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A SIGN-CHANGING SOLUTION FOR A
SUPERLINEAR DIRICHLET PROBLEM

ALFONSO CASTRO, JORGE COSSIO AND JOHN M. NEUBERGER

ABSTRACT. We show that a superlinear boundary value
problem has at least three nontrivial solutions. A pair are of
one sign (positive and negative, respectively), and the third
solution changes sign exactly once. The critical level of the
sign-changing solution is bounded below by the sum of the
two lesser levels of the one-sign solutions. If nondegenerate,
the one sign solutions are of Morse index 1 and the sign-
changing solution has Morse index 2. Our results extend and
complement those of Z.Q. Wang [12].

1. Introduction. Let Ω be a smooth bounded region in RN , ∆ the
Laplacian operator, and f ∈ C1(R,R) such that f(0) = 0. We assume
that there exist constants A > 0 and p ∈ (1, (N + 2)/(N − 2)) such
that |f ′(u)| ≤ A(|u|p−1 + 1) for all u ∈ R. Hence, f is subcritical, i.e.,
there exists B > 0 such that |f(u)| ≤ B(|u|p + 1). Also, we assume
that there exists m ∈ (0, 1) such that

(1) f(u)u− 2F (u) ≥ muf(u),

where F (u) =
∫ u

0
f(s) ds, for all u ∈ R. Finally, we make the

assumption that f satisfies

(2) f ′(u) >
f(u)
u

for u �= 0 and lim
|u|→∞

f(u)
u

= ∞,

i.e., f is superlinear. Let 0 < λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues
of −∆ with zero Dirichlet boundary condition in Ω. In this paper we
study the boundary value problem

(3)
{

∆u+ f(u) = 0 in Ω
u = 0 in ∂Ω.
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Let H be the Sobolev space H1,2
0 (Ω) with inner product 〈u, v〉 =∫

Ω
∇u · ∇v dx (see [1] or [5]). We define J : H → R by

J(u) =
∫

Ω

{
1
2
|∇u|2 − F (u)

}
dx.

By regularity theory for elliptic boundary value problems (see [5]), u
is a solution to (3) if and only if u is a critical point of the action
functional J . We prove the following result:

Theorem 1.1. If f ′(0) < λ1, then (3) has at least three nontrivial
solutions: ω1 > 0 in Ω, ω2 < 0 in Ω and ω3. The function ω3 changes
sign exactly once in Ω, i.e., (ω3)−1(R−{0}) has exactly two connected
components. If nondegenerate, the one-sign solutions are Morse index
1 critical points of J , and the sign-changing solution has Morse index
2. Furthermore,

J(ω3) ≥ J(ω1) + J(ω2).

Remark. One can relax condition (1) to hold only for |u| sufficiently
large. This is necessary in order to consider cases where f ′(0) > 0.

To the best of our knowledge, these results are the first to establish
the existence of a sign-changing solution to (3). Developments such
as those in [12] do not imply that any solution changes sign, much
less that it changes sign exactly once. Also, our proofs improve on
the information about the action level and Morse index of solutions
provided in [12]. For the sake of completeness, we have included
independent and direct proofs of the existence of ω1 and ω2 (see [9]
and [12]). Another proof of the existence of a third nontrivial solution
to (3) can be found in [11], but the method does not show the solution
to change sign. Additionally, one can use odd nonlinearities and sources
such as [3] and [7] to prove some of our one-sign results. However, our
methods seem more direct and informative.

We note that if f ′(0) > λ1, then by multiplying (3) by an eigenfunc-
tion corresponding to λ1 and integrating by parts, it is easily seen that
(3) does not have one-signed solutions.
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2. Preliminary lemmas. Our assumptions on f imply that
J ∈ C2(H,R) (see [9]), and that

(4)
J ′(u)(v) = 〈∇J(u), v〉

=
∫

Ω

{(∇u · ∇v − f(u)v} dx, for all v ∈ H.

Define γ : H → R by γ(u) = 〈∇J(u), u〉 =
∫
Ω
{|∇u|2 − uf(u)} dx, and

compute

(5)

γ′(u)(v) = 〈∇γ(u), v〉
= 2

∫
Ω

∇u · ∇v dx

−
∫

Ω

f(u)v dx−
∫

Ω

f ′(u)uv dx.

Definition 2.1. For u ∈ L1(Ω), we define u+(x) = max{u(x), 0} ∈
L1(Ω) and u−(x) = min{u(x), 0} ∈ L1(Ω). If u ∈ H, then u+, u− ∈ H
(see [8]). We say that u ∈ L1(Ω) changes sign if u+ �= 0 and u− �= 0.
For u �= 0 we say that u is positive (and write u > 0) if u− = 0, and
similarly, u is negative (u < 0), if u+ = 0.

We define S ⊂ H and various subsets of S:

S = {u ∈ H − {0} : γ(u) = 0}, Ŝ = {u ∈ S : u+ �= 0, u− �= 0},
S1 = {u ∈ Ŝ : γ(u+) = 0}, G+ = {u ∈ S : u > 0},
Ŝ+ = {u ∈ S : γ(u+) < 0}, W+ = G+ ∪ Ŝ+,

G− = {u ∈ S : u < 0}, Ŝ− = {u ∈ S : γ(u+) > 0},
W− = G− ∪ Ŝ−.

We have the disjoint unions S = G+ ∪ Ŝ ∪G− and Ŝ = Ŝ+ ∪ S1 ∪ Ŝ−.
We note that nontrivial solutions to (3) are in S, one-sign solutions
are in G+ ∪ G−, and sign-changing solutions are in S1. We define
S∞ = {u ∈ H : ‖u‖ = 1}.
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Lemma 2.2. Under the above assumptions, we have

(a) 0 is a local minimum of J . If u ∈ H − {0}, then there exists
a unique λ̄ = λ̄(u) ∈ (0,∞) such that λ̄u ∈ S. Moreover, J(λ̄u) =
maxλ>0 J(λu) > 0. If γ(u) < 0, then λ̄ < 1, and if γ(u) > 0, then
λ̄ > 1 and J(u) > 0.

(b) The function λ̄ ∈ C1(S∞, (0,∞)). The set S is closed, unbounded,
and a connected C1-submanifold of H diffeomorphic to S∞.

(c) u ∈ S is a critical point of J on H if and only if u is a critical
point of J |S .

(d) J |S is coercive, i.e., J(u) → ∞ as ‖u‖ → ∞ in S. Also, 0 /∈ S
and infSJ > 0.

Proof. (a) Let u ∈ H−{0} be a fixed function, and define Φ : R → R
by

Φ(λ) = J(λu) =
1
2
λ2‖u‖2 −

∫
Ω

F (λu) dx.

Differentiating Φ yields

(6)
Φ′(λ) = λ‖u‖2 −

∫
Ω

f(λu)u dx = γ(λu)/λ,

Φ′′(λ) = ‖u‖2 −
∫

Ω

f ′(λu)u2 dx.

If λ > 0 is a critical point of Φ, then ‖u‖2 =
∫
Ω
((f(λu))/λ)u dx, and

by (2) we have

Φ′′(λ) =
∫

Ω

f(λu)
λ

u dx−
∫

Ω

f ′(λu)u2 dx

=
∫

Ω

{
u2

(
f(λu)
λu

)
− f ′(λu)

}
dx < 0.

Thus, every critical point of Φ in (0,∞) is a strict local maximum, and
hence, Φ has at most one critical point in (0,∞). Using Poincare’s
inequality, λ1

∫
Ω
u2 ≤ ‖u‖2 (see [1] or [5]), we have

(7)
J ′′(0)(u, u) = Φ′′(0) = ‖u‖2 −

∫
Ω

f ′(0)u2 dx

≥
(

1 − f ′(0)
λ1

)
‖u‖2 > 0,
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where we have used f ′(0) < λ1. Since Φ′(0) = 0, by (7) we see that
Φ′(λ) > 0 for λ > 0 small. Since we also have Φ(0) = 0, the above
comments imply that J has a local minimum of 0 at 0 ∈ H. On the
other hand, because f is superlinear and because of (2), it follows that
limλ→∞ Φ′(λ) = −∞ (see also (6)). Therefore, Φ′ has a unique zero
λ̄ ∈ (0,∞) and λ̄u ∈ S. Thus Φ′(λ) = γ(λu)/λ > 0 for λ < λ̄, and
similarly, Φ′(λ) = γ(λu)/λ < 0 for λ > λ̄. In particular, this shows
that, given u ∈ H such that γ(u) < 0, γ(u) > 0, there exists α < 1,
α > 1, such that γ(αu) = 0, i.e., αu ∈ S.

(b) If u ∈ S, then by (2) we have

(8)
〈∇γ(u), u〉 =

∫
Ω

{|∇u|2 − f ′(u)u2} dx

<

∫
Ω

{|∇u|2 − f(u)u} dx = 0.

Thus, by the implicit function theorem, S is a C1-submanifold of H,
see [6]. By the continuity of γ, the submanifold S is a closed subset
of H. The remaining facts can be discerned from [3] and [4], but for
completeness we include arguments. let χ : (0,∞)×S∞ → R be defined
by χ(a, u) = γ(au). For u ∈ S∞ and a > 0 we see that χ(a, u) = 0 if
and only if au ∈ S. Hence, as in (8),

∂χ

∂a
(λ̄(u), u) = 〈∇γ(λ̄(u)u), u〉 < 0,

and thus the implicit function theorem further implies that λ̄ ∈
C1(S∞, (0,∞)). The map u → λ̄(u)u is a bijection and also of class
C1, and hence a diffeomorphism between S and S∞. From this it also
follows that S is path-wise connected.

Let us see that S is unbounded. Without loss of generality we
may assume that 0 ∈ Ω. Let d > 0 be sufficiently small so that
D = (0, d) × · · · × (0, d) ⊂ Ω. For k ∈ N, we define the functions
ψk : Ω → R by

ψk(x1, . . . , xn) =
{

sin(kπx1/d) · · · sin(kπxn/d) for x ∈ D

0 for x ∈ Ω −D.

Let M1 = n(π/d)2(d/2)n and M2 = dn max{f(1),−f(−1)}. Then
‖ψk‖2 = M1k

2. Also, since |ψk| ≤ 1 on Ω, we have
∫
Ω
ψkf(ψk) dx ≤
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M2. Thus,

γ(ψk) = ‖ψk‖2 −
∫

Ω

ψkf(ψk) dx

≥M1k
2 −M2 −→ ∞ as k −→ ∞.

Let k be sufficiently large so that γ(ψk) > 0. Using Lemma 2.2(a),
we see that there exist αk > 1 so that αkψk ∈ S. We conclude S is
unbounded, since

‖αkψk‖ = αk‖ψk‖ ≥ ‖ψk‖ −→ ∞ as k −→ ∞.

(c) The forward implication is obvious. Let u ∈ S be a critical point
of J |S and TuS = {v : v ⊥ ∇γ(u)} be the tangent space to S at u.
It follows that J ′(u)(v) = 0 for all v ∈ TuS and J ′(u)(u) = γ(u) = 0.
Since the submanifold S has codimension 1 in H, we need only show
u /∈ TuS to conclude ∇J(u) = 0. In fact, v ∈ TuS implies 〈∇γ(u), v〉 =
0 while u ∈ S implies 〈∇γ(u), u〉 < 0, see (8).

(d) For u ∈ S, we recall that ‖u‖2 =
∫
Ω
|∇u|2 dx =

∫
Ω
uf(u) dx,

whence it follows that

(9)

J(u) =
∫

Ω

{
1
2
|∇u|2 − F (u)

}
dx

=
1
2

∫
Ω

{f(u)u− 2F (u)} dx

≥ 1
2

∫
Ω

muf(u) dx =
m

2
‖u‖2 −→ ∞, as ‖u‖ −→ ∞,

where we have used (1). Since S ⊂ H is closed and 0 /∈ S, there
exists δ > 0 such that if u ∈ S then ‖u‖ ≥ δ. This and (9) imply
infSJ ≥ mδ2/2 > 0.

Our next lemma, in particular, shows that Ŝ is an open subset of S,
whereas S1 is closed.

Lemma 2.3. The function h : H → H defined by h(u) = u+ is
continuous. Also, h defines a continuous function from Lp+1(Ω) into
itself.
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Proof. Let u ∈ H. By Corollary A.5 of [8], u+ ∈ H and u− ∈ H.
By Lemmas A.3 and A.4 of [8], ∇u = 0 almost everywhere on
{x ∈ Ω : u(x) = 0}. Hence ∇h(u) = j(u)∇u almost everywhere in
Ω, where j(u)(x) = 1 if u(x) ≥ 0 and j(u)(x) = 0 if u(x) < 0. Let
un → u in H, where without loss of generality we can assume un → u
almost everywhere on Ω. Note that

‖h(un) − h(u)‖2 =
∫

Ω

|∇h(un) −∇h(u)|2 dx

=
∫

Ω

|j(un)(∇un −∇u) dx

+ (j(un) − j(u))∇u|2

≤ 2
∫

Ω

|∇un −∇u|2 dx

+ 2
∫

Ω

(j(un) − j(u))2|∇u|2 dx.

The first term in the last expression converges to 0 since un → u in H.
For almost all x ∈ Ω we have j(un) → j(u) = 0, j(un) → j(u) = 1, or
∇u = 0. Hence, the last integrand converges almost everywhere to 0.
This integrand is bounded by |∇u|2, thus by the dominated convergence
theorem its integral converges to 0. Hence ‖h(un) − h(u)‖2 → 0 and
h ∈ C(H,H). Also, by the dominated convergence theorem, h is
continuous on Lp+1(Ω).

An important consequence of Lemmas A.3 and A.4 of [8] is the fact
that J(u) = J(u+) + J(u−) and γ(u) = γ(u+) + γ(u−) for all u ∈ H.

Lemma 2.4. Given w ∈ Ŝ, there exists a path rw ≡ r ∈ C1([0, 1], S)
such that

(a) r(0) = aw+ ∈ G+ for some a > 0, r(1) = bw− ∈ G− for some
b > 0, r(a/(a+ b)) = w.

(b) a > 1 if and only if b < 1 if and only if w ∈ Ŝ+, γ(r(t)+) < 0 if
and only if t ∈ (0, 1/2) if and only if r(t) ∈ Ŝ+.

(c) r(1/2) = aw+ + bw− ∈ S1, r([0, 1]) ∩ S1 = {r(1/2)}.
(d) J(r(0)) < J(r(t)) < J(r(1/2)) for t ∈ (0, 1/2).
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Proof. For justification of the steps in this proof, the reader is referred
to Lemma 2.2 (a) and (b). Since w changes sign, w+, w− �= 0, and
hence, there exists a, b > 0 such that aw+ ∈ G+ and bw− ∈ G−.
Observe that, for all t ∈ [0, 1], the element (1− t)aw+ + tbw− �= 0, and
thus there exists α ∈ C1([0, 1],R) such that

r(t) = α(t)[(1 − t)aw+ + tbw−] ∈ S.

We see also that r ∈ C1([0, 1], S), r(0) = aw+ ∈ G+, r(1/2) =
aw+ + bw− ∈ S1, and r(1) = bw− ∈ G−. Furthermore, we note
that r(a/(a + b)) = α(ab)/(a + b)w ∈ S implies α = (a + b)/(ab)
and r(a/(a+b)) = w. We also have w ∈ S1 if and only if a = b = 1 and
a/(a + b) = 1/2. We observe that w ∈ Ŝ+ if and only if a < 1, b > 1,
and 0 < a/(a + b) < 1/2. We recall from Lemma 2.2 (a) that in this
case J(w−) > 0, and hence J(aw−) > 0. Thus, for w ∈ Ŝ+, we have

J(r(0)) < J(aw+) + J(aw−) = J(aw) < J(w)

= J

(
r

(
a

a+ b

))
< J(aw+) + J(bw−) = J

(
r

(
1
2

))
.

Similar inequalities hold for w ∈ Ŝ− and r(t) for t ∈ [1/2, 1].

Lemma 2.5. The sets G+, Ŝ+, W+, S1, W−, Ŝ− and G− satisfy:

(a) G+, S1 and G− are closed, and G+, G− are connected.

(b) Ŝ is open, and the subsets Ŝ+ and Ŝ− are open and separated by
S1.

(c)W+ and W− are the only two components of S−S1. In particular,
G+ and G− are separated by S1.

(d) If w ∈ G+ and J(w) = minG+ J , then J(w) = minW+ J and w is
a critical point of J .

Proof. By the continuity of γ ◦ h, see Lemma 2.3, G+, G− and S1

are closed. Likewise, Ŝ, Ŝ+, Ŝ− and W+ ∪W− = S − S1 are open.
Given u, v ∈ G+, the convex linear combination {z(t) = tu+ (1 − t)v :
t ∈ [0, 1]} projects onto the path {α(t)z(t) ∈ G+ : t ∈ [0, 1]},
where α ∈ C1([0, 1],R), see Lemmas 2.2 (a) and (2.4). Hence, G+,
analogously G−, is connected.
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Let σ : [0, 1] → Ŝ be a path connecting σ(0) ∈ Ŝ+ and σ(1) ∈ Ŝ−.
By applying the intermediate value theorem to the continuous function
γ ◦ h ◦ σ, we see that σ([0, 1]) ∩ S1 �= ∅. Hence, S1 separates Ŝ+ and
Ŝ−.

By Lemma 2.4 (b), for each w ∈ Ŝ+, the path r2([0, a/(a+b)]) ⊂W+

connects w with aw+ ∈ G+. Since, by (a), G+ is connected, the set W+

is connected. Similarly, W− is connected. Since W+ and W− cannot
lie in the same component of S−S1 and S = W+ ∪S1∪W−, it follows
that they are exactly the two distinct open connected components of
S − S1.

Lastly, by Lemma 2.4, we see that, given u ∈ Ŝ+, there exists
v = ru(0) ∈ G+ such that J(v) < J(u). This implies that infW+J =
infG+J . Since W+ is open in S, by Lemma 2.2 if J(w) = minG+ J ,
then w is a critical point of J .

Lemma 2.6. If w ∈ S1 and J(w) = minS1 J , then w is a critical
point of J .

Proof. In order to conclude that w is a critical point of J , it
is sufficient to show that w is a critical point of J |S , see Lemma
2.2 (c). For u ∈ S, let Pu denote the orthogonal projection of
H onto the tangent space TuS. Suppose now that ∇J(w) �= 0.
By part c) of Lemma 2.2, we see that Pw∇J(w) �= 0. Let δ ∈
(0, (1/2) min{‖w+‖, ‖w−‖}), C = {w}, and B = {u ∈ S : ‖u−w‖ ≥ δ}.
Since B is closed and C is compact, by a version of the so-called
deformation lemma, see [4], there exists a continuous function Λ :
[0, 1] × S → S and t0 > 0 such that for all t ∈ [0, t0) the following
hold:

(a) Λ(t, x) = x for all x ∈ B,

(b) J(Λ(t, x)) ≤ J(x) for all x ∈ S,

(c) J(Λ(t, w)) ≤ J(w) − (t/4)‖Pw∇J(w)‖.
Since w ∈ S1, we can now construct the path r(t) of Lemma 2.4,
whereupon we define the deformed path r1(t) = Λ(t0/2, r(t)). For
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t �= 1/2, we have J(r1(t)) ≤ J(r(t)) < J(r(1/2)) = J(w). Additionally,

J(r1(1/2)) = J(Λ(t0/2, r(1/2))) = J(Λ(t0/2, w))
< J(w) − (t0/8)‖Pw∇J(w)‖ < J(w),

and, as a result,

(10) max{J(r1(t)) : t ∈ [0, 1]} < J(w) = min
S1

J.

By the definition of δ, we see that w+ ∈ B and w− ∈ B, whence
r1(0) = Λ(t0/2, r(0)) = r(0) = w+ ∈ G+. Similarly, r1(1) = w− ∈ G−,
so Lemma 2.5 (c) shows r1[0, 1] ∩ S1 is nonempty. This contradiction
of (10) proves the lemma.

3. Existence of a sign-changing solution. Now we show that
there exists a solution ω3 to (3) which changes sign exactly once. If the
solution is a nondegenerate critical point, then it has Morse index 2.

Let c3 = infS1J and {un} ⊂ S1 be such that J(un) → c3. Using
γ((un)+) = 0, we see that {(un)+} ⊂ G+ and {(un)−} ⊂ G−. Since
J is coercive, see (9), {un} is bounded. By the Sobolev imbedding
theorem, without loss of generality, we can assume that there exist
u, v, w ∈ H such that

un ⇀ u, (un)+ ⇀ v, (un)− ⇀ w in H,
un −→ u, (un)+ −→ v, (un)− −→ w in Lp+1(Ω).

By Lemma 2.3 we know that h : Lp+1 → Lp+1, u→ u+, is a continuous
transformation, so we see that u+ = v ≥ 0 and u− = w ≤ 0. Let us see
that u ∈ S1. Since (un)+ → u+ in Lp+1 and f is subcritical,

∫
Ω

F ((un)+) dx −→
∫

Ω

F (u+) dx

and
∫

Ω

f((un)+)(un)+ dx −→
∫

Ω

f(u+) dx.

By (un)+ ∈ S and Lemma 2.2 (d), we see that
∫
Ω
u+f(u+) dx =

lim
∫
Ω
(un)+f((un)+) dx = lim ‖(un)+‖2 > 0, consequentially u+, u− �=
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0 and u = u+ + u− is sign changing. Let us see that (un)+ → u+ in
H. If we suppose not, then without loss of generality we may assume
that ‖u+‖2 < lim infn→∞ ‖(un)+‖2, whence

γ(u+) = ‖u+‖2 −
∫

Ω

u+f(u+) dx

< lim inf
n→∞ ‖(un)+‖2 −

∫
Ω

(un)+f((un)+) dx = 0.

From Lemma 2.2 (a) we see that there exists 0 < α < 1 such that
αu+ ∈ G+, and similarly that there exists 0 < β ≤ 1 such that
βu− ∈ G−. We conclude that αu+ + βu− ∈ S1. This provides a
contradiction, since

J(αu+ + βu−) < lim inf
n→∞ J(α(un)+ + β(un)−)

= lim inf
n→∞ {J(α(un)+) + J(β(un)−)}

≤ lim inf
n→∞ {J((un)+) + J(un)−)}

= lim inf
n→∞ J(un) = infS1J = c3.

Hence (un)+ → u+ in H and α = 1. Similarly, we conclude that
(un)− → u− in H and β = 1, which proves that u ∈ S1, un → u in H,
and J(u) = c3. Letting ω3 = u, we see that J |S1 attains its minimum
at ω3. We find that ω3 is a critical point of J , see Lemma 2.6, and
hence a solution to (3).

Let us see that ω3 changes sign exactly once. Since ω3 is of class
C2, hence continuous, E = {x ∈ Ω : u(x) �= 0} is open. Suppose E
has more than two components. Since ω3 changes sign, without loss of
generality we can assume that there exist connected components A, B
and C of E such that u > 0 in A and u < 0 in B. Let uA, uB and
uC be the zero extensions of ω3|A, ω3|B and ω3|C to all of Ω. Since
∆ω3 + f(ω3) = 0 on Ω, it follows that γ(uA) = γ(uB) = γ(uC) = 0.
Hence, J > 0 on S implies J(uA+uB) < J(uA+uB+uC) ≤ J(ω3) = c3,
a contradiction since uA + uB ∈ S1. We conclude that E has exactly
two components.

If ω3 is a nondegenerate critical point, we see that ω3 has Morse
index 2 in H by observing that J ′′(ω3)(v, v) < 0 for v = (ω3)+ and
v = (ω3)−, 〈(ω3)+, (ω3)−〉 = 0 and J |S1 has a minimum at ω3.
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4. Existence of one-sign solutions. For the sake of completeness,
we establish the existence of the solution ω1 > 0 (one finds ω2 similarly).
Furthermore, we show that J |S has local minima at ω1 and ω2, and
hence these two critical points are of Mores index 1, if nondegenerate.

We define c1 = infG+J and take {un} ⊂ G+ with limn→∞ J(un) = c1.
As in Section 3, the coercivity of J and the subcritical condition on
f allow us to apply the Sobolev imbedding theorem, whence we find
ū ∈ H ⊂ Lp+1 such that, without loss of generality,

un ⇀ ū in H, un −→ ū in Lp+1,

∫
Ω

unf(un) dx −→
∫

Ω

ūf(ū) dx,

∫
Ω

F (un) dx −→
∫

Ω

F (ū) dx.

That ū �= 0 is evident, as
∫
Ω
ūf(ū) dx = limn→∞

∫
Ω
unf(un) dx =

limn→∞ ‖un‖2 > 0, see Lemma 2.2 (d). By the continuity of h :
Lp+1 → Lp+1, we see that ū > 0. We wish to show that un → ū in
H. If we assume to the contrary that un �→ ū in H, then without loss
of generality we may assume that ‖ū‖2 < lim inf ‖un‖2. It follows that
γ(ū) < lim inf γ(un) = 0, so by Lemma 2.1 (a) there exists 0 < α < 1
such that αū ∈ G+. Consequently, we get the following contradiction,

J(αū) < lim inf
n→∞ J(αun) ≤ lim inf

n→∞ J(un) = inf
G+

J = c1.

We conclude that un → ū in H, α = 1, ū ∈ G+ and J(ū) = minG+ J =
c1. By Lemma 2.5 (d) we see that ω1 = ū ∈ G+ is a critical point of J
and hence a positive solution to (3).

We obtain the solution ω2 ∈ G− ⊂ W− in the same fashion, whence
we can define c2 = infG−J = infW−J = J(ω2). Finally, to conclude the
proof of Theorem 1.1, we observe that

c3 = J(ω3) = J((ω3)+) + J((ω3)−) ≥ J(ω1) + J(ω2) = c1 + c2.



SUPERLINEAR DIRICHLET PROBLEM 1053

REFERENCES

1. R. Adams, Sobolev spaces, Academic Press, New York, 1975.

2. S.N. Chow and J.K. Hale, Methods of bifurcation theory, Springer-Verlag, New
York, 1982.

3. C.V. Coffman, A minimum-maximum principle for a class of nonlinear integral
equations, J. Analyse Math. 20 (1969), 391 419.

4. N. Ghoussoub, Duality and perturbation methods in critical point theory,
Cambridge University Press, Cambridge, 1993.

5. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second
order, Springer-Verlag, New York, 1983.

6. V. Guillemin and A. Pollack, Differential topology, Prentice-Hall, Englewood
Cliffs, 1974.

7. J. Hempel, Superlinear variational boundary value problems and nonunique-
ness, thesis, University of New England, Australia, 1970.

8. D. Kinderlehrer and G. Stampacchia, Introduction to variational inequalities
and their applications, Academic Press, New York, 1979.

9. P. Rabinowitz, Minimax methods in critical point theory with applications to
differential equations, American Math. Society, Providence, R.I., 1986.

10. M. Struwe, Variational methods: Applications to nonlinear partial differential
equations and Hamiltonian systems, Springer-Verlag, New York, 1990.

11. H. Tehrani, H1 versus C1 local minimizers on manifolds, preprint, 1994.

12. Z.Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincare Analyse
Non Lineaire 8 (1991), 43 57.

Department of Mathematics, University of North Texas, Denton, Texas

76203

E-mail address: acastro@unt.edu
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