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THE DENSITY OF PRIMES P, SUCH THAT
—11IS A RESIDUE MODULO P OF TWO
CONSECUTIVE FIBONACCI NUMBERS, IS 2/3

CHRISTIAN BALLOT

ABSTRACT. Given n1,m2 € {£1}, we calculate the exact
proportion of primes p such that 71,72 appear consecutively
as residues of the Fibonacci sequence modulo p.

Introduction. Let 11,72 € {£1}. In this paper we compute the
density of the set of primes p such that 7,72 appear as consecutive
residues of the Fibonacci sequence (F,) modulo p, i.e., such that there
exists n € N : (Fp,, Fry1) = (91,m2) (mod p).

The method used originated with Hasse, but its scope was later
extended by Lagarias, and then Ballot. Let U = (U,),>0 be a linear
recurrence sequence with integral terms and characteristic polynomial
f(X) € Z]X]. Hasse [6] showed that for binary recurrence sequences
U, = a" + 1, a € Z, one could compute the precise density of
primes p such that p divides U, i.e., such that there exists n € N,
p | U,. Lagarias [7] went further by proving that Hasse’s method
applied to some binary linear recurrence sequences whose characteristic
polynomials had irrational roots, in particular, to U, = L,, the
sequence of Lucas numbers. The present author [1] discovered that
one could generalize the method to the computing of densities of
prime divisors of some linear recurrence sequences of arbitrary order
m > 2 as long as one defined division of U to mean p divides m — 1
consecutive terms of the sequence U. (We then say that p is a mazimal
divisor of U.) However, all sequences of order m > 3 to which the
method was applied in the author’s memoir [1] had characteristic
polynomials with rational roots. Here, for the first time, we deal with a
ternary recurrence sequence whose characteristic polynomial, namely
f(X) = (X —1)(X? — X — 1), has some irrational roots. Thus, we
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enlarge the scope of Hasse’s method somewhat further. Moreover, the
ternary sequence treated, namely 1+ F,, is of noticeable interest since
it is a simple translate of the Fibonacci sequence.

Section 1 is a short preliminary section in which we recall relevant
definitions and introduce notation. Section 2 is the core of the paper
where the density result announced in the title is computed. The proof
proposed uses basic algebraic number theoretic concepts. Readers
who wish to have the precise statements of the Kummer-Dedekind
and Kronecker density theorem can find those in Appendix A of
[1]. In Section 3, we reinterpret our result to obtain a theorem
on the proportion of primes for which the pair (7;,72) appears as
consecutive residues of the Fibonacci sequence modulo p, for 7y, n2
in {£1}. Section 4 is reserved for an alternate proof of Theorem 3 of
Section 2. This proof is of interest because it relies only on elementary
Lucas theory. Sections 5 and 6 put the results of Sections 2 and 3
in relation to earlier work and in particular in relation to the theory
developed about the Laxton-Ballot group (Section 5), but also to work
about the prime divisors of the Lucas numbers by Ward and by Lagarias
(Section 6). These last two sections actually show why the study of the
prime divisors of the Lucas numbers and the study of the primes for
which —1 is two consecutive times a residue of the Fibonacci numbers
are intricately related questions. In fact, we do compare these two
sets of primes (Theorem 9). Finally we show that some computational
techniques given by Ward for deciding on whether a prime p divides
the Lucas numbers are also relevant for deciding whether —1 appears
as consecutive Fibonacci residues (end of Section 6).

It is worth mentioning that the density computation made and the
techniques used in the paper, although we voluntarily limited our study
to the sequence 1+ F, readily apply to other ternary recurrences (of a
similar kind). We suggest, for further study, a class of such sequences
in the very last remark of Section 5.

1. Preliminaries.

Definitions. We say that a condition is verified for essentially all
primes if it is true for all but possibly finitely many of the primes
considered. That finitely many primes do not verify some statement
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has no effect on the density results being proven, so we may occasionally
not mention explicitly those exceptional primes. The densities we
calculate are Dirichlet densities. Yet the sets of primes we consider
have Dirichlet and natural densities which coincide (some information
about the relationship between those two kinds of densities can be
found in Serre’s book [9, p. 76]. Here the natural density of a set .S of
primes is

I
d(S):lim%-\{pES:png.

If U is a linear recurrence sequence of order m > 2 and p is a
prime, then we say that p is a mazimal divisor of U if it divides
some m — 1 consecutive terms of U. We write p|maxU to denote
this fact. More precisely, p divides U maximally at n will mean
that plun, p|tni1,--- »P|Untm—2. (The standard definition of maximal
division requires division of m — 1 consecutive terms, but of no m
consecutive terms. If a prime divides m consecutive terms of U, then
it is a nwll divisor of U, i.e., one such that there exists k, for all n > k,
p|un. But, for any linear recurrence sequence, the prime null divisors
are always finitely many, see [1, Corollary 5.4.12]. For our purpose this
slightly modified definition of maximal division is well-suited.)

Notation. We denote the algebraic conjugate of a quadratic irra-
tional number x by Z. The symbol ( represents a primitive kth root of
unity. The golden ratio (1++/5)/2 is denoted by ¢. If p is a prime, then
(p) represents the ideal generated by p, in Z or in the ring of integers
Z[¢] of Q(v/5), or again in the ring of integers of the root field con-
sidered, depending on the context. Throughout Section 2, the symbol
U designates the sequence 1 + F'; where F' is the Fibonacci sequence
defined by Fy =0, F; =1 and F,412 = F,,41 + F,,, for alln > 0. In
Sections 4 and 5, we assume familiarity with the notions of a Lucas
sequence and of a rank of a prime in such a sequence.

Finally, P denotes the set of all rational primes, P(U) and Ppax(U)
the sets of prime divisors and prime maximal divisors of a sequence
U, while §(P) represents the density of the set of primes in P, if this
density exists.
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2. The density computation.

Lemma 1. For essentially all primes p, we have

(1) p divides U mazimally <= In e N: —1=¢"=&" (mod (p)).

Proof. The classical identity

(2) et =e-Fu1+ F,

is easily shown by induction. Now suppose p divides (14 F,,) maximally
at n, ie. Fn = F,y1 = —1 (modp). Then, by (2), e"t! =
—e—1=-— (mod (p)), which implies e"~! = —1 (mod (p)), and by
conjugatio ) 5‘" ' = —1 (mod (p)). The converse, i.e., —1 = g"~! =
e"~! (mod (p)) = F,, = F,,11 = —1 (mod p), is a direct verification
having F,, = (¢" —&")/(e — &), Yn > 0. O

Notation. Let II be a prime ideal in Z[e] lying above p. The order
of € modulo II is denoted by e.

Lemma 2. Let p € P\{2,5} and II be a prime ideal in Z[e] lying
above p. Then
D lmaz U <=4 | €.

Proof. Note first that the condition for maximal division given in (1)
is equivalent to

(3) neN: —-1=¢"=&" (modII).

This is plain if p is inert, since then (p) = II. Now, if p splits then
(p) C Il and so (3) is necessary. To show sufficiency of (3), we conjugate
(3) to obtain —1 =™ =" (mod II) so that, since (p) = II NI, (1) is
true.

Note that the exponent n in (3) is necessarily even, since (3) = 1 =
(-1)2 =eg"-&" = (e&)" = (—1)" (mod II) and p # 2. Hence, there
exists m € N : 2™ = —1 (mod II) => e|4m and e { 2m = 4]e.
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Conversely, 4le => there exists m € N : 2™ = —1 (mod II). But

3

g€ = —1 = £?m&?™ = 1, which implies £2™z?>™ = 1 (mod II). So
g?m = —1 (mod II) = £2™ = —1 (mod II). Hence (3) is satisfied for
n = 2m. O

Theorem 3. FEssentially all primes congruent to £2 (mod 5) are
mazximal divisors of U.

Proof. The primes congruent to £2 modulo 5 are inert in Z[e] so that
the Frobenius automorphism ¢ = o(p) is the nontrivial automorphism
of Q(v/5) over Q. That is, for all z € Z[¢], we have Z = o(z) = P
(mod II). Thus, —1 = e€ = eo(e) = &P*! (mod II). So, e]2(p + 1) and
efp+ 1. Hence, 4 | e and p|paxU by Lemma 2. O

Theorem 4. The primes congruent to =1 modulo 5 and dividing U
mazimally have density § = 1/6.

Proof. For j > 1,let S = {p:p ==+1 (mod5) and p = 1 + 27
(mod 27F1)}.

Let j > land p € §/. Then, by Lemma 2, we have p fax U <= 4 {e.

But since p splits in Z[e], the field Z[e]/II is isomorphic to Z/(p) and
so e|p—1. Hence, 4 { e <= -1/ =1 (mod II), which by Euler’s
criterion means that X2 — ¢ =0 (mod II) is solvable in Z[¢]. Now
by the Kummer-Dedekind theorem, and if we bear in mind that p € S7,
then the condition that X2~ — & =0 (mod II) be solvable in Z[e] is
equivalent to

(1) p splits completely in F; = Q( ¥ Ve, (o),
but not in G = Fj((ai+1).

Now F; and G; are normal extensions of Q. Indeed, to see that
F; is normal, note that the minimal polynomial of o = 27VE s
(X277 — X2 _ 1. The 2 conjugates of o are of the form po
or pf3, where p is any 29-1-th root of 1 and 8 = > \/Z. Note that
aff = (9 € F; = 8 € F}, so that all the conjugates of o are in Fj.
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But Fj is the field obtained by adjoining all the conjugates of o to Q.
Hence, F} is the splitting field of X% — x?7" — 1 and so is a normal
extension of Q.

But applying the Kronecker density theorem to (4), one gets the
density 6; of primes in S’ which are not maximal divisors of U

5L 1 11
TUIF:Q [Gi:Ql 2 [F:Q]
1 11

2 92i.2i-1  4i°

Hence, because the sets S7 are disjoint, the density § of non-divisors
among primes congruent to =1 (mod 5) is

And the density § is then obtained by subtracting § = 1/3 from the
density of primes congruent to +1 (mod 5), i.e., 1/2. Hence,

Theorem 5. The density of prime mazimal divisors of (1 + F,,) is
2/3.

Proof. Tt is a straightforward consequence of Theorem 3 and Theorem
4. o

Numerical data. We found that 670 of the first thousand primes
divide two consecutive terms of the sequence 14+F,,. This data compares
favorably to the density result of Theorem 5.

Remark. Note that all prime maximal divisors of U congruent to +1
modulo 5 must also be congruent to 1 modulo 4, since 4 | e =4 | p—1.
Hence we may summarize our density result by stating that the set of
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maximal divisors of U = 1 4+ F consists of the primes = £2 (mod 5)
and two-thirds of the primes =1 or 9 (mod 20).

3. Consecutive *1 residues in the Fibonacci sequence.

Theorem 6. The pairs (1,1) and (—1,1) are consecutive Fibonacci
residues for all primes, while the pairs (—1,—1) and (1,—1) both occur
as consecutive Fibonacci residues for the same set of primes; this set
has density 2/3.

Proof. That there exists n € N : (F,,Fr+1) = (1,1) (mod p), for
all p prime, is indisputable since (Fj, F») = (1,1). Similarly, we have
(F_2,F_1) = (—1,1) and because the Fibonacci sequence is periodic
modulo p, the pair of residues (—1, 1) will occur as (F,, Fj,4+1) modulo
p with some n > 0 for any prime p.

Finally because F, s = F, 1 + F, (mod p), one can readily verify
that

(Fn—QaFn—l) = (la 71) (mOd p)
— (Fn+1aFn+2) = (_17 _1) (mOd p)v

so that (1, —1) will occur as consecutive Fibonacci residues if and only
if (—1,1) does. The result then follows from Theorem 5. u]

4. An elementary proof of Theorem 3. It is possible to
give a proof of Theorem 3 which does not make use of the Frobenius
automorphism and which is almost solely based on elementary Lucas
identities. To present such a proof, we first state a result, which is a
generalization of the usual Euler’s criterion.

Proposition 7. (Euler’s criterion for Lucas sequences). Let U be the
Lucas sequence associated to the quadratic polynomial X2 — PX +Q of
discriminant D. If pt2QD, then

Pl Up-v)/2 = <%> =1,

where v is the Legendre symbol (D/p).
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Proof. See [3, p. 628] or [4, p. 185]. These proofs rely on appropriate
Lucas identities. u]

Second proof of Theorem 3. Let p be a prime inert in Z[e]. From
elementary Lucas theory, we know that eP™ = &P (mod (p)), since
then the rank of p in the Fibonacci sequence must divide p+ 1. Hence,

) <§_><p+1>/2 =41 (mod ().

g

The sign in (5) is given by Euler’s criterion. Indeed, it is positive
> cPtD/2 = gP4D/2 (mod (p)) <= p | Flpi1)/2 if and only if,
by Proposition 7 and assuming p # 2, (-1/p) = +1 <= p =1
(mod 4). So in (5) we have respectively +£1 according to whether
p==+1 (mod 4).

Now,

(

(p+1)/2
) = (_52)(p+1)/2 - _(_1)(p—1)/25p+1

-1 -1 e (p+1)/2
S G
( p > p g

mp| ™

Hence,

—(+1)(+1) ifp=1 (mod 4),

(mod (p)), et = —1= { —(=1)(-1) ifp= -1 (mod 4).

So ePt! = —1 (mod (p)), for essentially any inert prime p. Conse-
quently, —1 = eP*1 = 7! (mod (p)) which, by Lemma 1, means that
p is a maximal divisor of (1 + F},). O

5. Relation between 1 + F,, and the Laxton-Ballot group.
Omitting some technicalities, we will say that Laxton [8] constructed
a group structure on the set of all sequences of integers that satisfy the
same binary recurrence. The group operation x* is such that if a prime
p divides both sequences U and V, then p divides the product sequence
U % V. (This group is infinite, of infinite rank, yet has finite torsion.)
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The author [1, Chapters 4 and 5| generalized this group structure
to recurrences of any degree m > 2, using for division the notion
of maximal division. (See also the group constructed for recurrences
having a characteristic polynomial with a double root in [2].)

The method of Hasse and its direct generalizations have so far only
been successful in computing the exact density of maximal prime
divisors for some of the few sequences lying in the finite torsion
subgroup of the Laxton-Ballot group. The sequence (1 4+ F},) is no
exception since it is a torsion element of order two.

Indeed, letting f € Z[X] have distinct roots 6,...,60,, and U be a
sequence with characteristic polynomial f, we write, as Ward did [10,
see (2.4)]

n

0;
70’ VneN,

U, = i Ai
i=1

where A; is explicitly representable in terms of Uy, Uy, ... ,U, 1 and
the roots of f, see [1, Theorem 5.1.6]. The sequence U is fully deter-
mined by the m-tuple (A, ..., A,,) and the product * of two sequences
having f as characteristic polynomial is defined via component-wise
multiplication of the two corresponding m-tuples, see [1, pp. 36, 76].

For m = 3, we have A; = Upb203 — U1(02 + 03) + Uz and, letting the
permutation (123) act on the subscripts of the ;’s once and twice, we
obtain respectively Ay and Az. So one can check the result below

Theorem 8. Let0; = 1,0, =¢,03 = and f(X) = H?:1(X—9i) =
(X —1)(X%?—-X —1). Then

(1 + Fn+1) = <_17 L, 1>'

Note that Theorem 8 implies that (1 + Fj,41) is torsion of order
2, since (—1,1,1) % (—=1,1,1) = (1,1,1), the identity element of our
group. (However, we may say that (1 + F,) has order two, because
the Laxton-Ballot group is actually defined on classes of sequences and
two sequences differing from each other by a shift in the subscripts are
in the same class. They also share the same maximal divisors. See [1,
Proposition 5.4.4].

We end Section 5 by a few complementary remarks.
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Remarks. (i) Let U be a sequence (A;, A2, As). By Lemma 5.2 of
[10] (or Theorem 4.4.1 of [1]), for essentially all primes p, we have

p is a maximal divisor of U at n <=

6
(6) A107 = A207 = A303 (mod (p)).

Equivalence (6) is a general criterion for maximal division of which
Lemma 1 is a particular case.

(ii) Instead of working with the sequence U,, = 1+ F},, we could have
used the sequence V,, = (—1)"*! + F,, since (V,,—2)n>0 is the torsion
element (—1,1,1) of the group associated to g(X) = (X +1)(X?% - X —
1). By (6), we would have obtained for essentially all primes p

p is a maximal divisor of V <=

(7) ImeN: (1) =" =&" (mod (p)).

Computing the density of maximal divisors of V using (7), in the
manner we used Lemma 1, would have yielded the density of primes for
which the pair (1, —1) occurs as consecutive Fibonacci residues modulo
p. As we saw in Section 3, this result is equivalent to Theorem 5 of
Section 2.

(iii) The computation presented in Section 2 seems to apply well to
the general sequence (—1,1,1); for f(X) = (X £ 1)(X - 0)(X —0) €
Z[X], especially when /0 = (6%, where k € Z and ( is a root of 1.

6. Comparison between P,..(1 + F) and P(L). Lagarias [7]
showed that the set of primes dividing the Lucas numbers (L,) has
density 2/3. But the sequence L, = €™ + " is also of order two in
the corresponding Laxton-Ballot group. Moreover, the characteristic
polynomial of (L,), i.e., X? — X — 1 relates simply to the one of 1+ F.
Thus, our computation and the choice of (1 + F},) are connected to the
article of Lagarias. In fact, it is worthwhile comparing prime divisors
of the Lucas numbers to prime maximal divisors of U = 1 + F. The
prime divisors of (L,,) were studied by Ward [11]. And as Ward did,
we partition the p’s in P into four classes according to the quadratic
characters of 5 and —1 modulo p. Thus, let P;,P2,P3s and P, be
respectively the sets of primes of the forms 20k + 1 or 9, 20k + 11 or
19, 29k 4 13 or 17 and 20k 4+ 3 or 7. Each P;, 1 < ¢ < 4, has density
1/4 by the Dirichlet density theorem.
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Note that P3 U Py C Pmax(l + Fn) by Theorem 3 and that Py N
Pmax(l + F,) = @ (see the proof of Theorem 4 when j = 1). For
Lucas numbers, we have P, UP4 C P(L,,) and PsNP(L,) = &. These
facts were shown by Ward using elementary identities involving the
Fibonacci and the Lucas numbers, see [11, Lemma 2.2]. They also
appear in [7] but are presented in the context of Hasse’s method.

Now the set of prime divisors of (L,) in P; and the set of maximal
prime divisors of (1 + F},) in P; both have density 1/6, by Lemma 3.1
of [7] and Theorem 4 of this paper, respectively. Are they the same
sets? No. To describe this situation, we need to partition P; into
three subsets Pi,PZ, P} respectively according to whether Vs (e) < 1,
Va(e) = 2 or Va(e) > 3. (Here e is the order of € modulo II as defined
in Section 2 and Vs(e) is the 2-adic valuation of e.)

In [11, p. 381], Ward showed that, for p € Py,
(8) ptL<=e == -1 (modIl),

where p — 1 = 27¢q and ¢ is odd. Now the congruence condition in (8)
precisely means that Va(e) = 2 and hence implies that p|max(1 + Fy,).
Hence, P? N P(L) = @ and P? C Pnax(1 + F,,). But equivalence (8)
also implies that P UP$ C P(L). And, since p|max(1+ Fy) <= 4| e,
we have P{ C Puax(1 + F,) and P N Ppax(1 + F,) = @. Note that
§(PE) = 8(Pi\P(L)) =1/4—1/6 = 1/12 and §(P}) = 6(P1\Puax(l +
F,)) =1/4—1/6 = 1/12. Thus, §(Pi) = 1/12 for all i € {1,2,3}.

We sumimarize the above discussion in a theorem.

Theorem 9. The synoptic diagram below classifies primes according
to whether they divide L or divide 1 + F mazimally, or both divide L
and divide 1 + F mazimally. The three subsets Pi, 1 < i < 3, of Py
each have density 1/12.

Computational remark. Given a prime p in P;, finding out which
Pi contains p may require a lot of calculation. To decide whether p
is in P(L) or not, we can search for the rank of p in (F,), since we
know p | (L,,) <= r is even. But the object of Ward’s paper [11, The-
orem 3.3] was to find better criteria for that purpose. Writing p in P; as
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p=1 (mod 4) p =3 (mod 4)
pr| P2 P,
p==+1 (mod 5) L 1+F | L,1+F L
Ps Py
p ==+2 (mod 5) 1+F L,1+F

u? + 4v%, one such criterion stated that if p =5 (mod 8), then
p|(Lp) <> uorvis £1 (mod 5).

One point of our remark is that this criterion may also tell whether
such a prime divides (1 + F},) maximally. Indeed, since we necessarily
have 5 | uv, if we find that u or v = £2 (mod 5), then p { (L), i.e.,
p € P? and p |max (1 + F,,). For instance, 61 € P; and is 5 (mod 8).
But 61 = 5%2+4-3% and 3is —2 (mod 5), 80 61 |max (1+F,). Note that
the algorithm of Hermite, as improved by Brillhart, see [4], efficiently
yields the representation of p as u? + 4v2.

Finally, let p € P;, where p — 1 = 2/q as above. To determine
whether p is, or not, a maximal divisor of 1 4+ F', we may compute
I = a®?Y/? (mod p), where a is a solution of X2 — X — 1 (mod p).
Indeed, | = 1 <= V2(e) <1 < p fmax 1 + F, ie,, p € PL. A
solution a can be found by solving the congruence 2ta = s+t (mod p),
where p = s2 —5t2, 1 < s, 1 < t < /4p/5, see [11, p. 384]. For
example, let p =29 = L;. Thenp =72 —-5-22 —= s =7 and t = 2.
So2ta=s+t=4a=9 (mod p) = (a/p) = 1 = aP~V/* = 41
(m0d p) = 29 fax (1+ Fr).
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