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LINEAR MAPS BETWEEN BANACH ALGEBRAS
COMPRESSING CERTAIN SPECTRAL FUNCTIONS

CUI JIANLIAN AND HOU JINCHUAN

ABSTRACT. In this paper, we discuss the linear maps
between semi-simple Banach algebras which compress any one
of the spectrum, the left spectrum, the right spectrum, the
intersection of left spectrum and right spectrum, the boundary
of spectrum and the full spectrum. We prove that such
linear maps are idempotent preserving. As applications, we
characterize such maps in terms of Jordan homomorphisms on
C∗-algebras of real rank zero. In particular, we give several
characterizations of isomorphisms between standard operator
algebras by using such spectral function compressing linear
maps and surjectivity spectrum compressing or approximate
point spectrum compressing linear maps.

1. Introduction. Over the past decade, there has been a consid-
erable interest in the study of linear maps on operator algebras that
preserve certain properties of operators. In particular, a problem of how
to characterize linear maps that preserve the spectrum of each operator
has attracted the attention of many mathematicians. In [16], Jafarian
and Sourour proved that a surjective linear map preserving spectrum
from B(X) onto B(Y ) is either an isomorphism or an anti-isomorphism,
where X and Y are complex Banach spaces, and B(X) is the Banach
algebra of all bounded linear operators acting on X. Aupetit and Mou-
ton [3] extended the result of Jafarian and Sourour to primitive Banach
algebras with minimal ideals. In [21], Sourour characterized the linear
bijective maps preserving invertibility from B(X) onto B(Y ) and ob-
tained a similar result when linear map is unital. Bresar and Semrl [6]
proved that a linear surjective map preserving spectral radius on B(X)
is either an automorphism or an anti-automorphism multiplied by a
scalar with modulus 1. It is shown in [20] that every point spectrum
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preserving and surjective linear map on B(X) is an automorphism and
when X is a Hilbert space, every surjective linear map preserving sur-
jectivity spectrum is an automorphism. Recently, Aupetit [1] showed
that a spectrum preserving linear surjection from a von Neumann al-
gebra onto another is a Jordan isomorphism. For some other papers
concerning this type of linear preserver, see [13, 14, 23, 24]. We also
mention [4, 9, 17, 24] about invertibility preservers and spectrum
compressers between semi-simple Banach algebras.

Let A and B be two unital semi-simple complex Banach algebras.
We always denote by I the unit in both A and B. For any T ∈ A,
the set σ(T ), σl(T ), σr(T ), ∂σ(T ) and r(T ) will denote the spectrum,
the left spectrum, the right spectrum, the boundary of spectrum
and the spectral radius of T, respectively. The polynomial convex
hull ησ(T ) = η(σ(T )) of σ(T ) is called the full spectrum of T. If
T is an operator on a Banach space, σap(T ) and σs(T ) will denote
the approximate point spectrum and the surjectivity spectrum of T ,
respectively. Recall that the surjectivity spectrum σs(T ) of T is the
set {λ ∈ C | T − λ is not surjective}. Let ∆(·) denote any one of nine
symbols σ(·), σl(·), σr(·), σl(·) ∩ σr(·), ∂σ(·), ησ(·), σap(·), σs(·) and
σap(·) ∩ σs(·), then ∆(·) is a map from A (or B(X)) into 2C, which is
called a spectral function on A (or B(X)). If ∆ and Λ are two spectral
functions and if Λ(T ) ⊆ ∆(T ) for all T , we say that Λ is a subspectral
function of ∆. A linear map Φ : A → B is said to be ∆(·) preserving
(or, compressing) if ∆(Φ(T )) = ∆(T ) (or, ∆(Φ(T )) ⊆ ∆(T )) for all
T ∈ A.

A more general, natural and interesting question is to ask what we can
say for a surjective linear map Φ : A → B which preserves or compresses
certain spectral function ∆(·) mentioned above. Another question is
how to characterize the linear maps which preserve the left (or, right)
invertibility or the semi-invertibility, here an element T ∈ A is called
semi-invertible if it is either left invertible or right invertible. The
purpose of the present paper is to solve these questions, by developing
a method which works for all spectral functions, and generalize most
of the results mentioned above as special cases of our results. Note
that the results in [1, 3, 4, 9, 20, 21, 24] concern only the spectral
functions σ(·) and σp(·), the point spectrum.

The paper is arranged as follows. In Section 2 we discuss the lin-
ear maps compressing the spectral function ∆(·) between semi-simple
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complex Banach algebras, where ∆(·) is any one of six spectral func-
tions σ(·), σl(·), σr(·), σl(·)∩σr(·), ∂σ(·) and ησ(·). We show that such
surjections are idempotent preserving (Theorem 2.2) which generalizes
a corresponding result in [1] greatly, where the similar assertion was
proved for linear surjection preserving the spectral function ∆(·) = σ(·).
In Section 3, we characterize the spectral function compressing or semi-
invertibility preserving linear maps on C∗-algebras of real rank zero in
terms of Jordan homomorphisms. The main result is Theorem 3.1
which states that every ∆(·) compressing surjective linear map on a
C∗-algebras of real rank zero is a Jordan homomorphism. We also give
some characterizations of isomorphisms from a C∗-algebra of real rank
zero into a prime and semi-simple Banach algebra (Theorem 3.3, Corol-
lary 3.4, Corollary 3.5). Section 4 is devoted to the characterizations of
∆(·) compressing surjective linear maps on standard operator algebras
on Banach spaces (Theorem 4.1, Theorem 4.4), where ∆(·) is any one
of nine spectral functions σ(·), σl(·), σr(·), σl(·) ∩ σr(·), ∂σ(·), ησ(·),
σap(·), σs(·) and σap(·)∩ σs(·). These results also allow us to get some
characterizations of linear bijective maps which preserve left (or, right)
invertibility or, semi-invertibility (Corollaries 3.2, 4.6 and 4.7), and of
linear surjective maps which preserve the surjectivity of operators or
the lower-boundedness of operators (Corollary 4.8).

2. General results. Suppose that A is a complex Banach algebra.
In this and the next section, ∆(·) will denote any one of the following
six spectral functions σ(·), σl(·), σr(·), σl(·) ∩ σr(·), ∂σ(·) and ησ(·).
The main result is to induce an important property of the linear
maps compressing any one of these six spectral functions between
semi-simple complex Banach algebras. The proof of this result relies
on a characterization of idempotents in semi-simple complex Banach
algebras by Aupetit [1]. We state the result in the following lemma
and refer to [1] for its proof. Recall that an idempotent is an element
P so that P 2 = P .

Lemma 2.1. Let A be a unital complex semi-simple Banach algebra.
Then an element P ∈ A is an idempotent if and only if σ(P ) ⊆ {0, 1}
and there are positive numbers r and c such that σ(T ) ⊆ σ(P )+c‖P−T‖
whenever ‖P−T‖ < r, where the set σ(P )+c‖P−T‖ denotes the union
of the circular disks centered at points of σ(P ) with radius c‖P − T‖.
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A linear map is said to be idempotent preserving if it maps every
idempotent to an idempotent. It is easily seen that an idempotent pre-
serving linear map must send a set of mutually orthogonal idempotents
to a set of mutually orthogonal idempotents (two idempotents P1 and
P2 are orthogonal if P1P2 = P2P1 = 0).

Now we give the main result in this section.

Theorem 2.2. Let A and B be two unital semi-simple complex
Banach algebras and let ∆(·) denote any one of the spectral functions
σ(·), σl(·), σr(·), σl(·)∩σr(·), ∂σ(·) and ησ(·). Suppose that Φ : A → B
is a surjective linear map. If ∆(Φ(T )) ⊆ ∆(T ) for every T ∈ A then
Φ is idempotent preserving and Φ(I) = I.

Proof. Assume that ∆(·) = ∂σ(·), that is, assume that Φ is ∂σ(·)-
compressing. Firstly we show that Φ is continuous. Since ∂σ(Φ(T )) ⊆
∂σ(T ) for every T ∈ A, we have r(Φ(T )) ≤ r(T ) for every T ∈ A.
From our assumptions that Φ is onto and B is semi-simple, applying
[2; Theorem 5.5.2], we obtain that Φ is continuous. Therefore ker Φ is a
closed linear subspace of A. Let π : A → A/ kerΦ be the quotient map.
Then Φ induces a continuous linear bijective map Φ̂ : A/ kerΦ → B
determined by Φ̂ ◦ π = Φ. Consequently, there are two positive
constants α and β such that α‖π(T )‖ ≤ ‖Φ̂(π(T ))‖ = ‖Φ(T )‖ ≤
β‖π(T )‖ for all T , where ‖π(T )‖ = inf{‖T − A‖ | A ∈ kerΦ}. Let
P in A be any idempotent. Then σ(P ) ⊆ {0, 1}, so ∂σ(P ) ⊆ {0, 1}.
If Φ(P ) = 0, then Φ(P ) is already an idempotent. Now we assume
Φ(P ) �= 0. We shall prove Φ(P )2 = Φ(P ). Since ∂σ(Φ(P )) ⊆
∂σ(P ), ∂σ(Φ(P )) ⊆ {0, 1} and consequently, ησ(Φ(P )) ⊆ {0, 1}, hence
σ(Φ(P )) ⊆ {0, 1}. By Lemma 2.1, there are r, c > 0 such that
σ(T ) ⊆ {0, 1} + c‖P − T‖ whenever ‖P − T‖ < r. In particular,
σ(T + A) ⊆ {0, 1} + c‖P − T − A‖ whenever ‖P − T − A‖ < r. For
any sufficient small ε > 0, there is an element A in ker Φ such that
‖P−T−A‖ < ‖π(P−T )‖+ε < r. Thus we have, when ‖π(P−T )‖ < r,

∂σ(Φ(T )) ⊆ ∂σ(T + A) ⊆ {0, 1} + c‖π(P − T )‖ + cε.

Letting ε → 0, we get

∂σ(Φ(T )) ⊆ {0, 1} + c‖π(P − T )‖,



LINEAR MAPS BETWEEN BANACH ALGEBRAS 569

so
∂σ(Φ(T )) ⊆ {0, 1} +

c

α
‖Φ(P ) − Φ(T )‖,

and therefore,

σ(Φ(T )) ⊆ ησ(Φ(T )) ⊆ {0, 1} +
c

α
‖Φ(P ) − Φ(T )‖

for ‖π(P − T )‖ < r. Again, since Φ̂ is a surjective open map, there
is a r1 > 0 such that σ(B) ⊆ {0, 1} + (c/α)‖Φ(P ) − B‖, whenever
‖Φ(P ) − B‖ < r1. Therefore, applying Lemma 2.1 again, we get
Φ(P )2 = Φ(P ). So Φ preserves idempotents.

Note that, for an arbitrary element T ∈ A, ∂σ(T ) is a subset of any
one of the sets σl(T ) ∩ σr(T ), σl(T ), σr(T ), σ(T ) or ησ(T ). If ∆(·)
takes any one of σl(·) ∩ σr(·), σl(·), σr(·), σ(·) and ησ(·), and if Φ
compresses the spectral function ∆(·), then, from the above argument,
one easily sees that Φ preserves idempotents. Because ∆(Φ(I)) ⊆ {1},
hence σ(Φ(I)) ⊆ {1}. Now it follows from Φ(I)2 = Φ(I) that Φ(I) = I.
The proof is completed.

Corollary 2.3. Let A and B be two unital semi-simple complex
Banach algebras and let ∆(·) denote any one of the spectral functions
σ(·), σl(·), σr(·), σl(·)∩σr(·), ∂σ(·) and ησ(·). Suppose that Φ : A → B
is a surjective linear map. If ∆(Φ(T )) = ∆(T ) for every T ∈ A, then
Φ is a bijective linear map preserving idempotents.

Proof. By Theorem 2.2 we only need to show that Φ is injective.
Let us consider the case that ∆(·) = ∂σ(·). For T ∈ A, if Φ(T ) = 0,
then, for every quasi-nilpotent element A ∈ A, we have ∂σ(T + A) =
∂σ(Φ(T +A)) = ∂σ(Φ(A)) = ∂σ(A) = {0}. It follows that r(T +A) = 0
holds for all quasi-nilpotent element A ∈ A and hence T ∈ rad (A) ,
where rad (A) denotes the Jacobson radical of A, [2]. This implies that
T = 0 as A is semi-simple, that is, Φ is injective. The other five cases
may be dealt with similarly.

Remark 2.4. The assumptions that A and B are semi-simple and
that Φ is surjective can not be omitted simply. For the first one, it is
easily seen if we take A = B = τn, the n × n upper triangular matrix
algebra. For the second one, let A = B(H), B = B(H ⊕ H) and



570 J. CUI AND J. HOU

let Φ(T ) =
(

T ϕ(T )I

0 T

)
, where H is a Hilbert space and ϕ is a linear

functional on B(H).

3. The case for C∗-algebras of real rank zero. In this section,
we apply the results in Section 2 to characterize the spectral function
compressing linear maps on C∗-algebras of real rank zero in terms of
Jordan homomorphisms. Firstly we recall that a C∗-algebra A is of
real rank zero if the set of all real linear combinations of orthogonal
Hermitian idempotents is dense in the set of all Hermitian elements of
A, [7]. It is clear that every von Neumann algebra is a C∗-algebra of
real rank zero. In particular, B(H), the algebra of all bounded linear
operators on a complex Hilbert space, has real rank zero.

Theorem 3.1. Let A be a unital C∗-algebra of real rank zero and B
a unital semi-simple complex Banach algebra. Let ∆(·) denote any one
of the spectral functions σ(·), σl(·), σr(·), σl(·)∩σr(·), ∂σ(·) and ησ(·).
Suppose Φ : A → B is a surjective linear map. If ∆(Φ(T )) ⊆ ∆(T ) for
every T ∈ A, then Φ is a Jordan homomorphism. Furthermore, if B is
prime, then Φ is either a homomorphism or an anti-homomorphism.

Proof. Pick a Hermitian element A which is a real linear combination
of orthogonal Hermitian idempotents, i.e., A =

∑n
i=1 tiPi with ti ∈ R,

P 2
i = Pi = P ∗

i and PiPj = 0 if i �= j. By Theorem 2.2, Φ is continuous
and maps mutually orthogonal Hermitian idempotents to mutually
orthogonal idempotents, so Φ(A2) = Φ(A)2. Now, since A is a C∗-
algebra of real rank aero, the set of Hermitian elements, which are finite
real linear combinations of orthogonal Hermitian idempotents, is dense
in the set of all Hermitian elements in A, we see that Φ(A2) = Φ(A)2

hold for all Hermitian elements A. Replacing A by A + B, where both
A and B are Hermitian, we get Φ(AB+BA) = Φ(A)Φ(B)+Φ(B)Φ(A).
Since every T ∈ A can be written in the form T = A + iB with A and
B Hermitian, the last relation implies that Φ(T 2) = Φ(T )2; that is, Φ
is Jordan.

The last assertion of the theorem is obvious because it is well known
(for example, see [12, pp. 47 51]) that if B is a prime ring, then
every Jordan homomorphism Φ from a ring A onto B is either a
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homomorphism or an anti-homomorphism. This completes the proof.

Recall that the left invertible or right invertible elements are called
semi-invertible. We say that a linear map Φ is semi-invertibility
preserving if Φ(T ) is semi-invertible whenever T is. Using Theorem 3.1,
we can easily obtain the following corollary.

Corollary 3.2. Let A be a unital C∗-algebra of real rank zero
and B a unital semi-simple complex Banach algebra. Suppose that
Φ : A → B is a surjective linear map and Φ(I) is invertible. If Φ
preserves any one of the invertibility, left invertibility, right invertibility
and semi-invertibility, then Φ is a Jordan homomorphism multiplied by
an invertible element.

Proof. For B ∈ B, denote LB the linear map from B into itself
defined by multiplying by B from the left hand, that is, LBS = BS
for every S ∈ B. Let Ψ = LΦ(I)−1 ◦ Φ, then Ψ(I) = I. As a preserver,
Ψ has the same property as Φ has. Let ∆(·) be one of the spectral
functions σ(·), σl(·), σr(·) and σl(·) ∩ σr(·) accordingly as Φ preserves
one of the following invertibility; left invertibility, right invertibility
and semi-invertibility (for instance, let ∆(·) = σl(·) if Φ preserves the
left invertibility). Then it is easy to check ∆(Ψ(T )) ⊆ ∆(T ) for every
T ∈ A. Now by Theorem 3.1, Ψ is a Jordan homomorphism and
Φ = LΦ(I) ◦ Ψ.

The next result gives some characterizations of isomorphisms from a
C∗-algebra of real rank zero onto a prime Banach algebra containing a
nontrivial left invertible element.

Corollary 3.3. Let A be a unital C∗-algebra of real rank zero and
B a unital prime semi-simple complex Banach algebra. Suppose that
Φ : A → B is a surjective linear map. If B contains a left invertible
element which is not invertible, then the following are equivalent:

(1) Φ is injective and left spectrum (or, right spectrum) compressing.

(2) Φ is injective, unital and left (or, right) invertibility preserving.
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(3) Φ is left spectrum (or, right spectrum) preserving.

(4) Φ is an isomorphism.

Proof. It is clear that we only need to prove (1)⇒(4), (2)⇒(4) and
(3)⇒(4). For (2)⇒(4), assume that Φ is left invertibility preserving.
Since Φ(I) = I, Φ is left spectrum compressing. By Theorem 3.1, Φ is
either an homomorphism or an anti-homomorphism since B is prime.
Let A ∈ A be an element that is left invertible but not invertible and
B ∈ A be a left inverse of A. If Φ is an anti-homomorphism, then
I = Φ(BA) = Φ(A)Φ(B), which implies that Φ(A) is right invertible.
Hence Φ(A) is invertible and I = Φ(B)Φ(A) = Φ(AB). Since Φ is
injective and Φ(I) = I, we get AB = I. Thus A is invertible, a
contradiction. If Φ preserves right invertibility, similarly, one can show
that Φ is an isomorphism. The arguments of (1)⇒(4) and (3)⇒(4) are
similar. The proof is completed.

For linear maps compressing ∆(·) from B(H) onto B(K), where H
and K are Hilbert spaces, we have more concrete characterizations.

Corollary 3.4. Let H and K be complex Hilbert spaces, and let ∆(·)
denote any one of the spectral functions σ(·), σl(·) ∩ σr(·), ∂σ(·) and
ησ(·). Suppose that Φ : B(H) → B(K) is a surjective linear map, then
the following are equivalent:

(1) Φ is injective and ∆(Φ(T )) ⊆ ∆(T ) for every T ∈ B(H).

(2) ∆(Φ(T )) = ∆(T ) for every T ∈ B(H).

(3) Φ is injective, unital and invertibility preserving.

(4) Φ is injective, unital and semi-invertibility preserving.

(5) Φ is a Jordan isomorphism.

(6) Φ is either an isomorphism or an anti-isomorphism.

(7) There exists an invertible operator A ∈ B(H, K) such that either
Φ(T ) = ATA−1 for every T ∈ B(H) or Φ(T ) = AT trA−1 for every
T ∈ B(H), where T tr denotes the transpose of T relative to an arbitrary
but fixed orthonormal base of H.
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Proof. By Theorem 3.1 and Corollary 3.2, (1) (6) are equivalent.
Now (7) follows a classical result [8] that every isomorphism or anti-
isomorphism Φ between B(H) and B(K) is spatial, i.e., there is an
invertible operator A ∈ B(H, K) such that Φ(T ) = ATA−1 for all
T ∈ B(H), or Φ(T ) = AT trA−1 for all T ∈ B(H). The proof is
completed.

If Φ is a left (or right) spectrum compressing bijection, then it is easily
seen from Corollary 3.2 and Corollary 3.3 that the following corollary
holds true.

Corollary 3.5. Let H and K be complex Hilbert spaces and let
Φ : B(H) → B(K) be a surjective linear map. Then the following are
equivalent:

(1) σl(Φ(T )) = σl(T ) for every T ∈ A.

(1′) σr(Φ(T )) = σr(T ) for every T ∈ A.

(2) Φ is injective and σl(Φ(T )) ⊆ σl(T ) for every T ∈ A.

(2′) Φ is injective and σr(Φ(T )) ⊆ σr(T ) for every T ∈ A.

(3) Φ is injective, unital and left invertibility preserving.

(3′) Φ is injective, unital and right invertibility preserving.

(4) Φ is an isomorphism.

(5) There exists an invertible operator A ∈ B(H, K) such that Φ(T ) =
ATA−1 for every T ∈ B(H).

4. The case for standard operator algebras acting on Banach
spaces. Let B(X) denote the Banach algebra of all bounded linear
operators on a complex Banach space X. Recall that a standard
operator algebra acting on Banach space X is a closed subalgebra
of B(X) containing the identity and all finite rank operators. In
this section, we characterize the linear maps compressing the spectral
function ∆(·) on standard operator algebras acting on Banach spaces,
where ∆(·) stands for any one of nine spectral functions σ(·), σl(·),
σr(·), σap(·), σs(·), σap(·) ∩ σs(·), σl(·) ∩ σr(·), ∂σ(·) and ησ(·). For
every T ∈ B(X), it is clear that σap(T ) ⊂ σl(T ), σs(T ) ⊂ σr(T )
and ∂σ(T ) ⊂ σap(T ) ∩ σs(T ). Indeed, let λ ∈ ∂σ(T ) but λ /∈ σs(T ),
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then λ − T is surjective but not injective, by [22, p. 285], λ belongs
to the interior of σ(T ), this is a contradiction. So ∂σ(T ) ⊂ σs(T ).
∂σ(T ) ⊂ σap(T ) follows [10, p. 215]. The main result in this section
is the following theorem which generalizes Theorem 4 in [20] when
∆(·) = σs(·).

Theorem 4.1. Let X and Y be Banach spaces over the complex
field, and let A and B be standard operator algebras on X and Y ,
respectively. Suppose that Φ : A → B is a bijective linear map and ∆(·)
stands for any one of the spectral functions σ(·), σl(·), σr(·), σap(·),
σs(·), σap(·) ∩ σs(·), σl(·) ∩ σr(·), ∂σ(·) and ησ(·). Then the following
are equivalent:

(1) Φ is ∆(·) compressing.

(2) Either there exists an invertible operator A ∈ B(X, Y ) such that
Φ(T ) = ATA−1 for every T ∈ A or there exists an invertible operator
A ∈ B(X∗, Y ) such that Φ(T ) = AT ∗A−1 for every T ∈ A. The last
case cannot occur if X or Y is not reflexive, or if there exists a semi-
invertible but not invertible element in A.

To prove Theorem 4.1, we need the following lemmas.

Lemma 4.2. Let X be a Banach space over the complex field and
∆(·) denote any one of the spectral functions σ(·), σl(·), σr(·), σap(·),
σs(·), σl(·) ∩ σr(·), σap(·) ∩ σs(·), ∂σ(·) and ησ(·). Let T ∈ B(X),
x ∈ X, f ∈ X∗ and λ ∈ C. If λ /∈ ησ(T ), then λ ∈ ∆(T + x ⊗ f) if
and only if 〈(λ − T )−1x, f〉 = 1.

Proof. Assume that λ /∈ ησ(T ) but λ ∈ ∆(T + x ⊗ f). We claim
that λ ∈ σ(T + x ⊗ f). This is clear if ∆(·) is any one of σ(·), σl(·),
σr(·), σl(·) ∩ σr(·), σap(·), σs(·), σap(·) ∩ σs(·) and ∂σ(·). Now we
consider the case ∆(·) = ησ(·). Since ∂σ(T )\iso σ(T ) ⊆ σ(T + C)
holds for every compact operator C (refer to [10], for example), we
see that ησ(T )\iso ησ(T ) ⊆ η(∂σ(T )\iso σ(T )) ⊆ ησ(T + C) for every
compact operator C, where iso σ(T ) denotes the isolated points of σ(T ).
Therefore ησ(T + C)\ησ(T ) is a set consisting of some isolated points
in ησ(T + C). Hence λ ∈ ησ(T + x ⊗ f) and λ /∈ ησ(T ) imply that
λ ∈ σ(T +x⊗f), as desired. It is clear now that 1 ∈ σ((λ−T )−1x⊗f),
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and consequently, 〈(λ − T )−1x, f〉 = 1.

Conversely, assume that 〈(λ − T )−1x, f〉 = 1. Then 1 ∈ σ((λ −
T )−1x ⊗ f) and therefore λ ∈ σ(T + x ⊗ f) ⊆ ησ(T + x ⊗ f). Since
λ /∈ ησ(T ), by virtue of the argument above, we have

λ ∈ iso σ(T + x ⊗ f) ⊆ ∂σ(T + x ⊗ f)
⊆ σl(T + x ⊗ f) ∩ σr(T + x ⊗ f)
⊆ σl(T + x ⊗ f) (or σr(T + x ⊗ f)) ⊆ σ(T + x ⊗ f).

So, in any case, we always have λ ∈ ∆(T + x ⊗ f).

Lemma 4.3. Let X be a Banach space over the complex field, and let
∆(·) denote any one of the spectral functions σ(·), σl(·), σr(·), σap(·),
σs(·), σl(·)∩σr(·), σap(·)∩σs(·), ∂σ(·) and ησ(·). Then, for an operator
R ∈ B(X), the following conditions are equivalent:

(1) rank R ≤ 1.

(2) For every T ∈ B(X) and all distinct scalars α and β,

∆(T + αR) ∩ ∆(T + βR) ⊆ ησ(T ).

(3) Condition (2) is satisfied for every T ∈ B(X) of rank at most 2.

(4) For every T ∈ B(X), there exists a compact subset KT of the
complex plane containing ησ(T ), such that

∆(T + αR) ∩ ∆(T + βR) ⊆ KT

for all distinct scalars α and β.

(5) Condition (4) is satisfied for every T ∈ B(X) of rank at most 2.

Proof. (1)⇒ (2). Assume that there exists a rank-1 operator R,
an operator T ∈ B(X) and α1, α2 ∈ C with α1 �= α2 such that
λ ∈ ∆(T + α1R) ∩ ∆(T + α2R) but λ /∈ ησ(T ). Then by the proof
of Lemma 4.2, we always have λ ∈ σ(T +α1R)∩σ(T +α2R). It follows
that αi �= 0 and λ − T − αiR = (I − αiR(λ − T )−1)(λ − T ) is not
invertible, i = 1, 2. Therefore I − αiR(λ − T )−1 is not invertible and
α−1

i , i = 1, 2, belong to the spectrum of the rank-1 operator R(λ−T )−1,
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which is impossible since the spectrum of a rank one operator cannot
contain two distinct nonzero points. So (1) implies (2).

(2) ⇒ (3) ⇒ (5) and (4) ⇒ (5) are trivial.

(5) ⇒ (1). Assume that R satisfies condition (5). Firstly we show
that ∆(R) contains at most one nonzero complex number by taking
T = 0. Indeed, if ∆(R) contains two distinct nonzero complex numbers
λ and µ, then w ∈ ∆(λ−1wR) ∩ ∆(µ−1wR) holds for all complex
numbers w, contradicting the assumption that ∆(λ−1wR)∩∆(µ−1wR)
is contained in a compact subset of C. So there is a nonzero complex
number c such that ∆(R) ⊆ {0, c}. Thus we always have ∂σ(R) ⊆ {0, c}
as ∂σ(R) ⊆ ∆(R), and therefore σ(R) ⊆ {0, c}.

Let x ∈ X and f ∈ X∗ be nonzero and let G(z) = 〈(I−zR)−1x, f〉 for
z ∈ C \{c−1}. Applying condition (5) with T = x⊗f, we will prove that
the equation G(z) = w has at most one solution for every w with |w|
large enough. Assume that G(z) = w, then 〈(w − zwR)−1x, f〉 = 1. It
follows from Lemma 4.2 that w ∈ ∆(T +zwR). Take w so that w /∈ KT ,
thus we have w /∈ ησ(T ). Now if z1 �= z2 and if G(z1) = G(z2) = w.
Then

w ∈ ∆(T + z1wR) ∩ ∆(T + z2wR) ⊆ KT ,

which is a contradiction. Thus, by Picard’s Big theorem [18], the
function G has poles, or removable singularity, at each of 1/c and ∞.
So G must be a rational function. Let G(z) = P (z)/Q(z) where P and
Q are polynomials, Q(z) = (cz − 1)n for some nonnegative integer n
and P (1/c) �= 0. We will show deg P ≤ 1 and deg Q ≤ 1. For all w
large enough, say |w| > r, we know that the equation

(4.1) P (z) − wQ(z) = 0

has at most one solution. If deg (P −wQ) is larger than one, then any
solution of (4.1) must also satisfy the equation

(4.2) P
′
(z) − wQ

′
(z) = 0.

It follows that, for any such w, the corresponding solution z satisfies
the polynomial equation

(4.3) Q(z)P
′
(z) − Q

′
(z)P (z) = 0.
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If the polynomials QP
′ − PQ

′
are identically zero, then G is constant

and the proof is completed. If not, then equation (4.3) has only finitely
many solutions and so the polynomial P − wQ has degree larger than
one for only finitely many w among {w | |w| > r}. Hence P − wQ has
degree at most one for all w larger enough. This implies that degP ≤ 1
and deg Q ≤ 1. Hence

G(z) = az + b or
az + b

cz − 1

for some a, b ∈ C. The form of the function G implies that G satisfies
one of the following differential equations:

G
′′
(z) = 0 or (cz − 1)G

′′
(z) + 2cG

′
(z) = 0.

In particular G
′′
(0) = 0 or G

′′
(0) = 2cG

′
(0). Direct computation yields

that G
′
(0) = 〈Rx, f〉 and G

′′
(0) = 2〈R2x, f〉. So for every x ∈ X and

f ∈ X∗, we have 〈R2x, f〉 ≡ 0 or 〈(R2 − cR)x, f〉 ≡ 0. Now it is
easy to check that either 〈R2x, f〉 = 0 for all x ∈ X and f ∈ X∗, or
〈(R2 − cR)x, f〉 = 0 for all x ∈ X and f ∈ X∗. Hence R2x = 0 for
all x ∈ X or (R2 − cR)x = 0 for all x ∈ X, thus we have R2 = 0 or
R2 = cR.

We are now in a position to prove that R has rank one. If R2 = cR
and rankR > 1, let u and v be two linearly independent vectors in the
range of R. Thus Ru = cu and Rv = cv. Let f ∈ X∗ be such that
〈u, f〉 = 0 and 〈v, f〉 = 1 and let T = v⊗f . Since σ(R) = {0, c}, we have
∆(T+αR) = ησ(T+αR) for all scalars α. Let λ be any complex number
outside KT , since (T + (λ/c)R)u = λu and (T + (λ − 1/c)R)v = λv,
we get

λ ∈ ∆
(
T +

λ

c
R

)
∩ ∆

(
T +

λ − 1
c

R
)
⊆ KT ;

this is a contradiction. Therefore rank R ≤ 1.

If R2 = 0 and rankR > 1, let u2 and u4 be two linearly independent
vectors in the range of R and u1 and u3 ∈ X be such that Ru1 = u2

and Ru3 = u4. Thus u1, u2, u3, u4 are linearly independent and
W = span {u1, u2, u3, u4} is a subspace invariant under R with R|W
having matrix representation(

0 0
1 0

)
⊕

(
0 0
1 0

)
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relative to the basis {u1, u2, u3, u4}. Let f2 and f4 ∈ X∗ be such that
〈uj , fi〉 = 1 if i = j and 0 if i �= j and define a rank two operator T by
T = u1 ⊗ f2 + 4u3 ⊗ f4. Thus T leaves W invariant and T |W having
matrix representation (

0 1
0 0

)
⊕

(
0 4
0 0

)
.

Similarly, we can prove that every complex number λ belongs to
∆(T+λ2R)∩∆(T+(λ2/4)R). This contradiction establishes the desired
conclusion, i.e., rank R ≤ 1.

Now we characterize the general surjective linear maps compressing
the spectral function ∆(·) on standard operator algebras.

Theorem 4.4. Let X and Y be Banach spaces over the complex field,
and let A and B be standard operator algebras on X and Y , respectively.
Let ∆(·) stand for any one of the spectral functions σ(·), σl(·), σr(·),
σap(·), σs(·), σap(·)∩ σs(·), σl(·)∩σr(·), ∂σ(·) and ησ(·). Suppose that
Φ : A → B is a surjective linear map. If Φ is ∆(·) compressing, then
either Φ(F ) = 0 for every finite rank operator F ∈ A, or Φ is injective.
In the latter case, either

(1) there exists an invertible operator A ∈ B(X, Y ) such that Φ(T ) =
ATA−1 for every T ∈ A; or

(2) there exists an invertible operator A ∈ B(X∗, Y ) such that Φ(T ) =
AT ∗A−1 for every T ∈ A. This case cannot occur if X or Y is not
reflexive, or if there exists a semi-invertible but not invertible element
in A and if ∆(·) is any one of σl(·), σr(·), σap(·) and σs(·).

Proof. Assume that Φ is ∆(·) compressing. Since A and B are semi-
simple, for the cases ∆(·) = σap(·), σs(·) or σap ∩ σs(·), it can be also
checked that Φ preserves idempotents and Φ(I) = I as in Theorem 2.2.

We claim that Φ is rank-1 nonincreasing. Let R ∈ A and rank R = 1,
then condition (2) of Lemma 4.3 is satisfied; this, together with the
fact that Φ is spectral function ∆(·) compressing, implies that

∆(Φ(T ) + αΦ(R)) ∩ ∆(Φ(T ) + βΦ(R)) ⊆ ησ(T ),

for every operator T ∈ A and α �= β. Since η(∆(S)) = ησ(S) for
every operator S and ∆(Φ(T )) ⊆ ∆(T ) for each T ∈ A, we have
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ησ(Φ(T )) ⊆ ησ(T ). Thus by Lemma 4.3 (4), rank (Φ(R)) ≤ 1 since
Φ is surjective and ησ(T ) is a compact set containing ησ(Φ(T )). That
is, Φ is rank-1 nonincreasing. By [14], we know that either (i) there
exist linear transformations A : X → Y and C : X∗ → Y ∗ such that
Φ(x ⊗ f) = Ax ⊗ Cf for every x ∈ X and f ∈ X∗ or (ii) there
exist linear transformations A : X∗ → Y and C : X → Y ∗ such that
Φ(x ⊗ f) = Af ⊗ Cx for every x ∈ X and f ∈ X∗.

Here we take an argument following the line of that in [21]. Assume
that Φ has the form (i). Let T be an arbitrary operator in A, then

Φ(T + x ⊗ f) = Φ(T ) + Ax ⊗ Cf.

Pick a complex number λ with λ /∈ ησ(T ), then λ /∈ ησ(Φ(T )). If

〈(λ − Φ(T ))−1Ax, Cf〉 = 1,

by Lemma 4.2 and the spectral function ∆(·) compressing property of
Φ, it is obvious that 〈(λ − T )−1x, f〉 = 1. So, by linearity, we have, as
functions in λ ∈ C\ησ(T ), either

〈(λ − Φ(T ))−1Ax, Cf〉 ≡ 〈(λ − T )−1x, f〉

or
〈(λ − Φ(T ))−1Ax, Cf〉 ≡ 0

for every x ∈ X and f ∈ X∗. Take r = min{‖T‖−1, ‖Φ(T )‖−1}. If
|z| < r, then I − zT is invertible in A and I − zΦ(T ) is invertible in
B. Replacing λ with 1/z in the above equality, we have, in the disk
{z ∈ C | |z| < r}, either

(4.4) 〈(I − zΦ(T ))−1Ax, Cf〉 ≡ 〈(I − zT )−1x, f〉

or

(4.5) 〈(I − zΦ(T ))−1Ax, Cf〉 ≡ 0

for every x ∈ X, f ∈ X∗. It is easily checked that either the equation
(4.4) holds for all x ∈ X and f ∈ X∗, or the equation (4.5) holds for
all x ∈ X and f ∈ X∗.
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Taking derivatives at 0 in (4.4) and (4.5) respectively, we obtain that,
for every T ∈ A, either 〈Tx, f〉 ≡ 〈Φ(T )Ax, Cf〉 for all x ∈ X and
f ∈ X∗ or 〈Φ(T )Ax, Cf〉 ≡ 0 for all x ∈ X and f ∈ X∗. It follows
from the linearity of Φ that either

〈Tx, f〉 ≡ 〈Φ(T )Ax, Cf〉
holds for all T ∈ A, x ∈ X and f ∈ X∗, or

〈Φ(T )Ax, Cf〉 ≡ 0

holds for all T ∈ A, x ∈ X and f ∈ X∗. In the latter case we must
have A = 0 or C = 0 since the range of Φ contains every finite rank
operator. Hence Φ(x⊗ f) = Ax⊗Cf = 0 and consequently, Φ(F ) = 0
for every finite rank operator F ∈ A.

If the first case occurs, that is, for all T ∈ A, x ∈ X and f ∈ X∗,
we have 〈Tx, f〉 = 〈Φ(T )Ax, Cf〉, then for every y ∈ Y , there exist
Ty ∈ B(X) and xy ∈ X such that Φ(Ty)Axy = y and hence 〈y, Cf〉 =
〈Tyxy, f〉. This shows that there exists a linear transformation B :
Y → X such that

(4.6) 〈By, f〉 = 〈y, Cf〉.
So C = B∗ and 〈Tx, f〉 = 〈BΦ(T )Ax, f〉 for every x ∈ X and
f ∈ X∗. Thus T = BΦ(T )A for all T ∈ A. It follows immediately
that Φ is injective. The surjectivity of B can be easily checked.
Now we prove that B is injective. Assume that By = 0 for some
y ∈ Y . For any g ∈ Y ∗ with g �= 0, there exists T1 ∈ A such that
Φ(T1) = y⊗g. Therefore BΦ(T1) = 0 and consequently, T1 = 0. Hence
y ⊗ g = Φ(T1) = 0 and y = 0. This proves that B is injective. Since
Φ(I) = I, BA = I. This implies that B is bijective and B = A−1.
It is easily seen from equation (4.6) that B is closed, and therefore is
bounded by closed graph theorem. Hence Φ(T ) = ATA−1.

If Φ has the form (ii), then by a similar argument, we have that
either Φ(F ) = 0 for every finite rank operator F ∈ A or 〈Tx, f〉 =
〈Φ(T )Af, Cx〉 for every x ∈ X, f ∈ X∗ and T ∈ A. Let y ∈ Y . Since
the range of Φ contains every finite rank operator, there exist fy ∈ X∗

and Ty ∈ B(X) such that Φ(Ty)Afy = y, and so

〈y, Cx〉 = 〈Tyx, fy〉 = 〈x, T ∗
y fy〉
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Therefore there exists a linear transformation B : Y → X∗ such that

(4.7) 〈y, Cx〉 = 〈x, By〉.
Equation (4.7) implies that B is bounded, so 〈x, T ∗f〉 = 〈x, BΦ(T )Af〉
and BΦ(T )A = T ∗. Now the same argument as that of case (i)
above shows that A and B are bijective and B = A−1. Hence
Φ(T ) = AT ∗A−1. It is clear that in this case both X and Y are
reflexive. If A contains a semi-invertible element T0 which is not
invertible, this case can not occur whenever ∆(·) takes any one of
σl(·), σr(·), σap(·) and σs(·). For instance, if T0 is left invertible and
∆(·) = σr(·), then there is a S0 ∈ A such that S0T0 = I. The σr(·)-
compressibility of Φ implies that Φ(S0) = AS∗

0A−1 is right invertible.
So there is an element W in A such that Φ(S0)Φ(W ) = I, which leads
to S0W = I. Hence S0 is invertible, a contradiction.

Proof of Theorem 4.1. It is an immediate consequence of Theorem
4.4.

If Φ is ∆(·) preserving, then, by Corollary 2.3, Φ is injective, so we
have the following corollaries.

Corollary 4.5. Let X and Y be Banach spaces over the complex
field, and let A and B be standard operator algebras on X and Y ,
respectively. Let ∆(·) stand for any one of the spectral functions σ(·),
σl(·), σr(·), σap(·), σs(·), σap(·) ∩ σs(·), σl(·) ∩ σr(·), ∂σ(·) and ησ(·).
Suppose that Φ : A → B is a surjective linear map, then the following
are equivalent:

(1) Φ is ∆(·) preserving.

(2) Either there exists an invertible operator A ∈ B(X, Y ) such that
Φ(T ) = ATA−1 for every T ∈ A or there exists an invertible operator
A ∈ B(X∗, Y ) such that Φ(T ) = AT ∗A−1 for every T ∈ A. The last
case cannot occur if X or Y is not reflexive, or if there exists a semi-
invertible but not invertible element in A and ∆(·) takes one of σl(·),
σr(·), σap(·) and σs(·).

The following corollary characterizes the linear maps preserving the
left invertibility, the right invertibility, the lower-boundedness of opera-
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tors or the surjectivity of operators between standard operator algebras,
where the equivalence of (3) and (5) generalizes one of the main results
in [20] replacing Hilbert space by Banach space and omitting the as-
sumption “in both directions.” Recall that an operator T is said to be
bounded below if there is a positive number α such that ‖Tx‖ ≥ α‖x‖
for all vectors x. It is clear that T is bounded below if and only if T is
injective and has closed range.

Corollary 4.6. Let X and Y be complex Banach spaces, and let A
and B be standard operator algebras on X and Y , respectively. Suppose
that Φ : A → B is a bijective linear map and Φ(I) is invertible. If
there exists a semi-invertible but not invertible element in A, then the
following are equivalent:

(1) Φ preserves left invertibility.

(2) Φ preserves right invertibility.

(3) Φ preserves the surjectivity of operators.

(4) Φ maps operators which are bounded below to operators which are
bounded below.

(5) There exist invertible operators A ∈ B(X, Y ) and B ∈ B(Y, X)
such that Φ(T ) = ATB for every T ∈ A.

Proof. Obviously, we need prove that each one of the conditions (1),
(2), (3) and (4) implies the condition (5). Assume that (1) holds. Let
Ψ = Φ(I)−1Φ; then Ψ(I) = I. It is easy to check that Ψ preserves the
spectral function σl(·). Now (1) ⇒ (5) follows from Corollary 3.3 and
Theorem 4.4. The remain parts can be dealt with similarly.

In the following corollary, the equivalence of (1) and (3) was also
obtained by Sourour in [21].

Corollary 4.7. Let X and Y be complex Banach spaces, and let A
and B be standard operator algebras on X and Y , respectively. Suppose
that Φ : A → B is a bijective linear map. Then the following are
equivalent:

(1) Φ preserves invertibility.
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(2) Φ preserves semi-invertibility and Φ(I) is invertible.

(3) Either there exist invertible operators A ∈ B(X, Y ) and B ∈
B(Y, X) such that Φ(T ) = ATB for every T ∈ A or there exist
invertible operators A ∈ B(X∗, Y ) and B ∈ B(Y, X∗) such that Φ(T ) =
AT ∗B for every T ∈ A. In the last case, X and Y must be reflexive.

Proof. We need only to prove (1) ⇒ (3) and (2) ⇒ (3). Assume
(2) and let Ψ = Φ(I)−1Φ. Then Ψ preserves semi-invertibility and
Ψ(I) = I. It is easily checked that σl(Ψ(T ))∩σr(Ψ(T )) ⊆ σl(T )∩σr(T )
for every T ∈ A. Now (3) follows by applying Theorem 4.4 with
∆(·) = σl(·) ∩ σr(·). That (1) ⇒ (3) can be proved similarly.
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