of convex sublattices
and *YA(S) C Ba(R), p*Xca(S) C Xea(R).

Proposition 6.9. The functions A, B,C,D,CA defined in 4.12 are
universal saturated classes.

Proof. For any R,S and any ¢ : R — S € A, as before, let ¢ be
the induced functor ¢# : Modg — Modg, and let N € Modg. Also
let p* : 3(S) — X(R) = A ® G where the corestriction p* : 3(S) — A
is a complete isomorphism. An element ¢ € 3(S) is an atom, is a
supremum of atoms, or does not dominate any atoms if and only if
©*(q) satisfies the same.

The functor ¢# preserves submodules, essential submodule (comple-
ments), direct summands, essential direct sums and intersections of
submodules. Thus N € D(S) (or N € C(S)) if and only if N, € D(R)
(or N, € C(R)). Since (N,) € A = %(S), A inherits the order theo-
retic properties of X(.S). Thus Ny is atomic if and only if N, is. Next,
Ng € A(S) if and only if (Ng)® € 2(S) is a supremum of atoms of 3(5)
which holds if and only if (Ng) € X(R) is likewise. Thus, N € A(S),
B(S) or CA(S) if N, € A(R), B(R) or CA(R). O

Remarks 6.10. (1) All of the above could also be proved non-
categorically by standard ring theoretic arguments. For example, if
N € B(S), we would have to show that for any 0 # y € N, there
exists b € R such that for any set J, there does not exist an embed-
ding (yR), — E(®s(ybR),). This would show that N, contains no
R-atomic submodules.

(2) The functor Mods — Modpg induced by ¢ does not in general
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preserve injective modules, and types I, II and 111 where defined via
injectives.

Proposition 6.11. The type I, II and II1 functions are universal
saturated classes.

The proof is omitted but is based on two principles. (i) For any S,
an S-module N is one of the following if and only if EgN has the
same corresponding property: square-free, locally square-free, i.e., ess-
square-free dense, directly finite, directly infinite, locally directly finite,
i.e., ess-directly finite dense, and locally directly infinite.

(i) In general, for ¢ : R — S € A, the induced functor ¢# :
Mods — Modg, p#*N = N,, does not preserve injective modules.
However, N, < Eg(N), < E(N,), and now (i) (for the ring R in
place of S) can be used.

Remark 6.12. Let N = Eg(N) € Modg and N = Ny & Ny @ Nypg
or N = Noa @ Np ® N be as in Section 4 over the ring S. Then
these are also the corresponding direct sum decompositions of IV, over
R; Ni,...,Np need not be R-injective. However, EN, = E(Ny,) ®
E(Ni1,)®E(Ni114) and EN, = E(Ncay)®E(Npy)®E(Np,) are also
the corresponding direct sum decompositions of the now R-injective
module EN,.

Previously, type I, II and 111 decompositions of t.f. injective modules
have been considered for a fixed ring. Aside from extending this to
arbitrary modules, the next application puts their theory in a functorial
context.

Application 1, 6.13. Forn =3,let Ay =1, Ay =1 and Az =II]
be type I,II and III modules. Then
(i) for all R, IT(R) ANIII(R) =0, etc.; I(R) VII(R)VIII(R) =1.

(ii) For any R module M, there exist three complement submodules
of M each being maximal in its class My € I(R), M € II(R),
My € III(R) such that M; & M & M < M.
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(iii) M = ]/\4\1 @]/\4\11 @]/\4\111 is a type I, 11,111 direct sum decompo-
sition which is unique up to superspectivity.

Now let <R, p: R— S =R/I € A, let N = Ng be an S-module,
and Ny @ Ny @ N1 <. N be (ii) applied to N and S (in place of M
and R). Then

(iv) N1y, ® Nrrp @ Nirrp < Ny, is the type I,11,111 decomposition
of N, given by (ii).

(v) In particular, if N is S-injective and N = Ny @® Ny @ Nyyg, then

Ny = Nip, ® Ni1p ® Nrrr1op
and

EN, = ENj, ® ENg1p ® ENq11,p

are type I, 11,111 decompositions.

(vi) For any R, ¥(R) = ;(R) ® £17(R) ® X1 (R) is a lattice direct
sum of convex sublattices. For any A € ¥rr7(R), A consists of type
IIT modules, and similarly for I and II. If 1 = e; + e;; + ey is
the corresponding decomposition of 1 into orthogonal elements, then
errr € Yrrr(R) and UX rr(R) = errr2(R) is the class of all type I11
modules, and similarly for I and I1.

Application 2, 6.14. In 6.7 take A = A to be the molecular
modules so that ¢cA = B are the bottomless ones. Then, for any S-
module N,

(i) there exists an Ny & Ng <. N, N4 € A(S), Ng € B(S). If
v:R— S €A, then

(11) NA“, @NB(P < sza ]\IAL“J € A(R), NBgP S B(R), that is,
EN, = (ENay) ® (ENB,) is the decomposition of EN,, as a direct
sum of a molecular module and a bottomless module, unique up to
superspectivity.

(iii) X(R) = X4(R) ® Xp(R) is a lattice direct sum of convex
sublattices such that ¥4(R) = P(X), where X C 3(R) is the set
of atoms of ¥(R), while ¥3(R) is a complete atomless Boolean lattice.

We next continue with the previous application by splitting A up into
A= (CNA)VD.
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Application 3, 6.15. In the theorem, take n = 3 and A; = CA,
As =B, A3 =D. Then CANB=0,CAAND =0, BAD =0 and
CAv BV D =1. Let M be any R-module. Then there exist three
complement submodules of M maximal in their respective classes such
that

(i) Mca ® Mp & Mp < M, Mca € CA(R), Mg € B(R),
Mp € D(R); Mp and M¢ 4 each contain essential direct sums of atomic
modules, Mp uniform ones and M¢c4 continuous atomic ones.

(ii) C = CAVB,CAND =0, CVD = 1. There exists a
continuous submodule of M, M € C(R) = CA(R) V B(R) such that
Mca ® Mp <€ Mg and Mg & Mp < M for Mp as in (1)

(iii) ¥(R) = Xca(R) ® Ep(R) ® Zp(R) is a lattice direct sum of
convex sublattices; for L 4(R) as in 6.9 (iii), Za(R) = Tca(R) ®
Yp(R) = P(Y) ® P(Z) where the set of atoms X =Y UZ C X(R),
Y NZ = @, is a disjoint union of continuous atoms Y and discrete
atoms Z.

Application 4, 6.16. Let t be torsion modules, ct = f the t.f. ones
and ¢ : R — S = R/I € A* with I <R a right complement. For any
N € Modg,

(i) ZZsN@ P <. N, Z°P = 0. Then
(ii) (Z5N)y @ Pp < Ny, (Z§N), = ZoNy, ZP, = 0.
(iii) X(R) = Xi(R) ® Xf(R) is a lattice direct sum of convex sub-

lattices. For any g : T — R € A, ¢*%(T) C X;(R); hence,
¥y < X: A — Bis a subfunctor.

(iv) ¥ = X, Xy : A* — B is a direct sum of subfunctors; i.e.,
©*X(S) C X4(R) (as well as p*X4(S) C X;(R) which holds as in (iii)).

Definition 6.17. The infinite Goldie dimension of a module Wg
is the cardinal number GAdW = sup{|I| | there exists 0 # W; < W,
Yict Wi = @ictW; < W} [18, p. 297]. If GAW is not inaccessible,
then above GAW = |I| is attained for some I. There do exist rings R
and modules W where Gd W is not attained (with Gd W necessarily
being inaccessible). For each R, the function “Gd” is additive in the
sense that Gd (®;ecsM;) = >,y Gd M; [18, Theorem 3].
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Definition 6.18. For any module M over any ring R, and any
cardinal X with X = 1 or 8y < R, define M to be of local Goldie
dimension N if for any 0 # V' < M, there exists 0 # W < V with
GdW = X.

For X = 1, or for any infinite cardinal X > N, for any R define
Ax(R) = {M € Modpg | M is of local Goldie dimension X} to be all
such right R-modules having locally Goldie dimension X. Note that
A1 (R) = D(R) are our previous discrete modules.

Main application 6.19. For X =1, R, Ny,... and for any ring R,
the following hold:

(i) Ax(R) is a saturated class; there is a cardinal T(R) such that
Ax(R) =0 and A, (R) =0 for all X > 7(R).

(11) AN(R) N AN(R) =0 for k # ¥ \/NAN(R) = VN<T(R)AN(R) =1
for all N,

(iii) Ax are universal saturated classes.

(iv) For any R-module M, there exist (complement) submodules which
are mazimal with respect to My € Ax(R) and My < M and with
dox My = OxMy < M. Hence EM = E(®xMy). The My < M are
unique up to superspectivity. If M is t.f. oll My < M are unique.

(v) For any ring S and surjective ring homomorphism ¢ : R — S €
A and any S-module N, if ®xNx <. N is as guaranteed by (iv), then

@N?‘*v < N, and NNW € AN(R)
I

(vi) ¥ =[x Zay : A — B is a direct product of subfunctors X, <X
of ¥; in particular, X(R) = [y Xa,(R) is a lattice direct product of
convex and complete sublattices ¥ a,(R) C X(R) with componentwise
Boolean operations. Moreover, o*%a,(S) C Ea,(R) for all X.

Proof. (i) By its very definition, Ax(R) is closed under isomorphic
copies and submodules. Since GAW = GdV for W <« V, it is
closed under injective hulls. The projection argument 1.3 reduces this
question for a direct sum to the corresponding property for each of
the summands, thus showing that this class is also closed under direct
sums. Hence Ax(R) for all X = 1,Rp, ... is a saturated class.
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If Ax(R) # 0, then there exists a cyclic module R/L with L < R and
GdR/L = X. Let 7(R) be the smallest cardinal larger than Gd R/L
for all L < R.

(ii) and (iv). Let k < N where k = 2,8g,..., and suppose that
0 # A, (R) N Ax(R). Since 0 # M € A, (R), there exists 0 £V < M,
GdV = k. Since 0 # M € Ax(R), also 0 # V € Ax(R), and hence
there exists 0 # W <V with R = GdW < GdV = &, a contradiction.
Hence the Ay are pairwise disjoint.

For any R-module M, there exist My < M with My € Ax(R) being
maximal. Then XxMyx = GpMy < M. If the latter is not essential,
take any 0 # C < M with (&x(Mx)®C < M. If 0 # U < C'is
uniform, then M; @ U € A;(R) contradicts the maximality of M;. Let
k = minimum {GdV |0 # V < C}, and take any 0 # V < C for which
GdV = k. Then V € A,(R), and now M, &V € A,(R) contradicts
the maximality of M,.. Hence C' = 0, and &x My = On<gamMn < M.
Thus M € VNST(R)AN(R) =1

(i) For any ¢ : R — S € A, let N € Ax(S). Since the S-
submodules of N and the R-submodules of the induced module N,
coincide, Gd Ng = Gd N, and N, € Ayx(R). Thus p*Ax(S) C Ax(R).
For any N, cAx(R) = {M | forall0 # W < M,GdW # X}. In
particular, cA;(R) = C(R) are the continuous modules. Hence, also
©*cAx(S) C cA(R). Therefore, all the Ayx are universal saturated
classes.

(v) and (vi). These follow from Theorem 6.7. O

7. Examples. Some examples of rings R are given such that
ZR < ZsR = R and consequently every R-module is torsion. In
order later to construct from these rings torsion bottomless modules
in these examples in addition R\ZR will be units and hence they are
special kinds of local rings [1, Proposition 15.15].

Example 7.1. Let D be a commutative p.i.d. and p € D a prime.
Let R = D/(p") for some n = 1,2,.... Then Z(R) = (p)/(p"),
(R/Z(R))* = (p)/(p") < R, and Z3(R) = R.

The next example is used for other purposes in [37].
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Example 7.2. For a field F' and indeterminates 1, z2, ..., let R be
the polynomial ring F[z1, s, ...] subject to the relations m%H = x;,
2?2 = 0. For some smallest i and odd k or k = 0, every element 7 € R
is uniquely of the form r = z¥u where u € R is a polynomial in z; and

nonzero constant term; u is a unit. Since :Uf =0, rt = m?likR. Thus
r+ = 0 if and only if r = u, and otherwise when k # 0, 7+ < R. Hence
the unique maximal ideal Z(R) = {z%u | u € F[z;],u is a unit; i,k =
1,2,...} < Rof Ris nil. Since r = zfu = (2%, ,)(2¥ u) € (ZR)?,
(ZR)*> = ZR. (If char F = 0, then actually r = (z¥,,\/u)? with
Vu € R\ZR.) Any two elements r, s € R can be written with the same
i both in the form r = z¥u, s = v for units u,v € R\ZR. Not only
is R uniform, but all the ideals of R form a chain because for cyclics,
either m < k, r = sz¥~™v "4, rR C sR or sR C rR.

%

Example 7.3. For a prime p and two noncommuting indeterminates
z and y, let R be the free algebra Z,»{x,y} subject to the relations
z? = zy = yzr = y> = 0. Every element r € R is uniquely of the form
r = ko + xki + yks, k; € Z,2. In this and similar examples we will use
the fact that Z,2{z,y}, Z,» and R are Z-bimodules in a canonical way.
Then R is commutative, and it can be shown that its unique maximal
ideal is ZR = pZ,» + ztR+ yR < R, (ZR)®> = 0. Here zZRNyR =0
and R is not uniform.

The next construction gives a large and diverse class of bottomless
torsion rings and modules and also type I torsion modules. We begin
below by introducing some notation which later will also be useful in
other examples.

Construction 7.4. Let 7;, i € I, be an infinite family of rings
with unique maximal ideal P; <T; which is its first singular submodule
ZTi(T;) = P;, and P; <. T; is essential, where as before “<.” denotes
right essential submodules over rings other than R. Examples of such
rings T; are 7.1, 7.2 and 7.3. Set T = [[;c;Ti, S = ®iesTi and
R =T/S. Note that R is canonically a T-bimodule. It is important
to note that the elements of T;\ P; are invertible [1, Proposition 15.15].
For t = (t;)ier € T, the support of ¢ is suppt = {i € I | t; # 0}.
For any subsets of T; whatsoever such as P; C T;, view [] jey BT
canonically as consisting of all ¢ = (¢;);er with suppt C Y and values
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tj e PjforalljeY.

Evidently R is continuous, and it is shown next that ZR < R.
For any ¢ € I and any c; € T;, set c;IO ={t € T, | e;t = 0}
For an arbitrary element ¢ = ¢+ S € R, ¢ = (c¢i)ier € T, let
Y ={i € I | ¢ € P,<T;}. Note that I\suppc C Y, and if
¢; = 0, then ci_IO = T;. Since, by hypothesis, ¢; € T;\P; are units
in T;, ¢;'0 = 0. Hence if e¢d = 0, d = d + S € R, without loss of
generality, suppd C Y. But then {i € Y | ¢;d; # 0} is finite and
de[Licy CZIO + S. Consequently,

¢t = (H c;10+5>/s.

€Y

Next it is shown that, for the above, ¢, e~ <« R exactly when Y =T
and all ¢; € P;. First of all, if [I\Y| > Ry is infinite, let k = (k;)ic; € T
with infinite support suppk C I\Y. Since suppe C Y, cI'NEKT = 0,
¢t £¢t ®kR < R, and ¢ ¢ ZR. So, without loss of generality, let
Y = I, and consequently all ¢; € P;.

Let 0 # k = (ki);c; € T be arbitrary. We will show that - NkR # 0.
Since Y = I and since ¢; € ZTi(T;) = P; <. T;, ¢ !0 <. T;.
Consequently, for any ¢ € suppk, k; # 0, and for some t; € Tj,
0 # kit; € c;IO N k;T; # 0. Define t € T with suppt = supp k, where
the components t; of t are as above for ¢ € supp k, and zero otherwise.
Thus c;k;t; = 0 for all 4, while k;t; # 0 for all ¢ € supp k = suppt. Thus
ckt = 0, ¢kt = 0, where kf # 0. Hence, forany 0 # k € R, c- NEkR # 0
and ¢+ < R. Therefore,

ZR = (HP#S)/S.

el

In order to see that ZR < R, it suffices to show that for any
0#k=(ki)jc; € R, KRN ZR # 0. But by hypothesis P; <. T for
all i, and hence if k; # 0, then k;T; N P; # 0. For all i € supp k, select
t; € T; with 0 # k;t; € P;. Again, define t € T with suppt = supp k by
t = (t;)ics for the above chosen t; for ¢ € suppk. For i ¢ suppk,
set t; = 0. Then suppkt = suppk, and kt € [[,.;P;- Hence

—_ i€l ©
0+£kie€ ZR< R.
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Clearly Rr = Z2R is continuous, and the proof that it is bottomless
is much the same as the proof in [14, p. 116]. It hinges on the following
fact. For any R-map f : aR — bR withb= faanda=a+ S, a € T,
there exists a coset representative b = (b;) € T whose support in T
satisfies suppb = {i € I | b; # 0} C suppa. For a proof, see [14, p.
115].

Clearly, each of the rings in 7.1, 7.2 or 7.3 is torsion type I. The
proof given in [14, p. 116] shows that, under the additional hypothesis
that all T} are type I rings, Rp is torsion type I and, as already noted,
continuous bottomless.

The next example shows that torsion type II] modules exist.

Example 7.5. For p a prime and Z,> = Z/p®Z,let R = Z,2{z,y} be
the free algebra as in 7.3. It will be shown that ZR = pR < R = Z3R,
and that R = ZyR is a type III torsion module.

Since (pR)* = pR < R and pR C ZR, we conclude that ZoR = R.
A term 7 of R is an element of the form

= 2=y =@y n(2) | e n(n)

where 20 = yO =1,1< 5(2)75(3)7 s aE(n); 1< 77(1)’77(2)7 . 777(n -
1); but €(1),n(n) = 0,1,2,... . A monomial of R is a constant times
a term, i.e., kt = 7k, k € Z,2. Note that as a Z,2-module, the terms
form a free basis, i.e., R = @{Z,27 | 7 is a term} over Z,2. The degree
of 7is degt = ¢(1) + n(1) + --- + &(n) + n(n), and similarly we have
0 < degr for any 0 # r € R. Every element of r is uniquely of the form
r =711 +prg, r; € R, where every monomial of r; and r5 is not divisible
by p, hence p {71, p t r2. Moreover, the nonzero monomials appearing
in 71,72 are jointly all Z,> independent.

For any r € R as above, suppose that rr’ = 0 or (ry+prs)(r]; +prh) =
ri7y + p(rirh + ror}) = 0. Then 717f = 0 and 7174 + ror] = 0. Hence
if r; # 0, then r{ = 0. But then r175 = 0, and thus 7, = 0. Therefore,
p1{rif and only if r; # 0 if and only if 7+ = 0. Alternatively, for r # 0,
p | r if and only if r;y = 0 if and only if - = pR. Thus ZR is exactly
ZR =pR.

Take any 0 # v = vy + puy written as above with p f v and v; # 0.
Take any countably infinite direct sum of cyclics $,z,R < R. Since
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R — vR, r — vr is an isomorphism of R modules, it maps essential
submodules to essential submodules $,vr,R < vR.

Since left multiplication by pv is not an isomorphism, no such ar-

gument is available to conclude that ®,pvz,R < pvR. However, in
this case all we need is that there exists some infinite countable direct
sum of cyclics ®,pz!, < pvR with 0 # 2!, € R\pR, i.e., with p { z,.
Simply take any ®apvzaR & D < pvR. Take any finite or infinite
®pdsgR < D, 0 # dg € D. Since pD C p*vR = 0, all pdg = 0, and
each dg = pdg,, p t dg,- Thus (PapvzoR) & (Bppds, R) < pvR as
required.
_Finally, consider any direct summand of ﬁR of the form N <
Rp, where N = N N R. Take any essential direct sum of cyclics
[@iciviR] ® [®jcspw;R] < N where p { v;, p { w;. The previous
argument shows that we can choose the v; and w; so that |J| = R is
infinite, and either I = @, or also |I] = Ry.

In either case we can partition the index sets into two equal-sized
parts, J = J; UJs, J1NJy = G, |J| = |J1| = |J2| =Npand I =1 UlIs,
I, NI, = @, with also |I| = |I;| = |Iz|. Then

]V:E(@vﬂ%) @E(@mR)

i€l i€l

EBE( @pij> EBE( @pij>,

JEJ1 jEJ2

N= E<@viR> @E(@pwﬂ%).
iel jcJ
Since vil =0, v; R & R while (pwj)L =pR, pw;R = R/pR for all i and
J, it now follows that N =2 N @& N. Hence Rr = Z2R and R = Z2R
or pR = ZR all are torsion type I1I modules.

The next example shows that for every cardinal X = Ng,... there
exist rings R with Agx(R) # 0.

Example 7.6. For any field F' and set X with 2 < |X| = X the
free algebra R = F{X} on X has Gd R = max{Xo,|X|} = X. For any
0#b€ R, bR > R, and GdbR = N. Hence, Rg € Ax(R). Actually
more is true. For any 0 # L < R, if ®;crb;R < L, then |I| =X, and
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Gd L = Gd (@icrbiR) = ;c; Gdb;R = R - X = X by [18, Theorem 3].
Note that, for X = {x} a singleton, likewise F{{z}} = F[z] € A;(R).
For 2 < |X|, F{X} is t.f. continuous, molecular, and type II1I [13,
Example 4.4], i.e., R=F{X} € Cy N Ay = (CA)f and R € III.

A quotient of an example from [18, Example 9] is used in the next
example.

Example 7.7. For any infinite cardinal N and any rlng F with
|F| < N, set F; = F for all ordinals ¢ < N. Let S = Z<NF be
the R-product of the F;'s consisting of all ¢ = (¢;);<x whose support
suppt = {i < R | t; # 0} has cardinality [suppt| < X. Let P C [[,_ F;
be the subring of all eventually constant vectors, and set R = P/ S
Then |P| = X. Let 0 # @R < R be arbitrary, @ = (a;)i<x + S,
(ai)i<x € P. Partition supp (a;)icx = X = UienX;, X; N X, = @ for
i # j, and all |X;| = N. Let X; € P be the characteristic function of
X;. Then R is a P-module, and ®;<x(aX;)” R = ®;«xa¥;R < @R and
N < GdaR < |R| = X. Thus Rg € Ax(R). If ZFF =0, Ris t.f. If
ZFF = F, R is torsion, e.g., for F = Z/p*Z.

Example 7.8. Let |X| > Ry and J < P(S) be the ideal J = {Y C
X Y] <|X]|}. Set R="P(X)/J, and let S = E(R) be the completion
of R (see [13, Example 4.4]). Then R,Sg € B¢(R) N I¢(R) as well as
Sg € Bf(S) n If(S).

If the GCH is assumed, then Gd R = Gd (ER) = Gd Ss = 2/%! (see
[13, p. 337]). Forany 0 #yR< R,y=Y +J,Y C X, Y ¢ J, and
Y] = |X|. Again, use the GCH to obtain the existence of an almost
disjoint family F = {A,B,... | A,B C Y,|X| = |Y| = |A| = |B| =

,JAN B| < |X|}. Then A ¢ J for A € F, and ®{(A+ J)R |
A € F} < yR shows that 21X = |F| < GdyR < |R| = 2/X|. Thus
GdyR =2, and R, ER = Sp € Ayx(R) for R = 21XI,

Note that this example is related to the previous one. In 7.7,
take F = Z. Then [[;.xZ2 & P(X), [[ioxZ2 = J, and thus

<N
[Ticx Z2/ T2y Z2 = P(X)/J for [X| = X.

Example 7.9. For a field F, let F; = F, i € I with X < |I|. For
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S =112, € T = [, Fi set R = T/S. For any 0 # V < R, there
exists 0 ZaR <V with @ = (a;)ics + 5, |supp (a;)icr| = R. Let P<T
be the ideal of all such @. Then P/S < R and P/S € Ag(R).
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