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OSCILLATION AND NONOSCILLATION THEOREMS
FOR FOURTH ORDER DIFFERENCE EQUATIONS

EWA SCHMEIDEL

ABSTRACT. This paper is concerned with a class of fourth
order nonlinear difference equations. Two types of nonoscil-
latory solutions will be considered. Relations between these
types of solutions and their oscillatory behavior are the main
purpose of this paper.

1. Introduction. In several papers the oscillatory and asymptotic
behavior of solutions of third order difference equations have been
discussed. For example, note the papers [12] [15] and [17]. When
compared to differential equations the study of difference equations
has received little attention for orders greater than three. Fourth order
linear difference equations are considered in [4], [6], [16], [18] and [19].
Fourth order nonlinear difference equations are studied in [10], [11]
and [20].

In this paper we will study fourth order difference equations

(E) ∆4yn = f(n, yn), n ∈ N = {0, 1, 2, . . . }
where ∆ is the forward difference operator ∆yn = yn+1 − yn and
∆kyn = ∆(∆k−1yn) for k = 2, 3, . . . . The sequence y = {yn} is
the trivial sequence if there exists n0 ∈ N such that yn = 0 for all
n ≥ n0. By a solution of (E), we mean any nontrivial sequence {yn}
satisfying equation (E), for all n ∈ N . In general, we will assume that
the usual existence and uniqueness theorem for solutions of equation
(E) holds. A solution is oscillatory if, for every m ∈ N , there exists
n ≥ m such that ynyn+1 ≤ 0. Therefore a nonoscillatory solution is
eventually positive or eventually negative. We assume that void sum is
equal to zero. In the paper we assume that this function f : N×R → R
satisfies condition

(∗) xf(n, x) < 0 for n ∈ N, x ∈ R \ {0}.
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We define operator F as

F (xn) = xn−1∆3xn −∆xn−1∆2xn, n ∈ N.

We use the F operator to classify solutions of equation (E).

Definition. If F (yn) ≥ 0 for all n ∈ N , then a solution y of equation
(E) is called F+-solution. If F (yn) < 0 for some n, then a solution y of
equation (E) is called F−-solution.

Operator F divides the set of solutions into two disjoint subsets F+

and F−-solutions.

The following properties, see [10], of nonoscillatory solutions of
equation (E) are known. Every nonoscillatory solution {yn} of equation
(E) is one of four types:

(A4+) yn > 0, ∆yn > 0, ∆2yn > 0, ∆3yn > 0, ∆4yn < 0,
(A4−) yn < 0, ∆yn < 0, ∆2yn < 0, ∆3yn < 0, ∆4yn > 0,
(A2+) yn > 0, ∆yn > 0, ∆2yn < 0, ∆3yn > 0, ∆4yn < 0,
(A2−) yn < 0, ∆yn < 0, ∆2yn > 0, ∆3yn < 0, ∆4yn > 0,

eventually.

In the paper we consider the relationship between F+, F−-solutions
and (A4+), (A4-), (A2+), (A2-) types.

Lemma 1.

(1) ∆F (yn) = yn∆4yn −∆2yn−1∆2yn+1.

The proof is evident.

Lemma 2. If {yn} is a nonoscillatory F+-solution of equation (E),
then

∞∑

n=1

(∆2yn−1)(∆2yn+1) < ∞,(2)
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and

lim
n→∞(∆2yn−1)(∆2yn+1) = 0.(3)

Proof. Let {yn} be an F+-solution of equation (E). From (1), we get

∆F (yk) = ykf(k, yk)−∆2yk−1∆2yk+1.

Now by summation, we obtain

F (yn) = F (y1) +
n−1∑

k=1

ykf(k, yk)−
n−1∑

k=1

∆2yk−1∆2yk+1.

Since F (yn) ≥ 0, then

0 ≤ F (y1) +
n−1∑

k=1

ykf(k, yk)−
n−1∑

k=1

∆2yk−1∆2yk+1,

and, from (∗),
F (y1) ≥

n−1∑

k=1

∆2yk−1∆2yk+1.

Hence,
∞∑

k=1

∆2yk−1∆2yk+1 < ∞.

Condition (3) follows directly from (2).

Main results.

Theorem 1. If {yn} is a nonoscillatory solution of equation (E),
then F (yn) is an eventually decreasing function on N .

Proof. Let {yn} be an eventually positive solution of equation (E).
(For an eventually negative solution, the proof is similar.) Then {yn} is
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an (A4+)-solution or an (A2+)-solution, implies ∆2yn−1∆2yn+1 > 0.
From (1) and (∗), we have

∆F (yn) = yn∆4yn −∆2yn−1∆2yn+1

= ynf(n, yn)−∆2yn−1∆2yn+1 < 0.

Hence the proof is complete.

Remark 1. Assume {yn} is a positive or negative solution of equation
(E); then F (yn) is a decreasing function on N .

Theorem 2. If {yn} is a nonoscillatory F+-solution of equation (E),
then

(4)
∞∑

n=1

(∆2+jyn)2 < ∞,

and

(5) lim
n→∞∆2+jyn = 0 for j = 0, 1, 2, . . . .

Proof. We prove (4) for j = 0 first. Let {yn} is an eventually positive
solution of equation (E). (For an eventually negative solution, the proof
is similar.) Then {yn} is an (A4+)-solution or an (A2+)-solution. Let
{yn} be an (A4+)-solution. Then ∆2yn+1 > ∆2yn−1 > 0. Hence
∆2yn−1∆2yn+1 > (∆2yn−1)2, and

∞∑

n=1

∆2yn−1∆2yn+1 >

∞∑

n=1

(∆2yn−1)2.

From Lemma 2,
∞∑

n=1

∆2yn−1∆2yn+1 < ∞.

Then we get
∞∑

n=1

(∆2yn)2 < ∞.
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If {yn} is an (A2+)-solution, the proof is analogous.

We will prove (4) by induction.

Let ∞∑

n=1

(∆2+jyn)2 < ∞.

We will prove that
∑∞

n=1(∆
2+j+1yn)2 < ∞. Using inequality −2ab ≤

a2 + b2, we have

(∆2+j+1yn)2 = (∆2+jyn+1)2 − 2∆2+jyn+1∆2+jyn + (∆2+jyn)2

≤ 2(∆2+jyn+1)2 + 2(∆2+jyn)2.

So

∞∑

n=1

(∆2+j+1yn)2 ≤ 2
∞∑

n=1

(∆2+jyn+1)2 + 2
∞∑

n=1

(∆2+jyn)2

= 2
∞∑

n=2

(∆2+jyn)2 + 2
∞∑

n=1

(∆2+jyn)2 < ∞.

Hence (4) holds for j = 0, 1, 2, . . . .

Condition (5) follows directly from (4).

Theorem 3. If there exists ε > 0 such that

(6) |f(n, x)| ≥ ε for (n, x) ∈ N × {R \ {0}},

then equation (E) does not have a nonoscillatory F+-solution.

Proof. Suppose that there exists a nonoscillatory F+-solution {yn} of
equation (E). By Theorem 2, we have

lim
n→∞∆4yn = 0.

Then, from equation (E), limn→∞ f(n, yn) = 0, so limn→∞ |f(n, yn)| =
0. On the other hand, by (6), if there exists limn→∞ |f(n, yn)|, then
limn→∞ |f(n, yn)| ≥ ε. The proof is completed by contradiction.
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Solution {yn} of equation (E) is called an F -solution if {yn} is an F+-
solution or an F−-solution. Solution {yn} of equation (E) is called an
(A2)-solution if {yn} is an (A2+)-solution or (A2)-solution. Solution
{yn} of equation (E) is called an (A4)-solution if {yn} is an (A4+)-
solution or an (A4-)-solution. Solution {yn} of equation (E) is called
an A-solution if {yn} is an (A2)-solution or (A4)-solution.

Theorem 4. Each nonoscillatory F+-solution of equation (E) is an
(A2)-solution. Each (A2)-solution is an F+-solution.

Proof. Let {yn} be any eventually positive solution. (The proof for
eventually negative solution is similar.)

Assume that {yn} is an F+-solution. Suppose to the contrary that
{yn} is an (A4+)-solution. Then ∆3yn > 0 and ∆2yn > 0 so {∆2yn} is
an eventually increasing positive sequence. This contradicts condition
(5). Then {yn} is an (A2+)-solution.

Assume that {yn} is an (A2+)-solution. Then we have: yn > 0,
∆3yn > 0, ∆yn > 0 and ∆2yn < 0, so F (yn) > 0 eventually.

Theorem 5. Let {yn} be a positive solution of equation (E). If

(7)
∞∑

n=1

(∆2yn)2 < ∞,

then {yn} is an F+-solution.

Proof. Let {yn} be a positive solution of equation (E), for which
condition (4) holds. Suppose that {yn} is an F−-solution. Then,
for some m ∈ N , we have F (ym) < 0. So, by Remark 1, F (yn) <
F (ym) < 0 for n ≥ m. Since {yn} is a positive solution of equation
(E) then {yn} is an (A4+)-solution or (A2+)-solution. We exclude
both of the cases. For the (A4+)-solution we have

∑∞
n=1 ∆2yn = ∞,

so
∑∞

n=1(∆
2yn)2 = ∞. By Theorem 4, the (A2+)-solution is an F+-

solution. Thus {yn} is an F+-solution.

Remark 2. Let {yn} be a negative solution of equation (E). If
condition (7) holds, then {yn} is an F+-solution.
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Remark 3. Let {yn} be a negative or positive solution of equation
(E). Then {yn} is an F+-solution if and only if

∞∑

n=1

(∆2yn)2 < ∞.

Theorem 6. If {yn} is a nonoscillatory F−-solution of equation (E),
then {yn} has an unbounded first difference.

Proof. By Theorem 4, the nonoscillatory F−-solution has to be an
(A4)-solution. Then, for an eventually positive solution, we have

∆2yn > ∆2ym > 0 for n > m,

so by summation we get

∆yn ≥ ∆ym + (n − m)∆2ym, n ≥ m.

Hence limn→∞ ∆yn = ∞.

Remark 4. Every nonoscillatory F−-solution of equation (E) is
unbounded.

Proof. Suppose that {yn} is an F−-solution of equation (E) and {yn}
is bounded. Then there exists C such that

|yn| ≤ C for n ∈ N.

So |∆yn| ≤ |yn+1|+ |yn| ≤ 2C. It is impossible by Theorem 4.

Remark 5. Every nonoscillatory bounded solution of equation (E) is
an F+-solution.

Remark 6. Every nonoscillatory F+-solution of equation (E) has a
bounded first difference.
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Theorem 7. If there exists a positive constant δ such that

(8) xf(n, x) ≤ − δ

n
, for (n, x) ∈ N × {R \ {0}}.

then equation (E) does not have a nonoscillatory F+-solution.

Proof. Suppose that there exists an F+-solution of equation (E). Let
{yn} be such a solution. Then

0 < F (ym) = F (y1) +
m−1∑

j=1

yjf(j, yj) −
m−1∑

j=1

∆2yj−1∆2yj+1.

Hence

−
m−1∑

j=1

yjf(j, yj) < F (y1)−
m−1∑

j=1

∆2yj−1∆2yj+1.

From Lemma 2

−
∞∑

j=1

yjf(j, yj) < F (y1) −
∞∑

j=1

∆2yj−1∆2yj+1 < ∞.

On the other hand, by (8),

−yjf(j, yj) ≥ δ

j
.

Then

−
∞∑

j=1

yjf(j, yj) ≥ δ

∞∑

j=1

1
j

= ∞.

The proof is complete by contradiction.

Theorem 8. If for arbitrary positive constant ε there exists δ =
δ(ε) > 0 such that

(9) |f(n, x)| >
δ

n2
, for n ∈ N and |x| > ε,
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then every F+-solution of equation (E) is oscillatory.

Proof. Let {yn} be a nonoscillatory F+-solution of equation (E).
Then, from Theorem 2,

lim
n→∞∆2yn = lim

n→∞∆3yn = 0.

Suppose that {yn} is an eventually positive solution of equation (E).
(For an eventually negative solution the proof is similar.) Then there
exists m ∈ N such that yn > 0 for n > m. Summing equation (E), we
obtain

∆3yn −∆3yk =
n−1∑

j=k

f(j, yj).

Then

(10) −∆3yk =
∞∑

j=k

f(j, yj).

Therefore series
∑∞

j=k f(i, yj) converges. From (10), we have

(11) −∆2yn + ∆2ym =
n−1∑

k=m

∞∑

j=k

f(j, yj).

Then ∆2ym =
∑∞

k=m

∑∞
j=k f(j, yj). Therefore, series

∑∞
k=m

∑∞
j=k f(j, yj)

converges. Also

n−1∑

k=m

∞∑

j=k

f(j, yj) =
n−2∑

k=m

(k + 1 − m)f(k, yk) + (n − m)
∞∑

k=n+1

f(k, yk)

≤
n−2∑

k=m

(k + 1 − m)f(k, yk),

for n > m. From (11), we get

∆2yn −∆2ym ≥ −
n−2∑

k=m

(k + 1 − m)f(k, yk).
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So,
−∆2ym = lim

n→∞[∆2yn −∆2ym]

≥
∞∑

k=m

(k + 1 − m)[−f(k, yk)]

≥
∞∑

k=m

(k + 1 − m)
δ

k2
= ∞.

Because −∆2ym is finite, the obtained contradiction proves our theo-
rem.

Theorem 9. Assume that f is nondecreasing on (0,∞) and nonin-
creasing on (−∞, 0). If

(12)
∞∑

j=1

j3|f(j, C)| = ∞,

for every constant C 
= 0, then equation (E) does not possess a
nonoscillatory bounded solution.

Proof. Let {yn} be a nonoscillatory bounded solution of equation
(E). Then, by Remark 5, {yn} is an F+-solution and, by Theorem 4,
{yn} is an (A2)-solution. Let {yn} be an (A2+)-solution. (For the
(A2-)-solution the proof is similar.) Let us denote

(13) vn =
3∑

k=0

(−1)k

(3− k)!
(n + 2 − k)(3−k)∆3−kyn, n ∈ N,

then
∆vn =

1
6
(n + 3)(3)∆4yn,

hence
∆vn =

1
6
(n + 3)(3)f(n, yn).

Summing the equality, we have

vn = vn0 +
1
6

n−1∑

j=n0

(j + 3)(3)f(j, yj).



FOURTH ORDER DIFFERENCE EQUATIONS 1093

Let vn0 = C. From (13) and by definition of an (A2+)-solution, we get

−yn − 1
6

n−1∑

j=n0

(j + 3)(3)f(j, yj) < C.

Since {yn} is increasing and bounded, there exists a constant C1 such
that yn ≤ C1 and f(j, yj) ≤ f(j, C1). Therefore,

−
n−1∑

j=n0

(j + 3)(3)f(j, C1) ≤ −
n−1∑

j=n0

(j + 3)(3)f(j, yj)

< 6C1 + 6C = C2.

Hence
n−1∑

j=n0

(j + 3)(3)|f(j, C1)| < C2 for n > n0.

Letting n go to infinity, we obtain

∞∑

j=n0

(j + 3)(3)|f(j, C1)| ≤ C2

but (j + 3)(3) = (j + 3)(j + 2)(j + 1) > j3, so we obtain contradiction
with (12).
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