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CONVOLUTION AND
FOURIER-FEYNMAN TRANSFORMS

TIMOTHY HUFFMAN, CHULL PARK AND DAVID SKOUG

ABSTRACT. In this paper, for a class of functionals on
Wiener space of the form F(z) = exp{fOT f(t,z(t)) dt}, we
show that the Fourier-Feynman transform of the convolution
product is a product of Fourier-Feynman transforms. This
allows us to compute the transform of the convolution product
without computing the convolution product.

1. Introduction and preliminaries. The concept of an L;
analytic Fourier-Feynman transform was introduced by Brue in [1]. In
[3] Cameron and Storvick introduced an Ly analytic Fourier-Feynman
transform. In [7] Johnson and Skoug developed an L,, analytic Fourier-
Feynman transform theory for 1 < p < 2 which extended the results in
[1, 3] and gave various relationships between the L; and Lo theories.
In [5], Huffman, Park and Skoug defined a convolution product for
functionals on Wiener space and for a class of functionals of the type

F(z) = f(/OTal(t) dz(t), ... ,/OTozn(t) dac(t))

showed that the Fourier-Feynman transform of the convolution product
was a product of Fourier-Feynman transforms.

In this paper we consider a class of functionals which play an impor-
tant role in quantum mechanics, namely functionals of the form

F(z) = exp { /OT F(t, (b)) dt}

for appropriate f : [0,7] x B — C. For any two functionals in the
class, we first establish the existence of their convolution product. We
then show that the Fourier-Feynman transform of their convolution is

Received by the editors on January 20, 1995, and in revised form on August 30,
1995.

Copyright ©1997 Rocky Mountain Mathematics Consortium

827



828 T. HUFFMAN, C. PARK AND D. SKOUG

a product of their transforms. For specific functionals, this allows us to
compute the transform of their convolution product without actually
computing their convolution product. Finally, in Section 5 we discuss
the associativity of the convolution product.

In [3, 7] all of the functionals F' on Wiener space and all of the
complex-valued functions f on SR™ were assumed to be Borel measur-
able. But, as was pointed out in [8, p. 170], the concept of scale-
invariant measurability in Wiener space and Lebesgue measurability in
R™ is precisely correct for the analytic Fourier-Feynman theory.

Let Cy[0,T] denote Wiener space; that is, the space of real-valued
continuous functions = on [0, 7] such that x(0) = 0. Let M denote the
class of all Wiener measurable subsets of Cy[0,77], and let m denote
Wiener measure. (Cy[0,T], M, m) is a complete measure space and we
denote the Wiener integral of a functional F' by

/ F(z)m(dz).
Cop[0,T]

A subset E of Cy[0,T] is said to be scale-invariant measurable [4, 8]
provided pE € M for each p > 0, and a scale-invariant measurable set
N is said to be scale-invariant null provided m(pN) = 0 for each p > 0.
A property that holds except on a scale-invariant null set is said to hold
scale-invariant almost everywhere (s-a.e.). If two functionals F’ and G
are equal s-a.e., we write F' = G.

Let C,C; and C7 denote respectively the complex numbers, the
complex numbers with positive real part, and the nonzero complex
numbers with nonnegative real part. Let F be a C-valued scale-
invariant measurable functional on Cy[0,T] such that

T\ = /C - PO 22)m(dz)

exists as a finite number for all A > 0. If there exists a function J*()\)
analytic in C, such that J*(\) = J(A) for all A > 0, then J*()\)
is defined to be the analytic Wiener integral of F' over Cy[0,T] with
parameter A, and for A € C we write

/ N P@)m(da) = T (V).

Co[0,T]
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Let ¢ # 0 be a real number, and let F be a functional such that
/. anBUAT] F(z)m(dz) exists for all A € C,. If the following limit exists,
we call it the analytic Feynman integral of F' with parameter ¢, and we
write

anfq AnWx
/ F(z)m(dzx) = lim F(z)m(dx)

Co {07T] A—r—iq CO[OrT)

where A — —ig through C,.

Notation. i) For A € C and y € Cy[0, T, let

(L) BENW = [ Fatymde).

Co {OvT]

ii) Given a number p with 1 < p < 400, p and p’ will always be
related by 1/p+1/p’ = 1.

iii) Let 1 < p < 2, and let {H,,} and H be scale-invariant measurable
functionals such that for each p > 0,

(1.2) lim |Ho(py) — H(py)? m(dy) = 0.

n—roo CO {07T]
Then we write

(1.3) lim (w? )(H,) ~ H

n—oo
and we call H the scale invariant limit in the mean of order p’. A
similar definition is understood when 7 is replaced by the continuously
varying parameter \.

We are finally ready to state the definition of the L, analytic Fourier-
Feynman transform [7] and our definition of the convolution product.

Definition. Let g # 0 be a real number. For 1 < p < 2 we define the

L, analytic Fourier-Feynman transform Tq(p ) (F) of F by the formula
()‘ € C+)7

(1.4) (TP(F)(y) = lim (w?)(Tx(F))(y)

A——iq
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whenever this limit exists. We define the L; analytic Fourier-Feynman
transform Tq(l) (F) of F by the formula

(1.5) (T () (y) = lim (TA(F))(y)

li
A——iq
for s-a.e. y. We note that, for 1 < p < 2, Tq(p) (F) is defined only s-a.e.

We also note that if T\*) (F) exists and if F| ~ F,, then T\")(F}) exists
and T\P)(Fy) ~ TP (Fy).

Definition. Let F and G be functionals on Cy[0,T]. For A € C7 we
define their convolution product (if it exists) by

(1.6) (f;:AG)A(y)
/Co[O,T1 F <y:/r;> ¢ <y\/§x> m(dz), A€ Cy
/CTOfTJ ! <y\4/r§x> ¢ <y\;§m> m(de), A= —iq, ¢ € R~ {0}.

Remarks. 1) When X = —ig, we will denote (F' * G)» by (F = G),.

ii) Our definition of convolution is different than the definition given
by Yeh in [10] and used by Yoo in [11]. For one thing, our convolution
product is commutative, that is to say

(F'x G)a(y) = (G = F)a(y).

In [10] and [11] Yeh and Yoo studied relationships between their
convolution product and Fourier-Wiener transforms.

2. Transforms. First we describe the class of functionals A = A,
that we will be working with in this paper. For 1 < p < 2 and
r € (2p/(2p — 1),00], let L,,.([0,T] x R) be the space of all C-valued
Lebesgue measurable functions f on [0,7] x R such that f(¢,-) is in
L,(R) for almost all ¢ € [0,T] and as a function of ¢, ||f(¢,-)||, is in
L,([0,T]). We define A = A, to be the class of functionals F, such
that for some f € L, ([0,7] x R),

(2.1) Flz) = exp{/OT f(t,x(t))dx}.
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Then, see [8, pp. 170-171], F(z) is defined s-a.e. and is scale-invariant
measurable.

Theorem 2.1. Let F' € A be given by (2.1) with f € Lp-([0,T] x R).
Then Ty (F) exists for all A € C, and is given by
(2.2)

(TA(F))(y)=1+§:1/A /n.: [(m At] 1)>1/2

it +y<tj>>exp{ - %}] di di

_1+Z/ /n.: [(27”5 )\t] 1)>1/2

- f(tj,uj)exp { Allus — ;zt Eyt(J_)l)_ ylti I H dii dt’

where A, (T) = {t = (t1,... ,tn) €[0,T|":0 < t; <t <--- < t, <
T}, @ = (u1,-..,up) and tg = 0 = uyg.

Proof. First note that

T
F(x):exp{ i f(t,x(t))dt}
(2.3) =1+§%[ i f(t,m(t))dt]
=1 ,z(t;))) d
+3 [ o Ut

Hence, for A > 0, using a well-known Wiener integration formula, we
obtain

(T\(F)) () = / FOY24 + y)ym(de)

Co[0,T

(2.4) _l+/co[0T]n 1/A (T)H[<2wt 4 1)>1/2

- f(t5,u, +Z/(tj))exp{ - %}] dii dt.
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Finally, by analytic continuation in A, we obtain that equation (2.2)
holds throughout C. u]

Theorem 2.2. Let F € A be as in Theorem 2.1. Then for all

p € [1,2], the Fourier-Feynmann transform Tq(p) (F) exists for all real
q # 0 and is given by the formula

(T(J(P)(F))(y)=1+§:1/A T)/n I sz qitj 1)>1/2

- . . 2 —
[t w5+ y(t5)) exp {%H ad

—1+Z/ T)/" U [(%t _iqtj 1)>1/2f(tj,uj)

.exp{lq[(u —uj—1) = (y(tj)) y(t)- 1))]2}] didi

2(t; —tj 1

Proof. By [7, Section 4] and [8, pp. 170-171], T (p)(F) exists for
all real ¢ # 0 and is scale-invariant measurable. Also note that
because ®(z) = e* is an entire function of order 1 and because
f € L,.([0,T] x R), it was shown in [7] that, for any ¢ € R,

nij:l/A / |qn/2H[(27rt—t )>1/2|f(tj,uj)|] dit di’ < oo.

j=1
Thus, for all y € Cy[0, T, the series on the righthand side of equation
(2.5) converges absolutely (and uniformly in ¢ on compact subsets of
R — {0}). Furthermore the series converges in the L,(Cy[0,T]) mean.

Thus, our representation (2.5) for Tq(p )(F ) follows from equation (2.2).
o

3. Convolutions. In our first theorem, with F' and G in A = A,,,
we obtain a series representation for the convolution product of F' and

G.
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Theorem 3.1. Let F € A be given by (2.1), and let G € A be given
by

(3.1) Glz) = exp { /0 " ot 2(0) dt}

with g € Ly, ([0, T] xR). Then their convolution product (F+G)y exists
for all X € C, and is given by

(32) (F*G)a _1+Z/ (T)/ni[l{(m)m
e

+ g(tj, W’)T“’> H da df.

Proof. For A > 0, using a well-known Wiener integration formula, we
obtain

(F % G)a(y) = /CO[O T]F<y+i\/§1/2x>G<y_f\/;/zw>m(dx)
N LTRSSt
/CO[O,T]GXP{/O f<t, V2 >dt}
.exp{/OTg(t, y()_i/_m/m( ))dt} (dz)
:/CO[O,T] exp{/OT f<t, +)\ — >
@(’fm”ﬂ}<>

g
e Bl )

PRTCES )] i g o
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:1+§/ OT]/ ol 1[ < (tj)+i\/§1/2$(tj)>

+ g<t.’ y(ts) — j/;/zw(tj)ﬂ din(dz)

X L )
_ {f(tj, y(t;) +\/)\§_1/2Uy‘> +g<tj, y(t)) —\/)\5_1/2U1> Hdﬂd?
o0 n 1/2
1+ [ o L1 (o 2 )
{2
{32 {2022 e

Now, by analytic continuation in A, we obtain that equation (3.2) is
valid throughout C. O

In our next theorem we obtain a series representation for T (F x G) .

Theorem 3.2. Let f,g,F and G be as in Theorem 3.1. Then, for
all A\ € Co,T\(F x G)y exists and is given by the formula
(3.3)

(TA(F % G)y) _1+Z/ /mﬁ {{f ti, v + 2(t;)/V2)

Fattyrs + ) VDY 5 )

- exp {— A = vj)® Al = ry1)” }] d7 dv df.
2t; —tj—1) 2t —tj-1)
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Proof. For A > 0, using (3.2) we see that
(TA(F =« G))(2) = / (F % G)x(A\™Y2%z + 2)m(dx)
Co[0,T7]

o ni—():l/An(T) / n /Co[o,T}jli {<27T(tj i’53‘1)>1/2
ol i)
. {f(tj, )‘_1/290(751')\7;(%) +“j>

+g< A alt ')\;Z( ')_"j>} (dac)] di df

_1+Z/ /9R K%tit] 1)>

N ==

+g(tj,%) H 4 i di.

Next, in the above expression we make the substitutions

w; + Uj wj — Uj
v; = T and r; = NG
for 7 =1,2,...,n. The Jacobian of this transformation is one and for
j=1,...,n, we have that

(uj —uj—1)? + (wj —wj—1)* = (vj —vj—1)* + (rj —75-1)%

Thus, for A > 0,

(TA(F % G)») _1+Z/ /Wn_ K%t it] 1))

)‘(UJ_UJ 1) A(T]_TJ 1)2
‘”‘p{ @t —t;1) 20t —t;1) }

-{f(t v \(/§)>+9< r; Z\(;%)>}]dfdz7d£




836 T. HUFFMAN, C. PARK AND D. SKOUG

Finally, by analytic continuation in A, we obtain that equation (3.3) is
valid through C,. O

4. Transforms of convolutions.

Lemma 4.1. If T\(F), T\(G) and Tx(F % G)x exist for A > 0, then
(41)  (T(F «G))(2) = (Ta(F))(2/V2)(TA(G)) (2/V2).

Proof. For A > 0, using (1.1) and (1.6) we see that

MEONE = [ (FrOr+A ymdy)

Co[0,T]
-/ o FEV T2y 4 2)/2)
cglo,1
-G(2/V2+ ATV (y = 2)/V2)m(dy)m(de).

But w; = (y +)/v/2 and wy = (y — )/+/2 are independent standard
Wiener processes and m x m is rotation invariant in C2[0, T, and hence,

(TA(F + G)3)(2) = /02[0 FCNVEEA
- G(z/V2 + XY 2wy )m(dwy )m(dws)
- / P2V + A~ 201 )m(duws)
Co[0,T7]
. / G(z/V2 4+ X~V wy)m(dws)
Co[0,T]
= (TA(F))(2/V2)(TA(G))(2/V?2).

As a corollary to Lemma 4.1, we obtain an interesting relationship
involving convolutions and analytic Wiener integrals. u]

Theorem 4.1. Let F and G be as in Theorem 3.1. Then for all
AeCy,

(42)  (D(F «G))(2) = (Ta(F))(2/V2)(TA(G)) (2/V2).
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Proof. By Lemma 4.1, equation (4.2) holds for all A > 0. The result
now follows because T)\(F),Tx(G) and T)(F * G), all have analytic
extensions throughout C; . O

Our next theorem shows that the Fourier-Feynman transform of the
convolution product is the product of their transforms.

Theorem 4.2. Let f,g,F and G be as in Theorem 3.1. Then, for
all real g # 0,

(4.3) (T3 (F % G)q)(2) = (TP (F)) (2/V2) (TP (G)) (/V2)

forl <p<2.

Proof. As was noted in the proof of Theorem 2.2, the series expansions
for (Tq(p)(F))(z/ﬁ) and (Tq(p)(G))(z/\/Q) both converge absolutely
for all z € Cy[0,T]. Hence the righthand side of (4.3) is a bounded
continuous function of A on C7 for all z € Cp[0,7]. Hence, using
equation (4.1), Tq(p) (F * G)4 exists and is given by equation (4.3) for
all desired values of p and gq. a

Corollary. Let f and F be as in Theorem 2.1. Then for all real

q#0,
(TP(F * F)g)(2) = (TP (F)(2/V2)]

forl <p<2.

Remark. Formula (4.3) is useful in that it permits one to calculate
Tq(p) (F % G)q without actually calculating (F * G),. In practice, T)(F)

and T)\(G) are usually easier to calculate than are (F * G) and
T,\ (F * G))\

Examples. We finish this section by finding Tq(p ) (Fj*F})q for various
functionals on Wiener space Cy[0, 7. In view of equation (4.3), we need
only compute the transforms of the various functionals F};. The results
are summarized below where the expressions for T)(F}) are valid for
all A € C7 unless otherwise indicated.
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Let « be any real function in L[0, 7], and let ¢ € C. Then

TABLE 1.
Fi() T\ (F)(2)
Fi(z) =1 1
Fy(z) = [ a(t)da(t) I a(t)dz(t)
Fi@) = [T w20y dr Iy #Ode+ &
Fa(e) = [T a(t) da(0)? ST atyd=(o) + 151

F5(z) = exp{c fOT a(t) dz(t)} exp{c fOT a(t) dz(t) + %

Fo(w) = expfel [} a(t)de(T)*} | |/ strares Pl Gaarey) g alt) d=(9)?}

provided Re (¢/A) < (2]|a|?)~ !

Fr(z) = exp{c [ «(t) dt} expfe [ 2(t) dt + S5

Now, using Table 1, together with equation (4.3), one can immedi-
ately compute Tq(p) (Fj * Fy,)q for j,k € {1,2,...,7}. For example,

e <[ T[0T,

5. Associativity of the convolution product. We finish this
paper with a brief discussion of the associativity of the convolution
product. Recall that the convolution product is commutative; that is
to say, (F *G)y = (G x F)y for all F,G and .

In the following we will restrict our attention to the case A > 0;
extensions to Cy follow by analytic continuation in A. Furthermore,
we will assume that the scale-invariant measurable functionals F, G, H
and K are nice enough so that their various transforms and convolution
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products all exist throughout C7. Then T)\(F) ~ T\(G) implies that
F~dG.

i) In general the convolution product defined by equation (1.6) is
not associative; that is to say,

since, by Lemma 4.1,

(TA((F * (G * H)\)a))(2) = (Ta(F)(2/V2)
(TA(@))(2/2)(TA(H))(2/2)
# (TA(F))(2/2)
(TA(G))

(/2)(T5(H))(2/V2)
= (TA(((F * G)x x H)A))(2)-

In particular, for G(z) = H(z) = 1 on Cy|0,T],

(TA((F * (L% 1))1))(2) = (Ta(F))(2/V2)
(TA(F))(2/2)
(TA(((F + 1)x % 1)2))(2)-
ii) However, if for each functional F on Cy[0,T], we define the
functional F} on Cy[0,T] by

(5.1) Fy(z) = (1* F)a(2),

then we have the associativity result

[ N

since, by equation (4.1),

(TA((EX * (G = H)A)x))(2) = (Ta(F))(2/2)
(TA(G)) (2/2)(TA(H))(2/2)
= (TA(((F % G)x x HX)A))(2)-

iii) Next, if we define F}* on Cy[0,T] by

(5-3) FY*(2) = (1% F)a(2),
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then we have the associativity result
(5.4)  ((F*G)xxHX)x* K3")x = (FX" (G * H)x % K3)A)a
since, by equation (4.1),

(TA((((F * G)rxH)x * KX)2)(2)
= (Ta(F))(2/ (2V2))(TA(G))(2/(2V2))

- (Ta(H))(2/(2V2))(Ta(K))(2/ (2V2))
= (T ((FX™ % ((G * H)x + KX)A)a))(2)-

Remark. iv) Both sides of (5.2) are, of course, also equal to (G} *
(F * H)x)x, while both sides of (5.4) are also equal to

(G ((F % K)x x HY)x)a

as well as nine other similar expressions.

v) The procedures used in ii) and iii) above can easily be extended
to more factors by defining Fy**(z) = (1 * FY*)a(2), FY***(2) =
(1% F**)a(2), etc.
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