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THE SPECTRUM OF ELEMENTS OF A
COMMUTATIVE LMC-ALGEBRA RELATIVE TO
A BANACH SUBALGEBRA

BRUCE A. BARNES

ABSTRACT. Let A be a commutative LMC-algebra with
unit, and let B be a Banach subalgebra of A. For a € A
define op(a) = {A € C: (A —a)~! ¢ B}. In this paper the
spectral theory corresponding to this spectrum is developed.
Applications are given to concrete examples from analysis.

1. Introduction. Throughout, A is a complete commutative Haus-
dorff LMC-algebra. The topology of A is determined by a collection
of algebra seminorms {P5 : § € D} (here D is an index set). In this
paper we study the situation where (B, ]| - ||g) is a Banach subalge-
bra of A. Assume that A has a unit that is in B. For a € A, define
resg(a) = {\A € C: (A —a)~! € B}. This is the resolvent set of the
element a relative to B.

For some interesting choices of 4 and B, classical theorems in analysis
that hold for elements of B can be extended to those elements a € A
which have resp(a) nonempty. The purpose of this paper is to present
the spectral theory involved, to point out interesting examples of pairs
(A, B) that occur in analysis, and to extend some classical results that
hold in B to the larger LMC-algebra A.

There is a Gelfand representation theory that applies to A which is
similar to the Gelfand theory of a commutative Banach algebra. Denote
the space of all nonzero continuous multiplicative linear functionals on
A by Q4. Equip Q4 with the A-topology. Setting a(¢) = ¢(a) when
a € A, p € Qy, wehave a — a is a representation of A as an algebra of
continuous functions on 4. Then the spectrum of an element a € A,

o(a) = {\ € C: (X — a) is not invertible in A},
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is the range of the function @ on the space Q4 [1, Theorem (4.10-8)].
For a € A, define the spectrum of a relative to B by og(a) = C\resg(a).
For some pairs (A, B), this spectrum is useful in analysis. A natural
question here is, how does one compute oz(a) in terms of properties of
a? A key result proved in Section 2 is that with reasonable assumptions,
when resp(a) is nonempty, then o3(a) = o(a). In terms of @, under the
same assumptions, a has an inverse in B exactly when |a| is bounded

away from zero on 2 4.

The relevant spectral theory of elements of A relative to B is devel-
oped in Sections 2 and 4. Section 3 is devoted to examples. In the
last section the results in Sections 2 and 4 are applied to the examples.
These applications often extend classical results in analysis.

The general situation, with A not necessarily commutative, is studied
in [2].

2. Spectral theory. We adopt the notation introduced in the
introduction. In addition, let

Inv(A) = {a € A: ais invertible in A and a ! € B};
rp(b) = the spectral radius of b € B.

We do not assume in general that .4 has a unit. Thus we will have
occasion to use quasi-inverses. When a € A is quasi-invertible, we
denote the quasi-inverse of a by a? (recall, this means aa? = a%a and
a+ a?— aa? =0). Set

Q — invp(A) = {a € A: ais a quasi-invertible in A and a? € B}.

We make certain basic assumptions throughout this paper.

Standing assumptions. (1) A is a complete commutative Hausdorff
LMC-algebra; (2) If A has a unit 1, then 1 € B; (3) Q.4 is dense in Qp
in the sense that {¢|p : ¢ € Q4} is dense in Qp where |z denotes the
restriction of ¢ to B. Assumption (3) is a major hypothesis. It holds
for many interesting examples from analysis; see the examples in the
next section.

Now we state without proof a useful result concerning spectral prop-
erties.



COMMUTATIVE LMC-ALGEBRA 427

Note 1. (1) If a, ¢ € A, a € Invg(A) and a — ¢ € B with
ra(a —c) < (rg(a=1)) 1, then ¢ € Invg(A).

(2) For all a € A, resp(a) is open and og(a) is closed.

Part (2) follows from (1), and the proof (1) uses standard Banach
algebra facts.

Now we state another useful note (again, the elementary proof is

omitted). For I' a nonempty subset of C, A € C, we define d(\,T') =
inf{{]A—~|:veT}.

Note 2. Assume a € A. Each of the equalities below follow from a
straightforward computation.

(1) If X\ X ¢ o(a), then [(Aog—A)" L —(No—a) ]t =(No— )+
(Mo — N2\ —a) L.

(2) If Ao ¢ o(a), then o5((Ag—a)")\{0} = {(Ao—A)"1: X € o5(a)}.

(3) If Ao ¢ o(a), then op((a/Xo)?)\{1} = {A(A=Xo)"!: XA € o5(a)}.

(4) If X\o ¢ op(a), then r5((Ao — a)™ ) = (d(Mo,05(a)))t (this
follows from (2)).

An element b of the commutative Banach algebra B (with unit) has
the property: b is invertible in B if and only if b(¢) # 0 for all ¢ € Q5.
This is a fundamental result in the Gelfand theory of commutative
Banach algebras [3, Section 17]. Now we extend this result in a natural
way to our situation.

Theorem 3. (1) Fora € A, either resg(a) is empty or op(a) = o(a).
In (2) and (3) assume a € A has resg(a) nonempty.

(2) When A has a unit: a € Invp(A) if and only if |a| is bounded
away from zero on Q4.

(3) In general: a € Q—invg(A) if and only if |a—1| is bounded away
from zero on Q4.

(4) Assume A has a unit. Let {a1,a2,...,am} C A have \; €
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resg(a;) for 1 < j < m. Suppose that there exists § > 0 such that
Z ©)| >0 forall p € Qy.

Then there exists {b1,... by} C B such that

i bkak =1.
k=1

Proof. We assume in the proof that .4 has a unit, and we prove (4).
(2) is a special case of (4), and (3) is an easy consequence of (2). At
the end of the proof, we give a simple argument showing that (2) =
(1).

Let the collection {ax} and § > 0 be as in (4). We assume without
loss of generality that 1 € resg(a;) for 1 < j < m. Given any ¢ € Q4,
there exists a j such that |a;(¢)| > d/m. Choose ¢ > 0 such that

2| >6/m, 2 # 1= [2(1—2)7" >e.

This shows that
(5) Z ©)(1—ar(p)) b >¢e forall p € Qy.

Note that ax(1 —ax)™' = =1+ (1 —ax)~! € B, 1 <k < m. Since by
assumption Q4 is dense in 3, we have that (5) holds for all ¢ € Q.
By a standard result in Banach algebra theory it follows that there
exists a d € B, 1 < k < m, such that

Z dk 1-— ak )ak =1.
k=1
This proves (4).

(2) = (1). Assume a € A has resg(a) nonempty. We have automati-
cally that o(a) C op(a). Suppose A ¢ o(a). Then there exists a § > 0
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such that |A —a(e)| > d for all p € Q4. By (2), (A —a) € Inva(A).
Therefore, A ¢ o (a). This argument proves o(a) = op(a). u]

The next result contains a spectral mapping property which holds for
some rational functions.

Proposition 4. Let F()\) = p()\)/q(\) where p(\), q(\) are nonzero
polynomials and deg(p) > deg(q). Fiz a € A and assume that q(\) has
no zeros on op(a).

(1) o5(F(a)) C F(os(a));
(2) When resp(a) is nonempty, then op(F(a)) = F(og(a)) and
o5(F(a)) = o(F(a)).

Proof. We may assume p and ¢ are monic. Let {\1,... , A} C C
be such that g(A) = [[i=,;(A — Ak). Assume p ¢ F(og(a)) and
{p1,---,pn} C C with n > m, so that (p(A) — pg(N)) = [Te_; (A — px)-
Since F(A) — p = (p(A\) — pg(N))/q(N), it follows that py ¢ op(a) for
1 < k < n. Therefore,

(F(a) =)' =(a=A1) - (a=An)(a—p) ™" (a—p) 7"
For1 <j<m,
(a=Aj)a—p;)7" =[a—pn)+ (1 = A)l(a — )™
=1+ (nj = Xj)(a—p;)"' €B.
Therefore

(F(a)—p)~' = (f[l(a —Aj)a - Hj)_1> < . II (a- “7')_1)

is in B. Therefore p ¢ o5(F(a)), which proves (1).

Now assume resg(a) is nonempty. By Theorem 3, oz(a) = o(a).
A straightforward algebraic argument establishes that o(F(a)) =
F(o(a)). Then using (1) we have
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Even in the case where oz(a) = C, the property that oz(a) = o(a)
can be useful information. The next proposition shows that this
property is preserved when taking a certain limit. ]

Proposition 5. Assume {a,} C A, a € A, a, —a € B for all n, and
lan, —allg = 0. If o(an) = oglay) for all n, then o(a) = op(a).

Proof. We may assume that A has a unit. It suffices to show that if
w ¢ o(a), then p € resg(a). Assuming p ¢ o(a), let 20 = d(o(a), p) >
0. Fix N such that n > N = ||a, — al|p < . Assuming n > N, for all
pE Q.Aa

lan(p) — pl > |a(e) — pl = lan(p) — alp)|
> 20 — ||an, — al| > 6.

Therefore d(o(ay), n) > 6 for n > N. This implies by hypothesis that,
when n > N, (u—a,) € Invg(A), and r5(( —a,)~') < 67! (see Note
2(4)). Thus,

re((1—an) — (p—a))rp((n —an) ') <1

for all n sufficiently large. It follows from Note 1 that (u—a) € Invg(A).
O

One useful consequence of the property, resz(a) is nonempty, is the
equality op(a) = o(a). Now we note briefly some other consequences
of this property.

First, when resp(a) is nonempty, then there is a holomorphic func-
tional calculus which applies to the element a. This functional calculus
is exactly analogous to the functional calculus for a closed operator
with nonempty resolvent; see [2] for details. We note that an applica-
tion of this functional calculus extends Proposition 4. Specifically, if
F(X) =p(A)/q(N) is a rational function with deg(q) > deg(p) and ¢()\)
has no zeros on og(a), then F(a) € B. The spectral mapping theorem,
[2, Theorem 4.7], implies that o5(F(a)) = F(op(a)) in this case.

Secondly, assuming resg(a) is nonempty implies the existence of
certain boundary type limits of @ at points in Qp\Q4. This result
is elementary, but it has interesting consequences; see Theorem 16.
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Proposition 6. Assume a € Q — invg(A), so a? € B. Set b = a?.
Suppose o € Qp\Qa with b(po) # 1. If {par} is a net in Q4 such that
©x = o in Qp, then the net {a(px)} has a limit.

Proof. AFor qll o € Qq, alp) = 8(‘10)(6(50) — 1)t Therefore
a(pr) = b(po)(b(po) —1)~". o

3. Examples. In this section we consider a number of interesting
examples from analysis. The spectral theory developed in Section 2 and
the results in Section 4 allow us to extend classical results involving
certain well-known Banach algebras to a more general setting. As
indicated previously, the algebras we consider will all be commutative,
complete, Hausdorff LMC-algebras. Some of our results hold for even
more general algebras.

One advantage of letting A be a commutative complete LMC-algebra
is that such algebras have a Gelfand representation theory. Further-
more, the underlying space, {24, can often be computed using informa-
tion concerning the Gelfand space of familiar Banach algebras. Specifi-
cally, let (A, {ps : § € D}) be the given algebra with algebra seminorms
ps. For each § € D, let N5 be the ideal N5 = {a € A : ps(a) = 0}. Let
Ajs be the factor Banach algebra obtained by completing the algebra
A/Njs in the norm ||a + Ns||s = ps(a), a € A. Let w5 : A — Aj be the
continuous embedding of A into the factor algebra A;. Then Q4 can
be computed by:

Qq = U{Lpoﬂ'(; :deD,pe QA5};
see [1, (4-10-7)].
In concrete examples the algebras As are often familiar Banach

algebras, so in these cases ()4 is easily determined. This is illustrated
in several of the examples that follow.

Example 1. Let D be a commutative Banach algebra without unit.
We denote the Gelfand space of D by I'. Let A = C(I'), the algebra of
all complex-valued continuous functions on 2. The natural topology for
A is defined by the collection of seminorms determined by nonempty
compact subsets K of I':

px(f) =swpf|f(w)[:we K}, feA
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For B take the algebra D with identity adjoined. Then 24 = I', while
Q5 is the one point compactification of I'. The standing assumptions
hold here.

Example 2. Let L™ be the space of all measurable functions f on
(0, 00) such that f(t)e ¢t € L1(0,00) for all ¢ > 0. L™ is a convolution
algebra with multiplication

fxg(z)= / flz —1t)g(t)dt, x>0.
0
For each n > 1, let p,, be the weight p,(t) = e7t/™. Set

nih)= [ Tl Wlpalt) dt, fe Lt

Then (L*,{p, : n > 1}) is a complete, Hausdorff LMC-algebra. For
z € C with Re (z) > 0, define

o:(f) = /0 f(te=tdt, fe Lt

Then Qr+ = {p, : Re(z) > 0}. Thus, Qp+ can be identified with the
open half-plane Hy = {z : Re(z) > 0}. For f € L™, z € Hy, let

~

(1) /(2)

Fe.) = / " f(t)e d.

Therefore the Gelfand transform of f € LT on Q-+ is identified with
the usual Laplace transform of f on Hy. We have, for f € LT,

o(f) = {f(2) : = € Ho} U {0}.

The factor algebras involved are the weighted convolution algebras
L'((0,00), pr). The Gelfand spaces of these algebras are well-known;
see [5, Section 18]. Thus, Q.+ could be computed as the union of those
Gelfand spaces (as remarked in the comments at the beginning of this
section).

Now let LT = L'([0, 00)). This Banach algebra is a subalgebra of L*
and, as is well-known, its Gelfand space is naturally identified with Hy,
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where for f € L and z € Hy, f(z) is defined as in (1). Throughout,
when A = L, we take the algebra B to be L. Note that the standing
assumptions hold in this case.

Example 3. Let lf‘ be the Banach space of all complex sequences,
a = {ak}k>0, with [ja]ly = Y 5o lak| < co. Define I* to be the space
of all complex sequences a = {ay}r>o such that {aye °*} € I for
all ¢ > 0. Both of these spaces are convolution algebras with the
multiplication of a = {ax} and b = {by} given by

(a*xb), = Zan,kbk, n > 0.
k=0

Now define weights p,, for n > 1 by
pn(k) =eF/m k>0,

and define corresponding algebra norms p,, by

pu(@) =D arpa(k), aclt
k=0

Then (I, {p, : n > 1}) is a complete Hausdorff LMC-algebra.
Now we determine ;+. For z € C, |2| < 1, and a = {ax} €T, let

1) pa(@) = art.

It is straightforward to check that ¢, € Q+. Using results in [5,
Section 19] applied to the factor algebras of [T, it can be shown that
Y+ ={p.:|2| <1}. Set U={2€C:|z] <1}. Fora €lt and z € U,
let

(2) a(z) = a(p,) = Zakzk.

Thus Q;+ is identified with U, and a acting on U is a holomorphic
function.
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When A = [T, we take B to be the Banach algebra (|| - ||1). For
b= {bx} €1}, . and b(z) are defined as in (1) and (2) above for all
z € U. Note that the standing assumption holds.

One feature of Example 3 is that a — a, a € [, maps [T into H(U),
the algebra of all holomorphic functions on U. In fact the Gelfand
map is onto, [T = H(U). The algebra H(U) has other interesting
Banach subalgebras besides {*. For example, with A = H(U), one
could consider spectral theory with respect to the disk algebra.

Example 4. As our last example, we consider a convolution algebra
of sequences defined on the integers Z. Let A be the space of all
complex sequences, a = {aj, }rez, such that whenever 0 < r < R < 1,

then
oo oo
Z la_g|r % + Z lax|R*  is finite.
k=1 k=0

Multiplication of sequences is the usual convolution. Define weights
pn(k), n > 2, by:

n/(n+1))* if k> 0;
pn(k)z{( /( ) ) .
(1/n) if k <O0.
Let {p, : n > 2} be the algebra norms on A defined by
pu(a) =Y |aklpn(k).
kez

Then (A, {p, : n > 2}) is a complete Hausdorff LMC-algebra. Using
[5, Section 19], it follows that the Gelfand space of the factor algebra
determined by p,, is identified with the annulus

1
Qn—{zec:—§z|§ o }
n n+1

Thus Q4 = Up2,Q, is identified with the punctured open unit disk
U\{0}. For a € A and z € U\{0}, the Gelfand transform of a is given

by
a(z) = Za,kz_k + Zakzk.
k=1 k=0
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It is straightforward to check that {& : @ € A} is the algebra of all
holomorphic functions on U'\{0}. A Banach subalgebra of A is B = I;.
As noted before, 5 is naturally identified with U. The standing
assumptions are satisfied for the pair (A, B).

4. Perturbation results. In this section we consider questions of
how o(t) and resg(t) change when an element b € B is added to ¢. Of
special interest here is the question:

If resp(t) is nonempty, under what conditions is resp(t+b) nonempty?
Part (2) of the next proposition provides one answer to this question.

In what follows we use the notation

dA\T)=inf{{A—~v|:v €T} where A € C and I is a subset of C.

Proposition 7. Assume a,t € A.
(1) Ift € Invp(A), t7ta € B and rp(t~'a) < 1, then t+a € Invp(A).

(2) If sup{d(X,05(t)) : X € resp(t)} = oo, then resg(t+b) is nonempty
for all b € B.

Proof. Assume as in (1) that r5(t~'a) < 1. Then 1+t~ 'a is invertible
in B. Setting s = (1+t~'a)~!, we have st~1(t +a) = s(1+t"ta) = 1.
This verifies (1).

To prove (2), note that for A € resg(t), rg((A —t) 1) =d(\,05(t)) !
(see Note 2(4)). Therefore, by hypothesis for any b € B, there exists
some A € resp(t) such that rz((—\ + ¢)7'b) < 1. Applying (1), it
follows that —A\+¢+b € Invg(A). O

Next we consider a case of special importance: when oz(t) is con-
tained in a half-plane. In this case a strong result holds concerning
the B-resolvent set of perturbations of ¢. We begin with a preliminary
lemma.

Lemma 8. Lett € A, t ¢ B, withresg(t) nonempty. For \ € resp(t),
let

(A t) = sup{lp(p — A7 : € on(t)}
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Assume there exists an m > 1 such that
sup{d(X, o5(t)) : A € resp(t), v(A,t) < n} = 0.
Ifb € B hasrp(b) <n~! and |£] > 1, then

sup{d(\, o(£t + tb)) : X € resp(&t + tb)} = oo.

Proof. We do the proof for the case where A4 has a unit. Set
I' = {\ € resg(t) : v(\,t) < n}. For each A € ', A # 0, choose
sy = (A71t)%. Then (A — t)A71(1 — s)) = 1. By Note 2,

o5(sx) = {u(n =N p € op(t)} U{1}.

Since A € T', we have by definition that rg(sy) < 7. Now fix A € T,
and assume rz(b) < n~! and |£| > 1. Then (A —¢)~1&71b = —s,£7 10,
and therefore,

TB(()\ — t)_ltg_lb) < TB(S)\)‘f_I‘T‘B(b) < 1.

By Proposition 7, (A—t) —t£~'b € Invg(A), so EX— (Et+tb) € Tnvp(A).
It follows that

sup{d(\, o(&t + tb)) : X € resp(£t + tb)} = oo. o

Now we prove the main result of this section. An application of this
result is given in Theorem 14.

Theorem 9. Assume t € A with o(t) contained in a half-plane.
(1) If b € B and € € C, then resg(&t + b) is nonempty.
(2) If b,c € B, rg(b) < 1 and |§] > 1, then resp(Et + tb + ¢) s

nonempty.

Proof. (1) follows immediately from Proposition 7 (2). To prove
(2), note that by rotating and translating, if necessary, we may assume
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o5(t) C Hy. Let € > 0 be fixed. We prove that 7 = 1 + ¢ works in the
hypothesis of Lemma 8. Consider the cone

C.={\€ C:Re()) <0,|Im(\)| < [Re(N)e}.

By assumption, C. C resp(t). Assume A € C¢, and set a = Re (A). For
p € Ho, |p— Al > |a]. Also, |u| < |p — a]. Therefore

|ul < |p = (a + ilm (A))] + [Im (X))
<p— Al +elal < (1 +€)|u— Al

This proves
C: C{X€eresp(t) : y(A\,t) <n=1+¢}.

Now if b, ¢ and £ are as in the statement of (2), there exists € > 0 such
that rg(b) < (1+¢)~'. By the argument above, Lemma 8 implies

sup{d(\,o(&t + tb)) : A € resp(&: + tb)} = oo.

Therefore, the result follows from Proposition 7. u]
The final result of this section involves a continuity result for o(-).

Theorem 10. Lett € A and b € B. When A € op(t + b), then
d(X,o8(t)) <rp(b). When X € og(t), then d(\,op(t+ b)) < ra(b).

Proof. Assume r5(b) < d(X\,05(t)). Set c = (A—t)~! € B. By Note 2
(4), r5(b) < rz(c)~!, and so rz(bc) < 1. Thus, (A — (t+b))c=1—bc €
Invg(A). It follows that A — (¢t +b) € Invg(A), so X ¢ op(t +b). This
proves the first assertion.

To verify the second assertion, in the first statement replace ¢ by
(t+0b) and b by —b. o

Corollary 11. For 6 >01letUs ={A € C: |\ < 6}. Assumet e A
and b € B with rg(b) < §. Then

op(t +b) C op(t) + Us.



438 B.A. BARNES

Proof. Suppose A € o5(t+ b). By Theorem 10 we have d(\, o5(t)) <
rg(b) < &. Therefore there exists p1 € op(t) such that |\ — p| < 6.
Thus,

A=p+ (A—p) €op(t) + Us. m]

5. Some applications. In this section we apply the results of
Sections 2 and 4 to the spectral theory of LT and [T. Some of these
applications are extensions of classical theorems. Throughout this
section, when A = L%, then B = L}, and when A = [, then B =1;.

First we construct an example to show that it is not always the
case that o(a) = op(a). There exists a sequence a = {ar} such
that Z;ozo are*® is the Fourier series of a continuous function, but
{ax} ¢ I]; see [8, p. 32] for example. In this case a € [T and

oo
a(z) = Z apz”
k=0

is bounded on U by [10, Theorem 11.8].

Now set

()= Zakx[k,k+1)(t)7 t>0.
k=0

Then f € LT, but f ¢ L. For Re(s) > 0,

(oo}

k+1
f(s) = Zak/k e St dt

k=0

Zaks_l[e_Sk _ e—s(k—i—l)]

k=0

=s1(1—e79) Zak(e_s)k.
k=0

The integration term by term is justified by the Lebesgue dominated
convergence theorem. Since e * € U when Re (s) > 0, f(s) is bounded
on Hy.

We have proved the following result.
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Proposition 12. For either A= LT or A=1%, there ezists a € A
such that o(a) is bounded, but op(a) = C.

Now we identify a large class of functions in Lt for which o(f) =
o(f). Throughout this discussion 1 denotes the constant function on
[0,00). We need several elementary results:

(i) 1(s) = 1/s for s € Hy;
(ii) For Re (A\) <0,
(AT')9(E) = At e L0, 00);
(iii)
W) = gt nz L

(iv) If G(2) = z/(1 — pz) with Re(p) < 0, then evaluating G at 1
with respect to the operational calculus, we have G(1)(t) = eVt

Theorem 13. Assume f(t) = p(t) + g(t) where p is a polynomial
and g € L*[0,00). Then

o5(f) = {f(s) : Re(s) > 0}
Proof. First note that by (i) and (ii), o(1) = Hy and o5(1) = Hp.

Assume p(t) = Y1, bkt® and {a1,...,a,} C C, {p1,... ,un} C C
with Re (ux) <0 for 1 <k < n. Set

bk 1
+Zl—ukz

If b; # 0 for some j, then the rational function F(z) satisfies the
hypothesis of Proposition 4. Therefore, in this case, op(F(1)) =
o(F(1)). If b, = 0 for all k, then F(1) € L'0,00), so again,
o5(F (1)) = o(F(1)). Using (iii) and (iv), we have

m n
= Z bktk + Zake’“"“t.
k=0 k=1

m+1

F(z)= Z

k=1
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Now sums of the form

Zake“k‘ Re (ug) <0

are dense in L1[0, c0). Therefore, by Proposition 5, o5(f) = o(f). u]

_As indicated before, in Theorem 13, (1) is the closed half-plane
Hj. Therefore, Theorem 9 applies. We derive from this a result of the
type discussed in [11, pp. 313-314].

Theorem 14. Assume b(z) € L™ has the properties that there exist
a D >0 and an f such that f < 0 almost everywhere on (D,o0) and
fe Ll([d 00)) whenever d > D, such that:

= [ f(t)dt +b(d) for d > D;
( )b( )<1ford>D,
(iil) limg— 0 b(z) = 0.
If|€|>1,d> D, and c(z) € L*[0,00), then

resp((€ — b(d))1 + b(z) 4+ c(z)) is nonempty.

Proof. Fix d > D. Note that

1% (Xjaoo) ) () = X0y /f ) dt
= Xiao) (@) b(2) — b(d)].
Also,

ol = [ 10@lae =] [ 0t = i) <1.
Now X[o,q) () (b(x) — b(d)) + c(z) € L'[0,00). Finally, for |¢] > 1,

(& = b(d)1 + b(z) + c(x) = E1+1 * (X[4,00) ) ()
[X[o a)(2)(b(z) — b(d)) + c(z)].
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Therefore the result follows from Theorem 9. O

It is straightforward to check that for the sequence 1 = (1,1,1,...) in
I, o05(1) is a closed half-plane. Thus, a result analogous to Theorem 14
can be proved in [ T.

We give a specific example where Theorem 14 applies.

Example 15. Fix 8 >0,0< v < 1. Let b(z) = (z+8)7". If 3 > 1,
thenset D = 0. If0 < 3 < 1,set D = 1—f. Let f(t) = —y(t+5)~(+1),
Applying Theorem 14, we have: for [§| > 1, and 0 < g < 1 when 8 < 1,
or 0 < p <377 when 8 > 1, and c(z) € L*[0, 00),

resg((§ — )1+ (x +B) 7 +c(x)) is nonempty.

When 8 > 0, v > 1, then (z + 8)™7 € L'[0,00). It follows from
Theorem 9 that for any £ € C and any c(z) € L*[0, 00),

resg(él+ (z + B8) "7 +¢(z)) is nonempty.

In the next two results we consider some consequences of the situation
where resg(f) is nonempty. First we show that limiting boundary
values must exist almost everywhere.

Theorem 16. (1) Assume a = {ax} € [T, and resg(a) is nonempty.
Then lim,_, git |,/ <1 G(2) ewists for all t € [—m,w]| with the exception of
a set E C [—m,n| of Lebesgue measure zero.

(2) Assume f € LT, withresp(f) nonempty. Thenlim,_,;y, re ()0 f(z)
exists for all y € R with the exception of a set F' C R of Lebesgue mea-
sure zero.

Proof. Let a = I* be as in (1). We may assume b = a? exists and
is in I7. Then b(z) is a continuous function on the closed unit disk
U which is holomorphic on U. It follows from [6, Corollary, p. 52]
that E = {t € [-m, 7] : b(e) = 1} is a set of Lebesgue measure zero.
Therefore (1) follows immediately from Proposition 6.

Now let f € LT be as in (2). ‘We may assume g = f7 € L{. Then
g(s) is a continuous function on Hy and is holomorphic in Hy. Set

p(z) =(1+2)(1-2)7"



442 B.A. BARNES

and note that ¢ maps U\{1} onto Hy with the boundary of U mapping
onto the line {iy : y € R}. Let F = {iy : g(iy) = 1}. Set E = ¢ 1(F).
It is not hard to verify that if {t € [-m, 7] : e € E} has Lebesgue
measure zero, then so does F'. Consider

k(z) =4(p(2)), z#1, k(1) =0.
Then k(z) is a continuous function on U and is holomorphic on U.
Again, as in (1), it follows that E has Lebesgue measure zero. O

The next result extends a classical theorem of Paley and Wiener
concerning functions in Lf [9, Theorem 17]. The proof given here
essentially follows their proof.

Theorem 17. Assume f € LT has resp(f) nonempty. Suppose h
is a measurable function on [0,00) and h is bounded on each interval
[0,¢], t > 0. Assume f(s) — 1 is bounded away from zero on Hy. If
lima—, oo [h(z) — [ f(z — t)h(t) dt] = 7, then limy—oo h(z) exists. If
lim,_, o h(x) # 0, then limse g, s—0 f(s) = B exists and lim,_, o, h(z) =

(1 -p8)"

Proof. By Theorem 3, g = f9 € L. Recall that f+g— f*g = 0. Set
w = h— f+h. By hypothesis, lim,_, ; . w(z) = 7. Since g is integrable,
by the dominated convergence theorem,

x “+oo

lim w(z —t)g(t)dt = lim Xjo,2] (t)w(z — t)g(t) dt

x—+00 0 T —+00 0

= 7/000 g(t) dt.

Therefore,

lim A(z) = lim (w(z)—wx*g(z))

Tr—+00 r—+00

“+o00
- 7—7/0 g(t) dt = 4(1 - §(0)).

If im, 4o h(z) # 0, then 1 — §(0) # 0. Then for Re(s) > 0,
F(s) +4(s) — f(5)4(s) = 0, so that

: oo —a(
SG}IIOIE—)Of(S) - 1-— g(
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Therefore,

lim h(z) =v(1-§(0)=71-6)"". o

r—r+o0

Now we consider briefly some applications to convolution operators.
Fix p with 1 < p < +oo. Let p' be the conjugate index of p
(p~* + (p)~! =1). Denote the usual p-norm on L?(0,+0c0) by ||| - |/|,-
First note that if g € LP(0, c0), then

—+o00
Pm(9) :/0 lg(@)e” ™ da < |llgll[,llle” ™|l < +oo.

It follows from this inequality that

LP(0, +00) C L
(#) and if {g,} C LP,g € LP
and ||(gn — g||l[p = 0, then g, = g in LT,

Fix f € L*. Define dom (Ty) = {g € LP : f x g € LP}, and

Ty(g)(x) = f * 9(x) = / " f(e - t)gt)dt, g e dom(Ty).

Making use of (#), it is easy to show that T is a closed operator. Note
that when f € L'(0,+00), then Ty € B(LP).

Theorem 18. Assume f € LT with o(f) = op(f). Let Ty be the
closed convolution operator on LP defined above. Then og(f) = o(Ty)
(the spectrum of Ty), and when A\I =T has a bounded inverse in B(L?),
then it has the form (1/X\)I — T, where g € L*.

Proof. Suppose A ¢ a5(f). Then g = (f/A\)?isin L], and g+ (f/)\) —
(f/X)*g = 0. It follows immediately that (A —T'f)((1/A\)I —T,) = I.
Thus, A ¢ o(T¥).

Now assume that AI — Ty has a bounded inverse on LP. Suppose
that there exists a z € C with Re (z) > 0 such that f(z) = A. Choose
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h € LP with h(z) # 0 (it is easy to see that such an h exists). Now
R(A — T§) = LP, so there exists a ¢ € L? with (A — f) *x g = h.
Therefore R R

0= Ag(2) — f(2)3(2) = h(2),

a contradiction. This proves that f(z) # \ for all z with Re (z) > 0, so
A ¢ o(f). Thus

o(f) € o(Ty) C os(f).

Since o(f) = op(f), taking closures in the inclusions above we have
o(Ty) =os(f). O

For f ¢ L* one can consider the operator Cy given by convolution
by f acting on L ., the space of all measurable functions on [0, c0)
which are in L?[0,a] for all a > 0. For g € L} 5,

Crlg)=frxge Ll

When resg(f) is nonempty, the equation (A — Cf)(g) = h, h € LY ¢,
will have a solution g € LP whenever h € LP, exactly when A\ ¢ o5(f).
This follows just as in the proof of Theorem 18.

There are other sequences of seminorms which determine LMC-
algebras of interest in Laplace transform theory. Some of these are
considered by G. Jordan, O. Staffans and R. Wheeler in [7]. We
consider briefly one such sequence. Fix § > 0. For each n > 1, let

pn(t) = (1+1)Pe” /™t ¢ >0,

Define algebra seminorms by

flln = /0Oo |f(¢)|pn(t) dt, f measurable on [0, c0).

Let A be the complete LMC-algebra of all measurable functions on
[0, 00) such that || f||, < oo for all n > 1. It is straightforward to verify
that A = L*. Let B={f € L*: [[T|f(t)|(1 +t)?dt < co}. In this
case, just as before, Q4 = Hy and Qp = Hy. This leads to interesting
applications of the sort derived in this section. In particular, Theorems
13 and 14 hold if, in their hypotheses, L![0, c0) is replaced by B.
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