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ON ENDOMORPHISM RINGS
OF FREE MODULES

J.D. REID

ABSTRACT. Right (left) ideals in the ring of n × n ma-
trices over a principal ideal domain are themselves principal.
We separate this result into its arithmetic part and the part
that simply reflects the fact that we are dealing with endo-
morphisms of a free module. We obtain, under some mild
hypotheses, an extension of this classical result to right ideals
in the endomorphism ring of free modules over arbitrary rings.

1. Introduction. It is a classical result that the ring of n × n
matrices over a principal ideal domain R is itself a principal (left and
right) ideal ring. An analogous result holds for the matrices over a
division ring. Of course these matrix rings are just the endomorphism
rings of the free modules of finite rank over the base rings. Ideals in
endomorphism rings of infinite dimensional vectors spaces over division
rings have been studied as well (e.g., [2], [6]). Also, for extensions of
the result on principal ideal domains, see [1] for example.

In looking at the classical theorem explicitly from the point of view
of the endomorphism rings, rather than arithmetically, we were led to
a quite general result which has various classical theorems as special
cases. This is given in Section 4, though we need to invoke a certain
hypothesis which, while slightly peculiar, seems to be at the heart of
things. It is the arithmetic structure of principal ideal domains that
then certifies the condition in the classical case. We think that these
developments help delineate the classical results to some extent, and
extend those results as well, so we hope that this note might be of
interest to others.

Throughout the paper, R will denote a ring, F a free left R-module
and Λ = EndR(F ) is the ring of endomorphisms of F . We operate on
the left of F with elements of Λ as well as with elements of R.
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2. A correspondence. In this section we give a general corre-
spondence between submodules of a free module and right ideals of its
endomorphism ring. This is a very simple result and is probably well
known, certainly so in special cases ([2], [6]). Variants of this corre-
spondence may be found in [5] and in [3, Chapter 5, Sect. 7]. See also
[4]. However the discussion below is short, self-contained, somewhat
different, and allows us to put a slight spin on the result to fit our
application. Therefore we include it here.

Let M be an R submodule of F and write

Φ(M) = {λ ∈ Λ | λF ⊆ M} = HomR(F, M).

Clearly Φ(M) is a right ideal of Λ but it has a somewhat special
property. Thus write J for Φ(M) for a moment and suppose that
σ ∈ Hom (F, JF ). Here JF denotes the submodule

∑
λ∈J λF of F .

Then
σF ⊆ JF = Hom (F, M)F ⊆ M

whence σ ∈ J . Thus Hom (F, JF ) ⊆ J and, since J is obviously
contained in Hom (F, JF ), such ideals Φ(M) are complete in the sense
of the following.

Definition 1. Let I be a right ideal of the ring Λ. We say that I is
complete if I = Hom (F, IF ).

The right ideal I of Λ is contained in the right ideal Hom (F, IF ) in
any case so that the latter is sort of a closure of I and it might be more
natural to call I closed if they are equal. However we will reserve the
word “closed” for use in a more traditional sense later on.

Now denote by S the set of R-submodules of F and by I the set of
complete right ideals of Λ. Then we have the correspondences

Φ : S −→ I and ΨI −→ S
given by M �−→ Φ(M) := Hom (F, M) for M ∈ S and I �→ Ψ(I) := IF
for I ∈ I.

Proposition 1. The correspondences Φ and Ψ are inverse bijections
between the sets S of submodules of F and I of complete right ideals
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of Λ. We have Φ(σF ) = σΛ for σ ∈ Λ so principal right ideals are
complete and are matched with the endomorphic images of F .

Proof. For I ∈ I we have ΦΨ(I) = Φ(IF ) = Hom (F, IF ) = I by
completeness of I.

Now let M ∈ S and let {xν} be an R-basis of F . For w ∈ M , define
ρ = ρw : F → F by ρ(xν) = w for all xν . Since F is free on {xν}
this extends to an R homomorphism of F into Rw ⊆ M , that is, to an
element ρ ∈ Λ. Clearly in fact ρ ∈ Φ(M). Then we have

w ∈ ρF ⊆ Hom (F, M)F = Φ(M)F.

Since w is arbitrary in M , we conclude that M ⊆ Φ(M)F ⊆ M .
This gives M = Φ(M)F = ΨΦ(M) and establishes the first part of the
proposition.

Now let σ ∈ Λ. Then σF is an R submodule of F . Consider
Φ(σF ) = Hom (F, σF ). If λF ⊆ σF , i.e., λ ∈ Φ(σF ), write λxν = yν

for the basis {xν} of F . Then yν ∈ σF by hypothesis on λ so yν = σwν

for some wν in F . Define δ : F → F by δxν = wν . Then λxν = σδxν

for all ν so λ = σδ ∈ σΛ. This shows that Φ(σF ) ⊆ σΛ, and obviously
σΛ is contained in Φ(σF ), so we have equality. In particular, σΛ is
complete as is any ideal Φ(M), and we see that principal ideals and
endomorphic images correspond as asserted. This completes the proof.

For emphasis, we point out the following corollary.

Corollary 1. Principal right ideals are complete and every complete
right ideal of Λ is principal if and only if every R-submodule of F is an
endomorphic image.

3. On density. We will say in what follows that an endomorphism
λ of a module is of finite type if its image is contained in a finitely
generated submodule. For example, every endomorphism of a finitely
generated module is of finite type. The following lemma is well known
but we state it in order to establish some useful notation.
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Lemma 1. Let F be the free R module on the basis {xν | ν ∈ N}
and let Λ be the endomorphism ring of F . For any ν ∈ N the Λ-exact
sequence

0 −→ Lν −→ Λ −→ F −→ 0, λ� λxν

is split exact. If {εν} are the projections of F onto the Rxν , then Lν

is the left annihilator Λ(1 − εν) of εν , F ∼= Λεν as left Λ-module and
F = Λxν is cyclic projective over Λ with each xν as generator.

The next result is basic to our discussion. It is given, with another
application, in [7] but a proof is included here for the reader’s conve-
nience.

Proposition 2. If I is a right ideal of Λ, then IF = F if and only
if I contains all the endomorphisms of F of finite type.

Proof. Assume that IF = F for the right ideal I of Λ. Then in the
notation of the lemma, F = IF = IΛxν so the map λ � λxν in the
lemma takes I onto F . Therefore, Lν +I = Λ so εν = αν −λν for some
αν ∈ i and λν ∈ Lν . Then

λν = λν(1 − εν) = (εν + λν)(1 − εν) = αν(1 − εν) ∈ I.

We conclude that εν = αν − λν ∈ I and this is true for all ν. Now
if λ is an endomorphism of finite type so λF is contained in

∑m
i=1 Ryi

say, we may write
yi =

∑

ν∈S

riνxν

for all i and some fixed finite set S of indices. Since
∑

ν∈S εν is
the identity map on ⊕ν∈SRxν and λF ⊆ ⊕ν∈SRxν , we have λ =
(
∑

ν∈S εν)λ =
∑

ν∈S ενλ ∈ I. Therefore, I contains all endomorphisms
of finite type.

The converse, that if I contains all endomorphisms of finite type,
then IF = F , is clear.

If F is given the discrete topology and the set of functions FF is given
the product topology, then Λ = EndR(F ) is a closed subset of FF . We
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recall that the induced topology of Λ is called the finite topology. A
base for the system of neighborhoods of λ ∈ Λ is given by the collection
of finite subsets X of F by NX(λ) = {µ ∈ Λ | µ(x) = λ(x) for all
x ∈ X}. Thus, for example, a base for the system of neighborhoods
of zero is the set of all annihilators of finite subsets of F . As is well
known, Λ is a topological ring relative to this structure and the ideal
of endomorphisms of finite type is dense in Λ. As a corollary to the
proposition we have

Corollary 2. If I is a right ideal in Λ and IF = F , then I is dense
in the finite topology. In particular, a closed ideal I satisfies IF = F
if and only if I = Λ.

It is easy to see that finitely generated right ideals of Λ are closed
in the finite topology, so IF = F if and only if I = Λ for such an
ideal. Observe too that if F is finitely generated over R, then the finite
topology is discrete so IF = F implies that I = Λ always.

4. Principal, complete and closed ideals. If R is viewed as
a free module of rank 1 over itself, then every ideal is closed, but of
course not every such need be principal. On the other hand, for F free
of infinite rank, the ideal of endomorphisms of finite type is dense, not
closed. We attempt to straighten some of this out as follows.

Proposition 3. Over any ring R, principal right ideals of Λ are
complete and complete right ideals are closed.

Proof. We have already seen that the principal ideal σΛ is complete
since σΛ = Φ(σF ) (Proposition 1). Now let J be any complete right
ideal, and suppose that λ ∈ Λ satisfies NX(λ) ∩ J �= ∅ for every finite
subset X of F . Taking X to be the singleton {xν} for each basis element
of F in turn, we see that there exists ρν ∈ J such that ρνxν = λxν .
Since ρνxν ∈ JF , we conclude that λxν ∈ JF for all ν. Therefore
λF ⊆ JF , i.e., λ ∈ Hom (F, JF ) and, since J is complete, we have
λ ∈ J . Thus J is closed.

So far we have not imposed any restrictions on the base ring R.



1602 J.D. REID

However, our main interest concerns conditions under which the right
ideals of λ = EndR(F ) are principal. For example, if the free module
F has rank 1, so F is the left module R over itself, then Λ is the ring
of right multiplications by elements of R, i.e., the opposite ring R0

to R and right ideals of Λ correspond to left ideals of R. These are
principal if and only if R is a left principal ideal ring. Some conditions
are therefore necessary and Corollary 1 suggests condition (∗) below.
While this may appear to be giving away the store in some sense, there
are many natural situations in which the condition is satisfied.

Therefore, we now assume of the free module F :

(∗) Every R-submodule of F is an endomorphic image of F .

Proposition 4. Under (∗) every complete right ideal of Λ is
principal.

Proof. Suppose that I is complete so that I = Hom (F, IF ). By (∗),
IF = σF for some σ ∈ Λ. Proposition 1 now gives

I = Hom (F, IF ) = Hom (F, σF ) = Φ(σF ) = σΛ

so I is principal.

Proposition 5. Under (∗) closed right ideals I of Λ are principal.

Proof. Let I be a closed ideal and form its “completion”

I ′ = {λ ∈ Λ | λF ⊆ IF} = Hom (F, IF ) = ΦΨ(I).

Then I ′ = δΛ for some δ by Proposition 4 because I ′ is complete.
Observe also that

IF = Ψ(I) = ΨΦΨ(I) = Ψ(I ′) = I ′F.

Put P = {λ | δλ ∈ I}. Then δl, left multiplication by δ on Λ, takes Λ
onto I ′ and takes P onto I.
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∆ −→ I ′ −→ 0
� δl

�

P −→ I −→ 0

Moreover, the kernel of δl is contained in PF for, if δx = 0, define σ
on the basis {xν} of F by σxν = x for all ν and extend to F . Then
δσ = 0, so certainly σ ∈ P and x = σxν ∈ σF ⊆ PF as asserted.

Now δl takes F onto δF = δΛF = I ′F and takes PF onto δPF = IF .
But IF = I ′F and, since ker δl ⊆ PF , we conclude that PF = F .
Then, by Corollary 2, P is dense in Λ. However, P = δ−1

l (I) with I
closed and δl continuous, so P is also closed. But then P must be equal
to Λ so I equals I ′ and is principal.

We summarize these remarks in

Theorem 1. Let R be any ring and let F be a free module over R in
which every submodule is an endomorphic image. Then a right ideal of
EndR(F ) is principal if and only if it is closed in the finite topology.

We close with a few comments on the scope of this theorem. First of
all, for any ring R a free module F which has a basis of cardinality at
least as large as the cardinality of F itself, satisfies (∗). Indeed, then
every submodule has a set of generators (e.g., the submodule itself) of
cardinality less than or equal to that of the basis of F so there is a
homomorphism of F onto the submodule. For example, this is true for
a free module of infinite rank over a finite or countably infinite ring.

On the other hand there are various kinds of rings for which condition
(∗) is satisfied for any free module. Thus, if R is a field or a division ring,
or more generally a semi-simple ring, then every module is completely
reducible so the condition holds. Similarly, for principal ideal domains
R, it follows from the theory of elementary divisors, for example, that
(∗) holds in any free module of finite rank. And more generally,
submodules of free modules of any rank r over a principal ideal domain
are themselves free of rank not exceeding r, so the condition holds here
too.
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For free modules of finite rank the finite topology on Λ is discrete so
all right ideals are closed. Therefore our results contain the classical
case of (finite) matrices over a principal ideal domain, the motivating
example.

Finally we note that the hypothesis (∗) on F is inescapable in any
case, if we want to conclude that the principal ideals are exactly the
closed ideals (Corollary 1).
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