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HEREDITARY PROPERTIES FOR DUALS OF
BOCHNER L,-FUNCTION-SPACES

GEORG SCHLUCHTERMANN

ABSTRACT. For a finite and positive measure space
(2, 2, ) hereditary results which hold for Bochner Lj-spaces
are derived for their dual spaces. In addition, results of
N. Kalton, G. Pisier and N. Randrianantoanina—E. Saab are
given alternative proofs.

1. Introduction and preliminaries. There exists a long list on
hereditary results for Bochner L,-spaces, but virtually no equivalent
statements are given for their dual spaces. The major problem is the
lack of a satisfying representation of their dual spaces, respectively,
meaning the second dual of the Bochner L,-spaces. Let us mention
some classical hereditary results concerning embedding classical se-
quence spaces. S. Kwapien showed that for 1 < p < 0o, ¢g C Lp(p, X),
if and only if it embeds in X [12]. J. Mendoza proved that [, can
be found as a copy in L,(i, X), 1 < p < oo if and only if it is iso-
morphically embedded in X, see [14]. Furthermore, the result that
Iy C Ly(p,X) for 1 < p < oo if and only if I; embeds in X, is due
to G. Pisier [17]. We will show Pisier’s result by different means,
which allows the extension to the w*-measurable case. In [21, p. 404]
it was shown that some renorming properties of X are inherited by
L,(p, X) for 1 < p < 00, the space of p-integrable vector-valued func-
tions. M. Talagrand demonstrated in [22, p. 717] that weak sequen-
tial completeness of X passes to the function space E(X), where E
is an order continuous Banach lattice with a weak unit not contain-
ing ¢p. N. Randrianantoanina and E. Saab obtained that L,(p, X),
1 < p < o0, enjoys the complete continuity property if and only if X
does [18, p. 1111]. We will present an alternative proof and extend it
to the dual of Ly, (y, X). The results are based on approximation results
for operator-valued functions in Section 2, which may be of independent
interest. In addition we extend results of J. Voigt [23], respectively the
author [20], to the w*-measurable case.
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First we will fix some notations and present some basic facts.
Throughout the paper (£, X, i) is a positive and finite measure space.
X and Y are Banach spaces with duals X* and Y*. B(X) is the
unit ball while S(X) denotes the unit sphere. K(X,Y) and W(X,Y),
respectively CW(X,Y), stands for the compact, weakly compact, re-
spectively conditionally weakly compact operators.

For Ae X, u(A) > 0 and f € L,y(u, X), respectively f € L;f’*(u,X*),
1 < p < o0, define

La(f) == /A fdu,  Na(f) =

EQ,E,X):={f: Q= X; f=>" 2:Xa,;,41,...,A, € T pairwise
disjoint, x; € X} is the set of the Y-simple functions with values in X.

Let m be a finite YX-partition. Then, for 1 < p < oo,

Er: Ly(p, X) — Ly(p, X), f— Y Na(f)Xa
Aem

or
B L 0 X) o £ (X, £ X Nala
Aer

denote the conditional expectation operator with respect to .
Let us collect some basic facts for w*-measurable functions.

(1.1) Let f : Q@ — X* be a function. Then f is called w*-measurable,
if Q5w (z, f(w)) is measurable for all z € X.

Let 1 < p < 0o. Then we define

Ly (u, X*) = {f : Q) — X*; f is w*-measurable and

[ dutw) < oo,

where
[ dute) = ine { [ g(0) due

g € £1(n) and | f()] < g(w) on ﬂ}

[10].



BOCHNER L,-FUNCTION-SPACES 371

For p: 1 < p < oo we always denote the conjugate of p by p'.
Let 1 <p < oo,andlet f € E;f’*(u,X*). We define

[1f]lp, := sup { /Q [(F(w), g(@))| du(w); g € E(Q, X, X), [|gllpr < 1},

which is a seminorm on L (u, X*).

If p = oo, then

LY (u, X*) :={f : Q = X*; f is w*-measurable and
| f]lo0,« := inf{K > 0;Va € B(X):
p({w € @ |(z, f(w))| > K}) = 0} < oo}

According to the definition of the norm we have L, (y, X )* = L;",* (y, X*)
for 1 <p < 0.

Let f:Q — X* be w*-measurable. We define the norm function
fOI: Q@ —R, w—|[[f(w)I.

If X is separable with a dense sequence (z,) C B(X), then every w*-
measurable function f : 2 — X* has measurable norm function, since

1 (@)l = suppen [{zn, f(w))], w € Q.

Since we are investigating operator-valued functions to deduce the
hereditary properties, we have to make the following definitions.

(1.2) Let (2, %, 1) be a positive measure space. A function U : Q —
L(X,Y) is called strongly measurable if:

Vee X :U(-)(z): Q — Y is py-measurable.

(1.3) Let (2, %, 1) be a positive measure space. A function U : Q —
L(X,Y™) is w*-measurable, if

Ve e X :U(-)(x) is w*-measurable.

(1.4) Let *l < p < oo, and let T : X — Lp(p,Y), respectively
T:X — Ly (p,Y™), be linear. Then
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U:Q — L(X,Y) is a strongly measurable operator-valued density of
T, respectively U : Q@ — L(X,Y™) is a w*-measurable operator-valued
density of T', if

U is strongly measurable, respectively w*-measurable, and
Vee X:U()(x)=T(z) in Ly(p,Y),
respectively in Lg* (1, Y).
In this case define U : X — Ly (u,Y), respectively U : X — L;f’* (1, Y™),
by U(z) = U(:)(z), z € X.

(1.5) Let p be a lifting of Lo := Loo ().

Let U : Q — L(X,Y™) be a function.

i) If sup,,cq ||U(w)]| < oo, then we write p(U)=U, if p((y, U(w)(z))) =
(y,Uw)z) forallw e R,z € X,y €Y.

ii) If sup,cq ||U(w)|| < oo, then we write p[U] = U, if there exists
a partition of Q, (A,) C X, such that for alln € N, w € Q, z € X,
yeY:p((y,U(w)(@))Xa,) = (y,U(w)(z))p(Xa,)-

An application of a result of N. Dinculeanu [8, p. 269] gives the
following fundamental theorem for the lifting.

Theorem 1.6. Let p be a lifting of Loo. Then there exists a map
7 LY (u, X*) — LY (p, X*), which has the following properties.

a) 7(f) € f, plr ()] = 7(f), f € LY (n, X*).
b) I7(N)ON € Liw) and [flhs = JollT(H)W)lldu(w) for | <
LY (1, X).
c) For all o, 8 € R, for all f1, fo € LY (u, X*):
T(afi + Bf2)(w) = ar(f1)(w) + B7(f2) (w)

for almost all w € €.

In the sequel we will write f* instead of 7(f), where p is a lifting of
Loo-

Let us state some well-known facts for Bochner-integrable functions in
the w*-measurable setting. The proofs are straightforward applications
of the classical results.
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(1.7) Extended Lebesgue domination theorem. Let (f,) C LY (u, X*).
Let f: Q — X* be a function and g € £4(p) such that

i) f°(w) = f(w) for almost all w € Q,

ii) for all n € N, || f2(w)]|| < g(w) for almost all w € Q. Then

fecy (u,X*) and |fu— flli. — 0,

where f is the equivalence class of f .

(1.8) Extended Egorov theorem. Let (f,) C LY (u,X*). Let
f : Q@ — X* be a function such that f? — f pointwise almost
everywhere. Then

a) f is w*-measurable and ||f(-)|| is p-measurable,

b) for all ¢ > 0, there exists Q. € X, u(Q\Q) < ¢
supyea, [IFf(w) = F(w)[| <e.

(1.9) Let (f,) € LY (u, X*), f € LY (1, X*), such that || f— full1,« —
0. Then there is a subsequence (f,,) such that ff — f* pointwise

almost everywhere.

As an analogon to J. Diestel, W. Ruess and W. Schachermayer [6], we
present a result for the weak compactness of w*-measurable functions.
We will sketch the proof, since it uses mainly ideas of [6, p. 448]. But
we also have to refer to results of M. Talagrand [22, p. 720], since a
representation of the duals of L;"* (1, X*) as function spaces is not at
hand and, thus, the proof of [6, p. 448] cannot be transferred literally.

Theorem 1.10. Let 1 < p < o0, and let K C L;’*(u,X*) be
bounded. Let p be a lifting of L. Then the following conditions are
equivalent:

a) K is relatively weakly compact.

b) i) K is uniformly integrable.

it) For all (f,) C K there exists (gn), gn € 0 (fn, fnt+1,---), Such
that (g% (w)) is converging in norm for almost all w € Q.

c) i) K is uniformly integrable.

ii) For all (fn) C K there exists (gn), gn € €O (fn, fnt+1,---), such
that (g£(w)) is converging weakly for almost all w € Q.
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If p > 1, then i) is superfluous in b) and c).

Proof. a) = b). Copy the proof in [6] and use (1.9).
b) = c¢). Trivial.

c) = b). First start with the arguments as presented in [6, p. 448]
to reduce the problem to a set K uniformly bounded in LY (u, X*).
Then the assertion follows by results of Talagrand’s [22, p. 720]. ]

2. Approximation of w*-measurable operator-valued func-
tions.

The following basic result is taken from [19, p. 380].

Theorem 2.1. Every bounded operator T : X — LY (u,Y™*) admits
of a w*-measurable density U : Q — L(X,Y™).

In particular, every bounded operator T : X — Lo (,Y) has a
strongly measurable density U : Q — L(X,Y).

Remark 2.2. Let w; be the first uncountable ordinal. Let
(Pa)o<a<ws; Pa: 8 = R be a family of measurable functions such that

Va,B, a<fB, YweN: gy(w) < dp(w).

Then there exists a countable ordinal By, such that
VB> PBo:dg=¢s, ae. onfd

A straightforward consequence of the foregoing remark is the follow-
ing proposition.

Proposition 2.3. Let 1 < p < oo, and let p be a lifting of L.

a) Let T : X — L,(p,Y) be linear and bounded. T has a strongly
measurable density if and only if T|x, has a strongly measurable density
U:Q— L(Xo,Y) for all separable subspaces Xy C X.

b) Let T : X — Lg’* (1, Y*) be bounded and linear. T has a w*-
measurable density if and only if T|x, has a w*-measurable density
U:Q— L(Xo,Y™) for all separable subspaces Xy C X.
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Theorem 2.4. Let p be a lifting of Loo. Let (©,¥,v) be a finite and
positive measure space, and let T : Li(v) — LY (u, X*) be bounded.
Then there exists a w*-measurable density U : @ — L(Lo, X™*) of
T|p.. such that p[U] = U. If, in addition, lo ¢ X*, then U : Q —
W (Loo, X*).

Proof. We assume that (0©,¥,v) is the Lebesgue measure space.
Thus, let (7,)nen be the sequence of dyadic partitions of the interval
[0,1]. Then we defined for n € N and 7 = () € {~1,1}?" : f, , :=
222:1 TiXa,;, where A; € m,,i=1,...,2". Wedefineforn € N, K > 0,

A= {w € 43 € (=L, 1} (T () ()| > K}.

According to (1.2) (T'(fn,r))” has a measurable norm function. Thus,
the sets Ak, are measurable.

(1) sup (Ax,n) =50,
neN

For the proof first we note that Ax, C Ak 41 for all K > 0. Let
n € N and K > 0. We define o : Ag, — {—1,1}*" as follows. Let
{T1,...,7m} be a counting of the set {—1,1}*" with m = 22". For
1 <j < m we define Agnj := {w € Ak : [|T(for) (W) > K}
and have Ak, = U;"ZIAK%J' by definition. Let C; := Ag 1 and
Cj == Ak ;)\ Ui;ll C; for 7 = 2,...,m. Evidently (Cj)gnzl is a X-
partition of Ag ,. Now we define

o:Agn — {1, 1}2n, w— Ty,

where w € Cj. The map w — T'(f,0(.))? is measurable, since (C;) C X.
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Then we estimate

HARDE < [ T o)) du(e)

AK,TL

Y o(@)iT(Xa,) (W)

/AKn i=1

/ Zna 1# ()| dpw)

T(édw)mi)p(deu(m (1.60)

on

dp(w)

/A ZHT Xa,) (@) dpu(w)
—Z/A (IT () @)]) i)
< Z IT1(AAD) = [TIAO, 1]) = 171

This finishes the proof for (1).

Since B(Ls,) is weakly compact in Ly, | is weakly compact, thus
uniformly integrable (see Theorem 1.10). Hence, for a given £ > 0,
there is a 0 > 0 such that, for all A € ¥, u(A) <9,

(2) sup /|| )| dp < e.

geB(L

Hence, by (1), there exists a K > 0 such that pu(UnenAg,n) < 6.
Again, let Q. = Q\(UpenAk ). We have |[(T(fn,r))"Xa. |loox < K,
n €N, 7€ {-1,1}*". Let g € B(Lo,). There exists a sequence (gi),
gk € co{fur:n € N,7 € {-1,1}*"}, such that g — g in L. By
the || - ||1 — || - ||1,«-continuity of T, ||T'(gx) — T'(9)||1,« — 0. By (1.9),
there is a subsequence such that (T'(gr,))?” — (T'(g))” pointwise almost
everywhere. Hence,

(3) 1(T'(9)) X, [loo,« < K.
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So we are able to define
T:Le — LY (1, X*), T(g) :=T(9) X,

From (2) and (3) we obtain ||T| < K and HT—THL(LWL?*(H,X*)) <e.

The existence of an operator-valued density of T follows from Theorem
2.1. Since € > 0 is arbitrary, we find a strongly measurable density
on UpenQi/m = Q up to a set of measure 0. If (©,¥,v) is an
arbitrary, finite, separable and positive measure space, then we can
split © in a purely atomic and a purely nonatomic part. According to
the Carathéodory representation, the purely nonatomic part is measure
isomorphic to ([0,1], £, ), which is treated before, while its purely
atomic part is done by a similar estimation as in (1).

The general case is done according to Proposition 2.3b). Let L C
L (v) be separable. Then there is a separable sub-c-algebra ¥y C ¥ so
that L C Lo (v|w,). Thus, according to the separable case above, there
is a strongly measurable density U : Q@ — L(L;(v|g,), X ). Proposition
2.3b) finishes the proof to the general case.

[8, p. 215] tells us that we may assume p[U] = U, see 1.14 for a
definition. If I, ¢ X*, by a result of H. Rosenthal, see [7, p. 156], we
get the w*-measurable operator-valued density U:Q— W (L, X*). O

Theorem 2.5. Let loo ¢ X*, and let T : Ly — L% (u,X*)
be a bounded operator. Let p be a lifting of Lo. Then T(B(L1))
is uniformly integrable if and only if for all € > 0 there is a w*-
measurable U, : Q@ — L(Ly, X*) such that |T — UE||L(L1’L1,J*(H7X*)) <eg,

Ue : Ll — Lg)o*(,U,,X*) and p(UE) = UE'

Proof. Let T(B(L1)) be uniformly integrable. Let p be a lifting of
Loo. According to Theorem 2.4 there exists a w*-measurable function
U:Q— W(Le,X*), such that T|_ = U and p[U] =U.

Let ¢ > 0 be given. Since T is bounded and T(B(L4)) is uniformly
integrable, there exists an M > 0 such that

sup [|T(f)” —T(f)’Xqrs)e)<myllie <e-
fe€B(L1)

For all A € L, let By := {w € & |T(Xa/A(A))?(w)|| < M}.
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Let (mn)nen be the sequence of the dyadic partitions of the interval
[0,1]. We define the operator

T, : Ly — LY (u, X*)

o (ool

=
- 3 ([ ()
and obtain
ITa(Dlee < 3 /fd/\‘H < )>><B,, <l

Acmy,

Next we consider for n,m € N, n < m aset D € o(m,). We have

(i) - Gio) .
> (o () 3o (i) o)

A€eTy,,
ACD

e
ACD

1,*

<e.

1,%

Hence, for all f € aco(Xa/A(A),A € m,) and m > n we have
(T(f))” — T (f)?|l1,« < e. Thus we can conclude that for all m > n
and for each f € B(L1), f = E,_f:

IT(f) = Ton(F)ll1x <&
Let f € B(L). Then for almost every w € €2,

(4) (Tn(f))?(w))nen C X™  is relatively weakly compact.
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For the proof of (4) we realize first that, for n € N and A € m, :
| [a f A < M4),

@) Y ([ ra)ue) (5 re)

Aemy,

- Z NA(HU(w)(Xa)X B, (w)

Aem,

S Na(H)U@)(x)

A€eTy,,
wEB4

:U(w)( Z NA(f)XA>

A€y,
wEB4

€ U(w)(B(Lw)) since |[Na(f)] <1.
Since U(w)(B(Leo)) is weakly compact in X*, by Theorem 1.10 we

have for all f € Lo, that (T,(f))nen is relatively weakly compact in
LY (pu, X7).

Since L is separable, there is a subsequence T}, such that T, (f;) R

T(f;) weakly in LY (u, X*) for all j € N where {f1, f2,...} C Lo is
an Li-dense subset. Thus T is }inear on Lo,. The uniform estimate for
the sequence (7},) shows that T"is a || - |1 — || - ||1,+ continuous operator

on an Li-dense, linear subspace of Lo, since this holds for all T,,,,
ke N.

Hence there is an extension to a linear operator 1" : Ly — LY (p, X*)
such that T, (f) hope T(f) weakly for all f € L;. Because
I Tn, (f)lloo,x < M for all f € B(Ly) and k € N, it follows that
IT(f)loos < M. Furthermore, ||T,,(f) — T(f)|1. < e for all
f€B(L1), f =E;, f,n €N and k € N, such that ny > n. Thus we

have ) .
T:L; — LY (u, X™),

with HT — T”L(Ll,L‘l”*(,u,X*)) <e.

By Theorem 2.1 there exists a map U, : Q@ — L(Ly, X*) with T="U..
With [8, p. 215], we may assume p(U.) = Uk.

The uniform integrability is provided by the fact that for all £ > 0
the image U.(B(L1)) € LY (u, X*) is Loo-bounded, hence uniformly
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integrable. The approximation gives the assertion and finishes the proof
of the theorem. o

We state the same results for the Bochner function spaces, where the
proofs are omitted, since they run parallel and turn out to be easier.

An operator T': X — Ly(,Y) is called o,-compact if T(B(X)) is
relatively o(Lp(p,Y"), Ly (1, Y*))-compact.

We note that the o(L,(u,Y), Ly (1, Y*))-topology coincides with the
weak topology if and only if Y* has the RNP with respect to (2, %, u),
see [7, p. 98].

Theorem 2.6. Let K be a compact totally disconnected Hausdorff
space. Let1 < p < 0o and T : C(K) — L,(u,Y) be bounded. We
consider the following properties:

a) There exists a subspace Yy CY, loo ¢ Yo, such that T(C(K)) C
LP(p’ayo)'

b) T is o*-compact.

c) T is weakly compact.

Then a) = b) < ¢). If (Q,%,p) is separable, then a) and b) are

equivalent. In particular, l embeds in L,(p,Y") if and only if it embeds
mY.

Proof. a) = b). Since lo, ¢ Yy and T(C(K)) C Ly(p,Ys), we can
use a result of J. Batt and W. Hiermeyer [1, p. 411] and a result of
H. Rosenthal [7, p. 156] to conclude that 7" is o,-compact.

b) = c¢). Suppose T is not weakly compact; then, by a result of
H. Rosenthal, see [7, p. 156], there exists a copy of oo C T(C(K)).
According to b), T(C(K)) C L where L := span M with M o-
compact. But this contradicts a result in [21, p. 409] which says that
L admits an equivalent locally uniformly convex norm. But this fails
for o [5, p. 120].

c) = b). Trivial.

b) = a). If (,%,u) is separable, there exists a countable set
C C X such that the generated o-algebra of C is dense in ¥ and for
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all € > 0 the set {A € C;u(A) > €} is finite. Let K := T(B(C(K)).
Then the uniform integrability of K [1, p. 411] implies that {A €
C;supser(p(ok)) 1a(f)ll = €} is finite for all ¢ > 0. For all A € C
the set I4(K) is relatively weakly compact in Y [1, p. 411]. We define
D :=Ugecla(K). By the above D is relatively weakly compact in Y.
Let Yy :=span D. Then Y; is weakly compactly generated and hence
does not contain a copy of l,,. Since the algebra generated by C is
dense in ¥, we have T(C(K)) C Li(p, Yo). o

The technique presented in Theorem 2.4, respectively Theorem 2.5,
can be transmitted to the strongly measurable case almost literally.
Hence we get, using Theorem 2.6 for Theorem 2.7,

Theorem 2.7. Let (0,%,v) be a finite and positive measure space
and T : Li(v) — Li(p,X) be bounded. Then T|i, has a strongly
measurable density U : Q@ — L(Leo, X). If (©,%,v) is separable, then
U:Q— W(Leo, X).

The previous theorem should be compared with [11, p. 314].

Theorem 2.8. Let T : L1 — Li(p,X) be a bounded operator.
Then T(B(Ly)) is uniformly integrable if and only if for all e > 0
there is a strongly measurable map U. : Q@ — L(Ly,X) such that
HT— UEHL(LI;LI(HyX)) <egandU.: L; — Loo(/.},,X)

3. Hereditary properties for w*-measurable function spaces.
If X has the RNP, then by [7, p. 66], every bounded, linear operator
T : Li([0,1]) — X is Dunford-Pettis, i.e., it maps weakly convergent
sequences to norm convergent sequences. Thus the following condition
is weaker than the RNP.

(3.1) A convex, bounded and closed set K C X has the com-
plete continuity property (CCP) if every bounded, linear operator
T : Lq([0,1]) — X, such that {T'(xa/A(A)); A€ L, A(A) >0} C K is
a Dunford Pettis operator, see [2, 9] for more details.

A Banach space X has the CCP, if B(X) enjoys the CCP, see [9,
p. 59; p. 78].
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The following results are an extension of the result of J. Voigt that
the strong integral of compact operators is again compact [23].

Theorem 3.2. Letly ¢ X and let U : Q@ — K(X,Y™) be w*-
measurable and bounded. Then for 1 < p < oo,

U: X — Ly (n,Y")

1s compact.

In particular,

/U:X N / U (w)() dpa(w)
Q Q
1s compact.

Proof. Let (z,) C B(X) be a given sequence. Since I3 ¢ X, we
assume without loss of generality that (z,,) is weakly Cauchy according
to the Rosenthal dichotomy. Let us first assume that Y is separable.
Then, according to the introduction, every f € E;’*(M,Y*) has a
measurable norm-function. Hence 2 3 w — [|U(w)(z)|| is measurable
for all z € X. Since U(w) is compact, (U(w)(z,)) converges in norm to
some f(w) € Y* for all w € Q. The convergence implies that f Q-
Y* is w*-measurable. Since U is bounded and ||U(w)(z,,) — f(w)||? — 0
for all w € €, the classical Lebesgue domination theorem gives the
assertion.

We consider now the nonseparable case of Y and assume that (U(z,,))
is not norm-Cauchy. Then there is an € > 0 and a subsequence (U(zy,))
such that

VkeN: ||U(wnk+1) - U(-I'nk)Hp,* > €.

For all k € N thereis a g, € £(Q,%,Y), ||gk|lpr < 1, such that
(5) Vk € N: gk, U(Tn,,,) — Uzp,))| > e

Let Yy C Y be a separable subspace such that g, € £(Q,%,Y)) for all
k € N. Then let us consider the embedding ¢ : Yy — Y and its adjoint
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Y = Y. Evidently +* o U : Q@ — K(X,Y) is w*-measurable and
the separable case of Y is applicable. But we have, according to (5),

VkeN: HZ* © U(mnk+1) —1*0 U(wnk)Hp,*

> |<gk’ U(xnk-{-l) - U(mnk)>| > g,

which is a contradiction. O

Corollary 3.3. Let C C X be conditionally weakly compact and
U:Q — L(X,Y™*) be bounded and w*-measurable, such that U(w)(C)
is relatively compact in Y* for w € Q. Then U(C) is relatively compact
in L;"* (1, Y™).

Proof. Let K :=acoC. Then K is conditionally weakly compact. Let
pi denote the Minkowski-functional. Let Xy := {z € X;pr(z) < oo}.
Then (Xo,pr) is a Banach space not containing a copy of I; and
C C B(Xy) [4, p. 237]. Let id : Xy — X be the continuous inclusion.
We consider V : Q@ — L(Xy,Y*), V(w) = U(w) oid, w € Q. Evidently
V is w*-measurable and V(w) € K(Xo,Y*) for all w € Q. Hence
Theorem 3.2 implies that V : X, — L;f’*(u,Y*) is compact. Since

U(C) c U(id(B(Xp))) = V(B(Xp)), the proof is done. O

Proposition 3.4. Let X* have the CCP. Then every bounded and
uniformly integrable operator T : Ly — LY” (1, X*) is Dunford-Pettis.

Proof. X* enjoys the CCP, thus I, ¢ X™* since ¢y ¢ X*. Because
T(B(L1)) is uniformly integrable and X* does not contain /o, accord-
ing to Theorem 2.5 for a given € > 0 we find a w*-measurable function
U:Q— L(L1,X*) so that U : Ly — L% (4, X*) and |T - U|| < e.
Since X* has the CCP, we conclude that U(w)(B(Leo)) is compact
for all w € Q. Since B(Ls) C L; is weakly compact, thus condi-
tionally weakly compact, Corollary 3.3 is applicable. This reveals that
U(B(Ly)) is compact, too. Thus U|,_ is compact, which demon-
strates the compactness of T since € > 0 is arbitrary. O

The strong measurable case reads as follows and the proof is the
same as before, just exchanging Corollary 3.3 and Theorem 2.5 by [23,
p- 260] and Theorem 2.8, respectively.
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Proposition 3.5. Let X have the CCP. Then every bounded and
uniformly integrable operator T : Ly — L1 (u, X) is Dunford-Pettis.

Lemma 3.6. Let1l < p < oo, let X* enjoy the CCP and let
T:L, — Lg*(,u,X*) be bounded. Let p be a lifting of Lo,. Then

Ve>0, 36>0, VAeX, wu(A)<d, VgeB(Lw):
HT(@)Olix- — IT(9)°C)llx-Xa\allp <e-

Proof. Straightforward. o

Theorem 3.7. Let 1 < p < oo, and let X* enjoy the CCP. Then
Lg*(,u,X*) also has the CCP.

Proof. Let T : L; — Lg’*(,u,X*) be a bounded operator. The
embedding ¢ : L;"* (1, X*) < LY (u, X*) is continuous and uniformly

integrable. Thus, for the moment, we consider 7' : Ly — L¥" (u, X*)
to be uniformly integrable. Corollary 3.3 reveals that

(6) T(B(Ls)) is compact in LY (p, X*).

We wish to prove that (7'(gy)) is relatively compact in L;;“*(,u,X *)
for an arbitrary sequence (gn)nen C B(Loo). Since B(Loo) is weakly
compact in Ly, we may assume that (g,) converges weakly to some
g € B(Ly) in Li. Hence (T(gy))nen converges in norm to T'(g) in
LY (4, X*), which gives a subsequence converging pointwise almost
everywhere on {2 in X* by (1.9). For the sake of simplicity, we
assume that T'(gn,) "= T(g) almost everywhere on Q. According
to the extended Egorov theorem, we find for all € > 0 a set Q. C €,
w(Q\Q.) < e such that T(g,)(-) "= T(g)(-) uniformly on Q. in X.
n—r o0

With Lemma 3.6 this implies that T'(g,) — T(g) in L;;’*(,u,X*).
Thus the image of B(Ly) in L;f’* (1, X*) is compact. i

Since all ingredients for the proof to Theorem 3.7 have strongly
measurable equivalence, see Theorems 2.8 and Proposition 3.5, we have
an alternative proof of the result obtained in [18].
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Corollary 3.8. For 1 <p < oo, L,(i, X) has the CCP if and only
if X has it and 1 < p < 0.

We turn now to the embedding result of G. Pisier’s and will show
his result [17] by different means, which allows the extension to the
w*-measurable case. For this purpose we show that, in principle,
on bounded sets in Lg’* (4, X*), 1 < p < oo, the weak topologies of

LY (p, X*) and LY (p, X*) coincide.

Lemma 3.9. Let 1 < p < o00.
a) Let (f,) C Ly(p, X) be bounded. Then

(frn) is weakly Cauchy in L,(p, X)
< (fn) 1s weakly Cauchy in Li(p, X).

b) Let (fn) C Lg’*(,u,X*) be bounded. Then

(fn) is weakly Cauchy in Lg*(,u,X*)
> (fn) is weakly Cauchy in L (u, X*).

Proof. We give the proof only for b), since the proof for a) is even
easier. First we note for 1 < p < oo and a sequence of pairwise disjoint
elements (A4,) C X, such that Uyen A4, =

(1) T:Ly(p,X) — (SLy (ulAn, X))1,.,  [r— (fXa,)
is an isometry.

=>. This implication follows directly from the continuity of the
inclusion map ¢ : Lg’* (p, X*) = LY (u, X*).

<. For A€ ¥ and G € LY (u, X*)*, let
Gua i LY (1, X*) — R, f+— (fxa,G).

Then GX4 € L;f’*(u,X*)*. If we use (7) and Theorem 1.6¢), we get for
a disjoint sequence (A,) C X, UpenA4, = 2

8) T :Ly (m,X")" — (BLy (ulan, X)), G r— (GXa,)
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is an isometry. Let G € B(L;’* (, X*)*). Our main aim is to prove

Ve>0, 30 €X, w(\Qe) < €
GXa, € LY (1, X*)* and [|GXqo.|| <& in LY (u, X*)*.

(9)
We will divide the proof to (9) into three steps.

Step 1.

JAex, pA)>0, ImeN, VBCA, wB)>0:
IGxg| < nu(B)'/7.

Proof to Step 1. We suppose the contrary is true. Then

VAe®, p(A)>0, VYneN, 3IBCA,
w(B) > 0: |Gxp| > nu(B)/".

Then by applying the exhaustion argument [7, p. 70], we can find a
sequence of pairwise disjoint elements (B;) C X, UjenB; = , such
that for all j € N : ||GXg, || > nu(B;)*/?". Using (8), we can conclude
for n € N:
1G] > nu(@)M7".

Since n € N is arbitrary, we get G ¢ L;"*(u,X*)*, which is a
contradiction, and Step 1 is proved.

Step 2. With the result of Step 1, we can find a sequence (C,,) C X,
p(Cy) > 0 and an increasing sequence (M,) C Ry such that

VneN, VBCC,, w(B)>0:

IGx5|| < Map(B)Y?" and U Cn=A.
neEN

The sequence can be assumed to be increasing. Thus we can define a
pairwise disjoint sequence by induction:

n—1
A1 = Cl, An = Cn\ U Aj.
j=1
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Then, according to (8), we deduce:

= lim =0.

m—»0o0

lim HGXUJ?O"LAJ.

m—r 00

Z GX 4,
j=m

Hence, lim, ;o [|[GXq\c,|| = 0. Hence, for a given ¢ > 0 there is an
n € N such that

(10) VB CC, u(B)>0:|Gxs| < M,uB)"
and
IGXa\c, |l <e.
Step 3. Let Q. := C, according to (10). All we have to show is

GXa, € LY (u, X*)".

Proof. Let p be a lifting of L. Let f € B(LY (1, X*)) be given.
For m € Ny, k € N and 1 < ¢ < k, we define

o |
Anii= fwetim+ L < <me £,

Then we can compute with (10) and the definition of A, ;:
6 (< My (11 ) PP A

= M, <m + %)#(Am,i)

1
S Mn <|fXAm,i 1,x + E/J/(Am,z)> .

Since Q. = Upmen, Ule Ap,; and the A, ; are pairwise disjoint, we
obtain

1
1,% + E#(Am,z)>

(2

[e%) k
TNGEDS Mn(|fom,i
m=0 =1

< Mn<||f||1,* + %N(Qs)>
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So we have |GXq, (f)| < M, if k — oo and hence GXq, € LY (1, X*)*.

The final arguments are devoted to the proof of the lemma. For
this purpose we take a bounded sequence (f,,) C L;"* (u, X*), which is

weakly Cauchy in LY (u, X*). Let G € B(L;’*(u,X*)*) be given and
let € > 0. We may assume that (f,) C B(LY" (p, X*)). According to
(9) there is a set €. € ¥ such that

GXo, € LY (u,X*)* and ||GXo\o. || <e/4 in LY (u, X*)*.

Thus (GXaq,(fn)) is a Cauchy sequence in R and we find an ng € N
such that, for all n,m > ng: |GXa,(fn — fm)| < €/2. Finally, for
n, m > ng, we have

1G(fn = fu)l < [GXa. (fn = fm) + |GXa\0. (fa — fm)]

<6+8
-+ - =c.
2 2

The proof to the lemma is done. ]

For concluding the final and main result on the embedding (3.11) we
need the following w*-analogon to [20, Theorem 2.3].

Theorem 3.10. Let U : Q@ — CW(X,Y™) be w*-measurable and
bounded, where CW (X,Y*) is the ideal of conditionally weakly compact
operators. Let p be a lifting of Lo, such that p(U) = U. Then, for
1<p<oo,

U: X — L;"* (1, Y™) s conditionally weakly compact.

In particular,
/ U: X —Y*
Q

xl—)/ﬂU(w)(w)du(w)

s conditionally weakly compact.

Proof. 'We follow the idea of the proof in [20, Theorem 2.3] and
assume that U(B(X)) is not conditionally weakly compact. Then by
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Rosenthal’s dichotomy there is a sequence (f,,) C U(B(X)) which is
equivalent to the [;-basis. Choose (z,)nen C B(X) such that, for all
n € N: f, =U(z,). We define

fn:Q—Y",
w— U(w)(zn).

Since U is bounded, f, € £ (u, Y*) and sup, e || fnlloo < 00. By the
result of M. Talagrand’s, see [22, p. 20], there are subsets Qy,Qs € ¥
of Q and for n € N there is g, € co (fn, fn+1,-.-), such that

1) p(21U Q) = p(Q2),
ii) for al w € Q; there exists j € N: (g% (w))n>; ~ l1-basis,
iii) for all w € Qa: (g°(w))nen is a weak Cauchy sequence.

The assumption concerning U and Rosenthal’s dichotomy imply that
Q) = . Thus (g§) is a weak Cauchy sequence, see, e.g., [22, p. 20].
But this contradicts the assumption that (f,) is equivalent to the I;-
basis. o

Theorem 3.11. Let 1 < p < co. Then
a) ly C Ly(u, X) is isomorphic if and only if Iy C X is isomorphic.
b)l; C L;f’* (1, X*) is isomorphic if and only if Iy C X* is isomorphic.

Proof. The proof to a) is omitted, since it runs in a parallel way to
b).

=. We assume [; ¢ X*, but we have an isomorphic embedding
T:10; — Lg’* (1, X*). Since l; C L is complemented, we may extend T'
to T:Ly — LY (p, X*). The embedding ¢ : LY (p, X*) < LY (u, X*)
is uniformly integrable, thus 7' : L; — L% (u,X*) is uniformly
integrable. Since l; ¢ X*, we also have I ¢ X™*. Let p be a lifting of
L. Then by Theorem 2.5 for a given € > 0, there is a w*-measurable
U:Q — L(L;,X*) such that U : Ly — LY (u, X*), [T =T < ¢
and p(U) = U. If we apply Theorem 3.10, we can demonstrate that
U is conditionally weakly compact, since I; ¢ X*. Hence, T is also
conditionally weakly compact, since the ideal of conditionally weakly
compact operators is closed. Finally we can conclude using Theorem
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3.9 that T is also weakly conditionally compact, which contradicts the
Rosenthal dichotomy.

<. This implication is obvious, since X* embeds isometrically in
LY (p,X*). O
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