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NORMAL LIMITS IN STAR-INVARIANT SUBSPACES
IN MULTIPLY CONNECTED DOMAINS

JAWAD SADEK

ABSTRACT. In this paper we give a necessary and suf-
ficient condition for the normal limit to exist at a point on
the smooth boundary of a multiply connected domain in the
plane, for a function in the star-invariant subspace.

Introduction. Let U be the open unit disc in the complex plane,
and denote by Hp, 0 < p ≤ ∞, the usual classes of analytic functions
on U [9, 13, 12]. Let ϕ be an inner function and write ϕ = cBSσ where
|c| = 1, B is a Blaschke product with zero sequence {zk}, and Sσ is a
singular inner function with positive measure σ which is singular with
respect to Lebesgue measure [9, 13, 12].

In [2, Lemma 3] Ahern and Clark gave the following generalization
of a famous theorem of Frostman [10] concerning the existence of the
radial limit of a Blaschke product at a given point in T , the unit circle.

Theorem A. Let ζ0 be on the unit circle T , and suppose ϕ = BSσ

and σ({ζ0}) = 0. Then the following conditions are equivalent:

(i) Every divisor of ϕ has a radial limit of modulus 1 at ζ0.

(ii) Every divisor of ϕ has a radial limit at ζ0.

(iii)
∑∞

k=1(1 − |zk)|/|ζ0 − zk| +
∫

T
dσ(u)/|u− ζ0| <∞.

We say that f is a divisor of ϕ if ϕ = fg where both f and g lie in
the unit ball of H∞.

In [6, Theorem 3.1], Cohn noticed that condition (iii) implies a
stronger result than (ii). Let ϕ be an inner function, and let

K2 ≡ H2 � ϕH2

be the star-invariant subspace generated by ϕ. Let BMOA denote
the space of analytic functions of bounded mean oscillation and define
K∗ ≡ K2 ∩BMOA. Then we have the following result.
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Theorem B. Let ζ0 be on T , and suppose ϕ = BSσ. A necessary
and sufficient condition that limr→1− f(rζ0) exist for all f in K∗ is that

(1)
∑ 1 − |zk|

|ζ0 − zk| +
∫

T

dσ(u)
|ζ0 − u| <∞.

Thus, condition (iii) actually shows that the radial limit at ζ0 holds
for a larger class of functions than the class of functions that are divisors
of ϕ.

In [6, Theorem 4.1], Cohn also studied the case where 1 < p < ∞
and p �= 2. The analogue of K2 in this case is defined as follows.

Let Kp be the subspace of Hp defined by Kp = ϕH̄p
0 ∩ Hp. Here,

H̄p
0 ≡ {e−itf̄(eit) : f ∈ Hp}. For Kp, 1 < p <∞, the following theorem

was proved in [6, Theorem 4.1].

Theorem C. Let ζ0 ∈ T and suppose ϕ = BSσ. Suppose p > 1 and
q is the exponent conjugate to p. A necessary and sufficient condition
that limr→1− f(rζ0) exist for all f ∈ Kp is that:

(2)
∑ 1 − |zk|

|ζ0 − zk|q +
∫

T

dσ(u)
|ζ0 − u|q <∞.

In the case p = 2, Theorem C is a result of Ahern and Clark, [1, p.
333].

It is the purpose of this paper to generalize Theorem C to the setting
of a finitely connected bounded domain G in the plane with C∞

boundary curves. In Section 0 we give the definition of Hp(G) spaces,
along with some basic results analogous to those for the theory of Hp

spaces in the unit circle. In Section 1 we define and discuss the Szegö
kernel and some of its properties in G. In that section, we also prove
some estimates on the Szegö kernel with continuous positive weights.
In Section 2 we formulate and prove an analogue of Theorem C in G.
Theorem B will be generalized in a separate paper.

0. Basic elements of Hp(G). In what follows G will be a bounded
domain in the plane with connectivity n such that its boundary consists
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of simple closed analytic curves. bG will denote the boundary of G. We
write

bG =
n+1⋃
i=1

si,

where the si’s are the boundary curves. For z and a ∈ G let g(z, a) be
the Green’s function of G with pole at a. Precisely,

g(z, a) = h(z, a) − log |z − a|,

where h(z, a) is the harmonic function on G whose boundary function
equals log |z − a|, z ∈ bG, cf. [11, p. 16], [14, p. 11].

By a harmonic measure on G we mean a harmonic function h whose
boundary values are constant on each component of bG [15, p. 153].

We recall that a holomorphic function f on G belongs to Hp(G),
0 < p < ∞, if |f |p has a harmonic majorant on G, i.e., a harmonic
function h on G such that |f(z)|p ≤ h(z) for all z in G [11, p. 51].

The function f is in H∞ if it is both bounded and holomorphic on
G. If f ∈ Hp(G), then f has nontangential boundary values almost
everywhere with respect to arc length ds on bG. We can identify
Hp(bG) with a closed subspace of Lp(bG), and in what follows we will
use this fact without further comment [11, p. 88].

Let R(G) denote those rational functions on G whose poles are off
G ∪ bG. Then R(G) is dense in Hp(G) if 1 ≤ p <∞ [11, p. 86].

Now we give the definitions of Blaschke products and inner functions
in G.

A bounded analytic function B in G is called a (generalized) Blaschke
product if

log |B(z)| =
∑

i

g(z, ai) + h(z)

where g(z, a) is the Green’s function for G and h is a harmonic measure,
cf., [15, p. 153]. It is well known [15, Lemma 21] that if {an} is the
sequence of the zeros of a function in Hp(G), repeated according to
multiplicity, then ∑

d(an, bG) <∞,
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where d(an, bG) denotes the distance from an to the boundary bG. If
{an} satisfies this condition, then there is a Blaschke product B whose
zeros are an.

A bounded analytic function f , f �≡ 0, can be factored into f = Bg,
where B is a Blaschke product with the same zeros as f and g is zero
free. The factorization is unique apart from bounded analytic functions
U , such that |U | is constant on each boundary contour, cf., [15, Lemma
3].

A bounded analytic function φ in G is called an inner function if the
nontangential boundary values of |φ| on each boundary contour of G
are equal almost everywhere to a constant [15, p. 154].

An inner function with no zeros is called a singular function. Singular
functions are those functions φ in H∞(G) for which

log |φ(z)| = −
∫

bG

∂g(t, z)
∂n

dµ(t) + h(z),

where µ is a positive measure on bG which is singular with respect to
the measure given by arc length, ∂/∂n denotes differentiation along the
outward normal, and h is a harmonic measure. The measure µ in this
representation is unique [15, p. 154].

A function f in Hp is called an outer function if

log |f(z)| =
1
2π

∫
bG

log |f(t)|∂g(t, z)
∂n

ds, z ∈ G,

where g is the Green’s function of G and ds is the arc length measure
on bG [15, p. 155].

Every function f in Hp may be factored into f = φF , where φ is an
inner function and F is an outer function in Hp [15, Lemma 11].

Throughout this paper, c will be a constant which does not necessarily
have the same value at each occurrence.

1. Some estimates for the Szegö kernel and auxiliary theo-
rems. For f, g ∈ L2(bG), we let

〈f, g〉h =
∫

bG

fḡh ds
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be the inner product of weight h, where h is a positive continuous
function. For z ∈ bG, dz = z′(t) dt and ds = |z′(t)| dt where z(t) is
a parametrization of bG in the standard sense, i.e. counter-clockwise
on the outer boundary curve, and clockwise on the curves inside the
bounded component. For a in G and f in H2(bG), the evaluation map
at a ∈ G is a continuous linear functional on H2(bG). Thus, by the
Riesz representation theorem, there is a unique function S(z, a, hds) in
H2(bG) which represents this functional in the sense that

f(a) = 〈f, S(·, a, hds)〉h
for all f ∈ H2(bG). S(z, a, hds) is called the weighted Szegö kernel for
H2(bG) at a. When h ≡ 1 we will write

S(z, a, ds) = S(z, a).

It is well known, cf. [3], [14, p. 389] and [5, p. 2], that S(z, a) is
holomorphic in z ∈ G for fixed a ∈ G and that S(z, a) = S(a, z).
Also, S(z, a) is holomorphic in a ∈ G for fixed z ∈ G, and S(z, a) ∈
C∞(Ḡ× Ḡ− ∆), where ∆ is the diagonal of Ḡ× Ḡ.

We need estimates on the Szegö kernel S(z, a) when z and a are
“fairly close” to one another, and at the same time they are “fairly
close” to a boundary curve s ⊂ bG. In order to state these estimates as
simply as possible, we will assume that s shares a common arc C with
the unit circle, and that |a| < 1 when a is “near” C. These estimates
combined with conformal mapping of a general domain onto one of this
type will suffice for our applications.

Theorem 1.1. Let ζ0 ∈ bG. Then there exists a simply connected
domain N in G with C∞ boundary bN such that bG ∩ bN is an arc in
C containing ζ0, and the following inequality holds for all z and a in
N :

(3)
A

|1 − āz| ≤ |S(z, a)| ≤ B

|1 − āz| .

Here, A and B are constants independent of z and a.

Note 1.1. Theorem 1.1 seems to be a known result. A proof is given
in [16, p. 12].



1524 J. SADEK

Note 1.2. The same type of estimate has been proved in a more
general domain and for several complex variables, cf. [8, Theorem C].

We now consider the problem of proving the same type of estimate
for the weighted Szegö kernel S(z, a, hds). We will need the following
theorem. For a proof see [17].

Theorem 1.3. Let h ≥ 0 be continuous on bG. Then there is a
function F ∈ H∞(G) such that |F |2 = h2 on bG, F (ζ) = 0 for a
preassigned ζ and F has at most n zeros on G.

We now state and prove our result.

Theorem 1.4. S(z, a, hds) = F (a)F (z)S(z, a) + k(z, a); where
|k(z, a)| ≤ M with M independent of z and a, and F is a bounded
holomorphic function on G such that |F (u)|2 = 1/h(u) on bG.

Proof. Let F be the holomorphic function on G with boundary values
|F (ζ)|2 = 1/h(ζ), and let ak, k = 0, · · · ,m, be its zeros. Let X be the
space H2

{a1,...,am} = {f ∈ H2 : f(ak) = 0; k = 1, · · · ,m}. We note that
H2 �X is of dimension ≤ m, and the Szegö kernel there is given as a
finite sum of bounded functions. For the definitions of those functions,
see [7, p. 294]. We claim that

F (a)F (z)S(z, a, ds) = SX(z, a, hds),

where the right hand side is the weighted Szegö kernel for X. To prove
our claim, let f ∈ X. Then f = Fg, g ∈ H2, and

∫
bG

f(z)F (a)F (z)S(z, a, ds)h ds

=
∫

bG

F (z)g(z)F (a)F (z)S(z, a, ds)h ds

= F (a)
∫

bG

g(z)|F (z)|2hS(z, a, ds) ds

= F (a)
∫

bG

g(z)S(z, a, ds) ds
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= F (a)g(a)
= f(a).

Since the Szegö kernel is the unique function in X that satisfies this
reproducing property, the claim is proved and the theorem follows.

Corollary 1.5. Let ζ0 ∈ bG. Then there exists a simply connected
domain N in G with C∞ boundary bN such that bG ∩ bN is an arc in
C containing ζ0, and the following inequality holds for all z and a in
W :

c1
|1 − āz| ≤ |S(z, a, hds)| ≤ c2

|1 − āz| .

c1 and c2 are independent of z and a.

We now briefly discuss some properties of what we are going to call
the “ Carleson curve.” Suppose f(z) is a bounded analytic function on
U , the unit disc, satisfying ||f ||∞ ≤ 1. Let 0 < δ < 1. In constructing
the “Carleson region” R in U to prove the Corona theorem, a curve Γ
associated with f , which we will call the “Carleson curve” in U , was
constructed with the following properties, cf., [12, p. 342] and [6, p.
727].

(1) Γ = U ∩ bR separates {z : |f(z)| > ε} from {z : |f(z)| < ε} where
ε = ε(δ) < δ.

(2) {z : |f(z)| < ε} ⊆ R.

(3) Arc length on Γ is a Carleson measure.

(4) There is a constant ε0 > 0 such that 0 < ε0 ≤ |f(z)| ≤ δ for
z ∈ Γ.

(5) Γ is a countable union of arcs or radial segments, Γ = ∪γn, where
γn = [an, bn] denotes either a radial segment or an arc, and there are
constants 0 < c1 < c2 < 1 such that c1 ≤ |(an − bn)/(1 − ānbn)| ≤ c2.

The following theorem was proved in [6, Theorem 2].

Theorem 1.6. Let ζ0 ∈ T and suppose φ = BIσ. Let {wn} be the
set of midpoints of the segments γn given in property (5) above. Then:
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(i) The condition

∑ 1 − |an|
|ζ0 − an| +

∫
T

dσ(t)
|ζ0 − t| <∞,

where {an} is the zero set of B, holds if and only if

∑ 1 − |wn|
|ζ0 − wn| <∞.

(ii) For q > 1, the condition

∑ 1 − |an|
|ζ0 − an|q +

∫
T

dσ(t)
|ζ0 − t|q <∞

holds if and only if ∑ 1 − |wn|
|ζ0 − wn|q <∞.

Let N be a set in G of the type described in the statement of
Theorem 1.1. Then, mapping U onto N conformally by, say, ψ, we
can prove properties in N similar to (1) (5) above, and a theorem
similar to Theorem 1.6 for G. For details see [16, p. 24]. Let ϕ be
an inner function in G with zero set {an}, and denote by φ the inner
part of its restriction to N ϕN . Let ψ(Γ) = K, where Γ is the Carleson
curve associated with φ ◦ψ in U . Let uk = ψ(wk) and cn = ψ(γn). For
u0 ∈ bG the condition corresponding to (i) in Theorem 1.6 in the more
general domain G is

(4)
∑ d(ak, bG)

d(u0, ak)
+

∫
bG

dλ(u)
|u0 − u| <∞,

and condition (ii) in Theorem 1.2 becomes

(5)
∑ d(ak, bG)

|u0 − ak|q +
∫

bG

dλ(u)
|u0 − u|q <∞,

where d(x, bG) is the distance from the point x to the boundary bG.
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Theorem 1.7. Let u0, ϕ and {uk} be as above. Then

(i′) Condition (4) holds for ϕ if and only if

∑ d(uk, bG)
|u0 − uk| <∞.

(ii′) Condition (5) holds for ϕ and q > 1 if and only if

∑ d(uk, bG)
|u0 − uk|q <∞.

2. Normal limits in Kp, p > 1. Suppose ϕ is an inner function on
G. Let Kp be the set of functions in Hp which are orthogonal to ϕHq

with respect to the inner product 〈f, g〉 defined by

〈f, g〉 =
1
2π

∫
bG

f(z)g(z) ds, f ∈ Hp(G), g ∈ Hq(G),

so that Kp = (ϕHq)⊥ ∩Hp, 1/p+ 1/q = 1.

We start by giving a boundary representation for f ∈ Kp. Let R be
a rational function in Hp(G). Then

0 =
∫

bG

f(z)ϕ(z)R(z) ds

=
∫

bG

f(z)ϕ(z)R(z) ds,

for all f ∈ Kp. By the multiply connected domain version of the F.
and M. Riesz theorem [11, p. 85], one obtains

f̄ϕ ds = H dz a.e. [ds],

for some H ∈ H1(G). This implies

f̄ =
(
H

ϕ

)
dz

ds
a.e [ds],
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i.e.,

(6) f(z) =
(
H

ϕ

)
dz̄

ds
a.e. [ds], z ∈ bG.

Denote by Kq(1/|ϕ|2) the set of functions in Hq orthogonal to ϕHp

with respect to the weighted inner product with weight 1/|ϕ|2. By an
argument similar to the one we used to get a boundary representation
for functions in Kp, we obtain

f =
(
H

ϕ

)
|ϕ|2

(
dz

ds

)
.

From now on, if u0 ∈ bG and u ∈ G, then limu→u0 means the limit
when u is approaching u0 along the line in G normal to u0, which we
will call the normal limit at u0.

The following two results are needed.

Theorem 2.1 [4, Theorem 2]. Let G be a bounded finitely connected
domain with smooth boundary curves, and let 1 < p < ∞. Then, for
F ∈ Lp(G), we have

F = f + g
dz

ds
,

where f ∈ Hp(G) and g(dz/ds) is orthogonal to Hq, q is the exponent
conjugate to p, ds is arclength on bG, and

∥∥∥∥g dzds
∥∥∥∥

p

≤ c‖F‖p,

where c depends only on p.

Lemma 2.2. Let 1 < p < ∞ and q conjugate to p. Then
K∗

p = Kq(1/|ϕ|2) in the sense that if k ∈ Kq(1/|ϕ|2) then the map

Lk(f) = 〈f, k〉

gives a bounded linear functional on Kp with ‖Lk‖ .= ‖k‖q, and every
such functional on Kp is of this form.
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Proof. If f ∈ Kq(1/|ϕ|2) then the map

Lk(f) = 〈f, k〉

defines a bounded linear functional on Kp. We now consider a bounded
linear functional L on Kp and show that L = Lk for some unique
k ∈ Kq(1/|ϕ|2) and also establish that ‖L‖ .= ‖k‖q, where the notation
A

.= B means there are positive constants m and M such that
mA ≤ B ≤ MA. Let L ∈ K∗

p ; by the Hahn-Banach theorem we
can extend L to a bounded linear functional on Hp(G). Using duality
between Hp(G) and Hq(G) [4, Corollary 2], [11, p. 63], we can find a
function F ∈ Hq with ‖F‖q

.= ‖L‖ such that

L(f) = 〈f, F 〉

for all f ∈ Kp. By the theorem of M. Riesz,

F

ϕ
= k1 + h

dz

ds
,

where h(dz/ds) orthogonal to Hq, k1 ∈ Hp and

∥∥∥∥hdzds
∥∥∥∥

q

≤ c‖F‖q

where c depends only on q. Thus

F = ϕk1 + ϕh
dz

ds
.

If we let k = ϕh(dz/ds), we see that k = F −ϕk1 is holomorphic. Also,
k can be written as |ϕ|2(h(dz/ϕds)). It follows from the representation
formula above that k ∈ Kq(1/|ϕ|2). Thus,

L(f) = 〈f, ϕk1 + k〉 = 〈f, k〉

for f ∈ Kp. Since ‖k‖q
.= ‖h(dz/ds)‖ we see that

‖k‖q ≤ c‖L‖.
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We now establish the uniqueness of k. Let l ∈ Kq(1/|ϕ|2) be such
that

〈f, k 1
|ϕ|2 〉 = 〈f, l 1

|ϕ|2 〉, f ∈ Kp.

For F ∈ Hp(G) we have∫
bG

(k − l)F̄
1

|ϕ|2 ds =
∫

bG

(k − l)(ϕk1 + k2)
1

|ϕ|2 ds

=
∫

bG

(k − l)(k2)
1

|ϕ|2 ds
= 0.

To finish the proof of the lemma we need an inequality of the reverse
type.

Let Hp
b and (Kp)b be the unit balls in Hp and Kp, respectively. By

duality between Hp and Hq we get
‖k‖q

.= sup{|〈F, k〉| : F ∈ Hp
b }

≥ sup{|〈F, k〉| : F ∈ (Kp)b}
= ‖L‖.

This completes the proof of the lemma.

The following theorem is the main result in this section. It is a
generalization of Theorem 3.1 in [6].

Theorem 2.3. Let u0 ∈ bG and suppose ϕ = BSσ. Let p > 1
and q be the exponent conjugate to p. For limu→u0 f(u) to exist for all
f ∈ Kp, it is necessary and sufficient that

∞∑
k

d(ak, bG)
|ak − u0)|q +

∫
bG

dσ(u)
|u0 − u|q <∞.

Proof of sufficiency. For f ∈ Kp(G) and u ∈ G, the reproducing
property of the Szegö kernel together with (6) yield the following:

f(u) =
∫

bG

f(w)S(w, u) ds

=
∫

bG

H(w)
ϕ(w)

S(w, u) dw.
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Thus,

(7) f(u) =
∫

bG

H(w)
ϕ(w)

S(w, u) dw.

Let N be the set in Theorem 1.1, and write

bN = I ∪ C,

where I is inside G and u0 ∈ C (see the discussion preceding Theo-
rem 1.1 for the definition of C). Assume at first that all the zeros of ϕ
are inside N . Then the righthand side of (7) equals

(8)
∫

C

H

ϕ
S(w, u) dw +

∫
bG−C

H

ϕ
S(w, u) dw.

The second integral in (8) has a finite limit as u tends to u0. To deal
with the first integral, we write it as

(9)
∫

bN

H

ϕ
S(w, u) dw −

∫
I

H

ϕ
S(w, u) dw.

Since the integral over I also has a finite limit as u tends to u0, we
need only deal with the integral over bN . To do this we use a technique
developed by W. Cohn in [6, Theorem 3.1], which involves taking the
integral from bN to K. Write ϕN = φO, where O is its outer part, and
note that φ must have the same zeros as ϕN and the same singular
measure on C.

Case 1. ϕ is a Blaschke product. Let ϕk be the product of the first
k factors of ϕ. If we let

fk(u) =
∫

bN

H

ϕk
S(w, u) dw,

we obtain
lim

k→∞
fk(u) = f(u)

by the dominated convergence theorem. Now let R′ be the Carleson
region for φ in N , i.e., R′ = ψ(R), where R is the Carleson region for
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φ◦ψ in U . There are finitely many zeros of ϕk, so they lie inside finitely
many of the closed curves c1, c2, . . . , which constitute the curve K. It
follows from the fact that φ is bounded away from 0 on N −R′ and O
is continuous on N̄ that

|ϕk| ≥ |ϕ| > δ > 0,

on N − R′ for all k. Since S(u,w) is holomorphic in w, Cauchy’s
theorem now yields

∫
bN

H

ϕk
S(w, u) dw =

Mk∑
n=1

∫
cn

H

ϕk
S(w, u) dw

where the sum is taken over all curves cn whose interiors contain zeros
of ϕk. If cm does not contain zeros of ϕk in its interior, then by Cauchy’s
theorem again ∫

cm

H

ϕk
S(w, u) dw = 0.

Thus
fk(u) =

∫
K

H

ϕk
S(w, u) dw.

Let k → ∞ and apply the dominated convergence theorem to get

(10) f(u) =
∫
K

H

ϕ
S(w, u) dw.

Case 2. ϕ is not a Blaschke product. If ϕ is not a Blaschke product,
we can find a sequence of Blaschke products {Bn} converging uniformly
to ϕ on Ḡ [11, Chapter 5]. We then repeat the argument in Case 1 to
write f(u) as an integral over the same system of curves K, and then
we take the limit when n tends to infinity to conclude that (10) holds
for a general inner function.

Thus we may write
f(u) =

∑
Fk(u),

where

(11) Fk(u) =
∫

ck

H(w)
ϕ(w)

S(w, u) dw.
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Using Holder’s inequality and the fact that |ϕ| > ε0 on K, together
with the inequality

|S(u,w)| ≤ c

|1 − uw̄| ,

which was proved in Theorem 1.1, one obtains

(12) |Fk(u)| ≤ c

( ∫
ck

|H(w)|p| dw|
)1/p( ∫

ck

|dw|
|1 − uw̄|q

)1/q

.

An elementary estimate on the second factor in (12) using the proper-
ties of the curves ck yields

|Fk(u)| ≤ c

(∫
ck

|H(w)|p|dw|
)1/p(

d(uk, bG)
|uk − u0|q

)1/q

.

Thus,

‖Fk‖∞ ≤ c

( ∫
ck

|H(w)|p|dw|
)1/p(

d(uk, bG)
|uk − u0|q

)1/q

.

Applying Holder’s inequality a second time, and using the fact that arc
length is a Carleson measure on K, we obtain that

∑
‖Fk‖∞ ≤c

[ ∫
C

|H(w)|p|dw|
]1/p[∑ d(uk, bG)

|uk − u0|q
]1/q

(13)

≤ c‖H‖p
p(14)

<∞,

where we have used the fact that |dw| is a Carleson measure on K to go
from (13) to (14). By Theorem 1.7, (ii′), the last factor in (13) is finite.
It follows from the Weirstrass M-test that f̄ =

∑
Fk is continuous at

u0 and limu→u0 f(u) exists. This completes the proof of sufficiency.

Proof of necessity. Suppose limu→u0 f(u) exists for all f ∈ Kp. Set

Ku(z) = S

(
z, u,

1
|ϕ|2 ds

)
− ϕ(u)ϕ(z)S(z, u); u ∈ G.
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Then it is straightforward to verify that Ku ∈ Kq(1/|ϕ|2). On the
other hand, for f ∈ Kp we have

(15)

∫
bG

fKu(z) ds =
∫

bG

fS(z, u,
1

|ϕ|2 ds) ds

=
∫

bG

fF (u)F (z)S(z, u) ds

+
∫

bG

fk(z, u) ds,

where F and k are as in Theorem 1.4. The second term in (15) stays
bounded. With X as in Theorem 1.4 and u0 ∈ γ, for f ∈ X we write
f = Fg, g ∈ H2. The first term in (15) can be written as

F (u)
∫

bG

gF (z)F (z)S(z, u)ds = F (u)
∫

bG

g|F (z)|2S(z, u) ds

=
n∑

i=1

kiF (u)
∫

bG−γ

gS(z, u) ds

+ cF (u)
∫

γ

gS(z, u) ds

= T1 + T2,

where ki is the modulus of F on γi. Now T1 stays bounded as u→ u0.
For T2, we write

T2 = cF (u)
∫

bG

gS(z, u) − cF (u)
∫

bG−γ

gS(z, u) ds

= cF (u)g(u) − T3

= cf(u) − T3,

where T3 is also bounded as u → u0. It follows from the assumption
that limu→u0 f(u) exists for all f ∈ Kp and the Banach-Steinhaus
theorem that the continuous linear functional Λu defined on Kp by

Λu : f −→ 〈f,Ku〉
is bounded and satisfies

|〈f,Ku〉| ≤ c‖f‖p
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where c is independent of u. From Lemma 2.3 above, we conclude that

‖Ku‖q ≤ c

where c is independent of u.

A normal family argument shows that

lim
u→u0

Ku(z) = S(z, u0) − λ̄ϕ(z)S
(
z, u0,

1
|ϕ|2 ds

)

= K(z), z ∈ G,

and K ∈ Kq.

If we restrict K to the neighborhood N , then we get a function in
Hq(N) which we will also denote by K(z). As in the proof of the
sufficiency part, consider the Carleson curve K in N for the function
φ. Since arc length on K is a Carleson measure,

∫
K
|K(z)|q|dz| ≤ c‖K‖q

q,

i.e., ∫
K

∣∣∣∣S(z, u0) − λ̄S

(
z, u0,

1
|ϕ|2 ds

)∣∣∣∣
q

|dz| ≤ c‖K‖q
q.

It follows from Theorem 1.1, Corollary 1.5, and the fact that |ϕ| ≤ δ
on K, that, for δ small enough,

|K(z)| =
∣∣∣∣S(z, u0) − λ̄ϕ(z)S

(
z, u0,

1
|ϕ|2 ds

)∣∣∣∣
≥ c

|1 − ū0z| , z ∈ G.

Thus, ∫
K

|dz|
|1 − ū0z|q <∞.

Recall that K is ψ(Γ) where ψ is the Riemann map from U onto N ,
that Γ is the Carleson curve for φ ◦ ψ in U and is a union of segments
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γn with midpoints wn, and that ψ(wn) = un. Thus the last inequality
yields

∞∑
n

d(un, bG)
|u0 − un)|q <∞.

One now uses Theorem 1.7 to show that condition (5) holds. This
concludes the proof of necessity.

To complete the proof of the theorem we still have to consider the
case in which there are some zeros of ϕ that accumulate outside of N .
Write ϕ = φ1φ2, where φ1 is the Blaschke product in G with these
zeros. Let Kp(I) denote (IHq)⊥ ∩Hp, and let Kp(I)(|φ1|2) denote the
same space with the inner product having weight |φ1|2. Write

Kp(ϕ) = Kp(φ1) ⊕ φ1Kp(φ2)(|φ1|2).

The normal limit at u0 exists for all functions in Kp(ϕ) if and only
if the normal limit at u0 exists for all functions in Kp(φ2)(|φ1|2). In
fact, φ1 is continuous at u0 since its zeros are outside N . For Kp(φ1),
the integral over bN corresponding to the one in (9) is equal to zero.
Therefore, the limit of the functions in that space exist.

The proof of sufficiency can be done the same as for the space Kp(φ2)
with only a few changes, making use of the estimates in Corollary 1.5
and the fact that |φ1|2 is constant almost everywhere on bG.

For the necessity we need only notice that Kp(φ2) is contained in
Kp(ϕ). In Kp(φ2) the problem has already been solved. Therefore,
condition (ii′) in Theorem 1.7 holds for the zeros of φ2, which implies
it also holds for the zeros of ϕ.
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