ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 35, Number 5, 2005

DISCRETE COCOMPACT SUBGROUPS OF Gs; 3
AND RELATED C*-ALGEBRAS

P. MILNES AND S. WALTERS

ABSTRACT. The discrete cocompact subgroups of the five-
dimensional Lie group Gs,3 are determined up to isomor-
phism. Each of their group C*-algebras is studied by de-
termining all of its simple infinite dimensional quotient C*-
algebras. The K-groups and trace invariants of the latter are
also obtained.

1. Introduction. Consider the Lie group Gs 3 equal to R as a set
with multiplication given by

(h7 j’ k? m7 n)(h/’j/, k/,m/’n/)
= (h+ W +nj’ +m'n(n—1)/24+mk’, j+j' +nm’, k+k',m+m/ , n+n'),

and inverse
(h,7,k,m,n)"! = (=h+nj+mk—mn(n+1)/2, —j+nm, —k, —m, —n).

The group Gs 3 is one of only six nilpotent, connected, simply con-
nected, five-dimensional Lie groups; it seemed the most tractable of
them for our present purposes. (Our notation is as in Nielsen [8], where
a detailed catalogue of Lie groups like this one is given.) In [6, Section
3] the authors have studied a natural discrete cocompact subgroup Hs 3,
the lattice subgroup Hs 3 = Z® C Gj 3. In Section 2 of this paper we
study the group Gs 3 more closely, determining the isomorphism classes
of all its discrete cocompact subgroups, Theorem 1. These are given
by five integer parameters «, 0, v, §, € that satisfy certain conditions,
see () and (s*) of Theorem 1, and are denoted by Hs 3(ax, 3, 7, 9, ).
It is shown that each such subgroup is isomorphic to a cofinite sub-
group of Hs 3 = H;53(1,0,1,1,0). Conversely, each cofinite subgroup
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of Hs 3 C Gs 3 is a discrete cocompact subgroup of Gs 3. In Sections
3 and 4, the group C*-algebras of the Hs 3(a, 3, v, 0, €)’s are exam-
ined by obtaining their simple infinite dimensional quotients. Some of
these are shown to be crossed products of certain types of Heisenberg
C*-algebras (in Packer’s terminology [11]) and the rest are matrix al-
gebras over irrational rotation algebras, Theorem 5. In Section 5 the
K-groups of the simple quotients are calculated, Theorem 6, as are
their trace invariants, Theorem 8. The paper ends with a discussion of
the classification of the simple quotients.

We use one of the conventional notations for crossed products as
in, for example, [12] or [19]. Hence, if a discrete group G acts
on a C*-algebra A, we write C*(A, G) to denote the associated C*-
crossed product algebra. We use a similar notation for twisted crossed
products, i.e., when there is a cocycle instead of an action, as in
Theorem 2. (See the preliminaries of [6] for more details.)

2. Determination of the discrete cocompact subgroups.

Theorem 1. FEwvery discrete cocompact subgroup H of Gs3 has
the following form: there are integers «, 3, 7, § and e satisfying
a, v, 0 >0, and

(+) 0 <e<ged{y, 0}/2
and
(+%) 0<p<ged{a, 7,4 ¢}/2,

yielding H = Hs 5(cv, 8, 7, 0, €) (= Z° as a set) with multiplication
(m)

(h7j7 k7 m7 n)(h/7j/7k/7ml7nl)
= (h+H +9nj" + aym/n(n — 1)/2 + fnm’ + dmk’ + enk’,
jt+j +anm/ k+k m+m/ n+n).

Different choices for a, 3, v, 0 and € give non-isomorphic groups.
Each such group is, in fact, isomorphic to a cofinite subgroup of Hs 3
(the lattice subgroup of Gs3), and each cofinite subgroup of Hs 3 is
isomorphic to some Hs 3(cv, B, 7, 9, €).
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Proof. Using the discreteness and cocompactness as in [7], the second
commutator subgroup of H tells us that there is a member (with entries
that don’t need to be identified indicated by x*)

€5 = (*7 *, %, 4, Z)

of H, where z > 0 is the smallest positive number that can appear as
the last coordinate of a member of H. Continuing in this vein, we get

eq = (*, %, %, y, 0),
es = (%, b, z, 0, 0),
ez = (%, w, 0,0,0) and
e1 = (v, 0,0,0,0),

where x > 0 is the smallest positive number that can appear as the
third coordinate of a member of H whose last two coordinates are 0,
and similarly for v,w and y. Also, all other coordinates are > 0, and
the bottom non-zero coordinate in each column is greater than the
coordinates above it, e.g., w > b > 0 and w is also greater than the
second coordinate of e5 or of e4. These considerations show that the
map
7 (hyj, k,m,n) — el el ek el el Z° — H,

is one-to-one and onto. We want the multiplication (m) for Z° that
makes 7™ a homomorphism, hence an isomorphism; (m) is determined
using the commutators,

(©)

[es, eq] = (%, 2y, 0, 0, O):e?eg‘, [es,e3]=(zb+xa, 0,0, 0,0)=e5
[es,e2] = (2w, 0,0,0,0) =e],  [es,e3] = (zy, 0, 0, 0, 0) = €I,
[65,61] = 0, [64,61] = O7 [63,61] = O7 [62,61] = 0,

[64, 62] = 0, [63, 62} = O,

for some integers «, 3, 7, J, €. Using the commutators to collect terms
in

(el el ef et en)(el'ef b e er)
gives the multiplication formula (m) for Z%, and also the equation

n _ aym n(n 1)/2+/3nm am'n _m’ _n
€5 64 =€ €2 €4 €5,

which the reader may find helpful in checking computations later.
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For a start in putting the restrictions on «, 8, 7, ¢, &, (C) tells us
that a, v, d > 0 (since v, w, =, y and z > 0). Let Z denote the
center of H = H; 3(a, 8,7, 9, ), Z = (Z,0,0,0,0). Then, as for Gy,
with quotients and subgroups it is shown that different (positive) «,
v, § give non-isomorphic groups, e.g., H/Z gives o and Z modulo the
subgroup [H, [H, H]] gives ~; also, if K3 C H is the largest subset for
which all commutators are central, i.e., zyz~ !y~ € Z for all z € K3
and y € H, and K} is the centralizer of the commutator subgroup, then

Z > (07,0,0,0,0) = {zyz 'y~ |z € K3, y € K4}

and Z/(0Z,0,0,0,0) = Zs, the cyclic group of order 4.
Then we have an isomorphism of Hs 3(c, 3, 7, 0, €) onto Hs 3(av, 3, 7,

0, € + dy + ed), which is simpler to give in terms of generators,

(®) e3 — ey = edes, e5 — ef = eSes,

and e; — e, =e; otherwise.

Here we are merely changing the basis for Hss(w, 5, 7, 6, €), and
the only commutator (using (m) and (C)) that changes is [ef,e}] =
ei“‘”dv, so the resulting isomorphism is of Hs3(c, 3, 7, 6, €) onto
Hs s(a, 8, 7, 6, € + dy + ed), which shows we can require

0<e<ged{y,d}.
This, accompanied by another isomorphism,

(®/) (h7jvk7m7n)'_) (_h’a _.jaka_m7n)a
H5,3(a7 Ba e 6a 5) — H5,3(Oé, Ba e 6a _5)5
assures that we can have

(+) 0<e<ged{y,d}/2

the required range for €.

Now, to control 3,

") {elr—>61—e’1, ex— e lea =€), ez — ez =eh,

eq — ehefes, and e5— e;fe5 = el
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is an isomorphism of Hs 3(cx, 8, 7, 0, €) onto Hs 5(a, B+ qa+ry+ fo+
g€, 7, 0, €), which yields

0 S 6 < ng {047 Y 67 6}'
Then the isomorphism
(1) (h,j, k,m,n) — (=h, j,k,—m, —n)

of Hs 3(e, B, 7, 6, €) onto Hs 3(cv, =8 + ay, 7, 6, €) leads to the con-
clusion

() 0< B <ged{a,v,d e}/2.

It must still be shown that changing € or § within the allowed limits
(namely, € and @ must satisfy (x) and (xx), respectively) gives a non-
isomorphic group.

So, suppose that ¢ : H=Hs 3(c, 0, 7, 6, €) = Hs 3(ex, 3, 7, 6, €') =
H’ is an isomorphism. Then

p: Z K1 (Z,0,0,0,0) —(Z,0,0,0,0) = K| = 7',
=(2,Z,0,0,0) —(Z,Z,0,0,0) = K},
=(2,2,Z,0,0) —(Z,Z,Z,0,0) = K}, and

K4 =(2,2,2,7,0)—(Z,2,Z,7,0) = K},

since the Z’s are the centers, the K5’s consist of those s € H for which
s" is in the commutator subgroup of H for some r € Z, and the K3’s
and K,’s are as above. So we must have

©(0,0,0,0,1) = (x,%,—f,e,a) =S5 with a = £1,
©(0,0,0,1,0) = (%,7,9,0,0) = Sy withb==+1, and
©(0,0,1,0,0) = (*,d,¢,0,0) = S5 with ¢ = £1;

furthermore, commutators give
©(B,a,0,0,0) = [S5, S4] = S55455 1S, ! = (%, ab,0,0,0),
hence ¢(0,1,0,0,0) = (g,ab,0,0,0) = So, and

©(7,0,0,0,0) = [S5, S2] = (vab,0,0,0,0),
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so ¢(1,0,0,0,0) = (b,0,0,0,0) = S1, but also
50(63 Oa 0, 07 O) = [547 53] = (5[)0, 0, 07 Oa O),

so ¢ = 1. Furthermore, ¢(,0,0,0,0) = [S5,53] = (ae’ + ed +
ad~,0,0,0,0), which shows that the manipulations at (®) and (®')
above give the only way of changing ¢ in Hs 5(c, 3, 7, 6, €); that is, if

(%) 0<e, & <ged{y, d}/2
and € = ¢’ + a10 + azy with a1, a2 € Z, then € = ¢/. Now consider
(p(h’j’ k?m7 n) = (p((h7 0’ 0’ 0’ 0)(0’ j? 07 0’ 0)
x (0,0, %,0,0)(0,0,0,m,0)(0,0,0,0,n))

= (hS1) - (jS2) - (kSs) - Si" - 5§

:hS1+jSQ+/€53+ST'Sg e H.
Note that S # nSs, but SF = (*,%,—nf,ne,na), and also SJ* =
(%, mr,mg, mb,0); further, the (jS2) term puts a jq in the first en-
try of ¢(h, j, k,m,n), so also (j + j' + anm’)q in the first entry of

o(h,j, k,m,n)-@(h, 5k, m' n') (product in Hs 3(, 3,7, d,€)). Then,
equating the coefficients of the nm’ terms in the first entry of

plede’) and  p(el)p(ef) = SIS

gives

b(—ay/2 + B) + gqa = abB’ — abary/2 + age + ary + (eg + bf)d,
or
B==x8 +aia+asy+azd+ase forsome a;€7Z, 1<i<4,
which shows that the manipulations at (1) and (}') above give the only
way of changing just § in Hs 3(c, 8, 7, 0, €).

Here is an isomorphism ¢ of Hs 3(a, 3, 7, d, €) onto a subgroup of
the lattice subgroup Hs 3 = Z° C Gs 3 in terms of generators; Hs 3 has
multiplication

(h7j7 k’ m’ n)(hl,j/7 kl7m/,n/>
(m”) =(h+h +nj +m'n(n—1)/2 +mk’,
j+i +nm k+E , m+m n+n),
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ie, a=v=9d=1and g =¢e = 0. First suppose ¢ > 0. Then, with
0 = aye and generators

er = (1,0,0,0,0), e = (0,1,0,0,0), ..., es = (0,0,0,0,1)

for Hs 3(a, B, v, 6, €) satisfying

(©)
[657 64] = 6?6%, [657 63] = ef, [657 62] = 6?, [647 63} = 61157
[es,e1] =0, [eq,e1] =0, [es,e1] =0, [e2,e1] =0, [eq,e2] =0,
[es, e2] = 0,

@ is given by

@ e; — €] = (602,0,0,0,0),
ey — ey = (y00(d0 —1)/2,760,0,0,0),
ez — e = (0, 8¢9, 50, 0,0),
eq — ey = (0, 360,0,av4,0),

and

es — e = (0,0,0,0,0).

That ¢ is an isomorphism is verified by showing that {e}, e}, e5, €}, et}
C H; 5 satisfies (C). (Here ¢ is given by

(s g, kym,m) +— (60%h + (v00(0 — 1)/2)5,
Y905 + 6edk + Sdom, edk, arydm, on). )

When € =0, use 9 = ay and e5 = (0,0, 60,0, 0).

It is easy to see that the image Hy = o(Hs 3(a, B, 7, 0, €)) is cofinite
in Hs 3. Consider the coset sHy for s = (h,j,k,m,n) € Hs3; since
er = (0,0,0,0,9), we can choose r5 € Z so that se™ has its last
coordinate in [0,9). Then choose r4 € Z so that sef™e}™ has its

second last coordinate in [0, ayd). Continuing like this, we arrive at

ses™ ey ey ey el € K
where

K = ([0,60%) x [0,700) x [0,60) x [0,ay6) x [0,d)) N Z° C Hs 3,
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so every coset sH; for s € Hy 3 has a representative in K, which is a
finite set. It follows that the quotient map Hs 3 — Hj3/H; maps K
onto Hs 3/H;, which is therefore finite. (A similar argument shows that
Gs,3/H; is cocompact.)

Finally, note that since any cofinite subgroup of Hs 3 is also a discrete
cocompact subgroup of Gs 3, it must therefore be isomorphic to some
Hs s(«, 8, 7, 6, €). This completes the proof. i

Remarks. 1. The image Hy = p(Hs3(a, 8, 7, 0, €)) above is not a
normal subgroup of Hs 3, e.g.,

(0,0,1,0,0)e4(0,0,—1,0,0) = (,0,0,0,0) ¢ Hj.

This makes it seem unlikely that Hs 3(c, 3, 7, d, €) can be embedded in
Hs 3 as a normal subgroup; however, the existence of such an embedding
is still a possibility.

2. The theorem gives an isomorphism ¢ of Hs 3(c, 3, v, 4, €) onto a
subgroup of Hs 3; conversely, there is always an isomorphism ¢’ of Hs 3
onto a subgroup of Hs 5(c, 3, v, 6, €), and as for ¢, it is easier to give
¢ in terms of the generators {e; | 1 <14 <5} of Hs 3, which satisfy

[es,e4] = €2, [es,e3] =0, [es,ea] =e1, [es,e3] =
(C/) [657 61] =0, [64, 61] =0, [637 61] =0, [62; 61] =0,
[647 62] = O7 [63, 62] =0.

Then
¢ e1 — € = (ay?6%,0,0,0,0),
ey — ey = (ay?6(6 —1)/2,0a76,0,0,0),
ez — e5 = (0, —ade, a6 7,0,0),
es — e} = (0,-5,0,7,0),
and

es — e5 = (0,0,0,0,0).

That ¢’ is an isomorphism is verified by showing that e}, €}, e5, €}, ef €
Hs 3(c, B, 7, 0, €) satisfy (C'). (Here ¢’ is given by

(h,ja k,m7n) L (OZ’}/2 52h +ja72 5(5 - 1)/23
avydj—adek — pm,aydk,ym,on).)
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So, as for the three-dimensional groups Hs(p) and the four-dimen-
sional groups Hy(p1,p2,p3), here we have an infinite family of non-
isomorphic groups, each of which is isomorphic to a subgroup of any
other one.

3. Infinite dimensional simple quotients of C*(Hs3(a, 3, 7,
5, ¢€)). We begin by obtaining concrete representations on L?(T?)
of the faithful simple quotients, i.e., those arising from a faithful
representation of Hs 3(c, 3, 7, 0, €), and consider first the case ¢ = 0.
In this case Hs3(a, 3, v, 4, 0) has an abelian normal subgroup N =
(Z,7,0,Z,0), with quotient

H573(Oé, 6> v 57 0)/N = (0,0,Z,O, Z) = ZQ,

also abelian and embedded in Hss(«, 8, 7, 6, 0) as a subgroup, so
that Hs 3(a, 8, 7, 9, 0) is isomorphic to a semi-direct product N X
Z?; in this situation, the simple quotients of C*(Hs3(c, 3, 7, 6, 0))
can be presented as C*-crossed products using flows from commuting
homeomorphisms, as follows.

Note. Here, and below, the term flow designates a pair (G, X)
consisting of a compact Hausdorff space X with a group G acting
continuously on it. Some authors refer to such a pair as a dynamical
System.

Let A = €2™ for an irrational 6, and consider the flow F' = (Z?2, T?)
generated by the commuting homeomorphisms

) (w,v) — (Nw, NPw®v) and @ : (w,v) — (w, \"0).

The flow F” is minimal, so the C*-crossed product C' = C*(C(T?), Z?)
is simple [1, Corollary 5.16].
Let v and w denote, as well as members of T, the functions in C(T?)

defined by
(w,v) — v and w,

respectively. Define unitaries U, V, W and X on L?(T?) by

U:fr— fouy, Vifr—uf,

') _ / ,
W:fr— fotyy and X:f+—wf
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These unitaries satisfy

(CR)) UV =MX°VU, UX=XNXU  VW=XWYV,
UW = WU, VX =XV, WX = XW,

equations which ensure that
7 (h,j, k,m,n) — NP XIWkympyn

is a representation of Hs 3(«, 3, 7, d, 0). Denote by Ag’?’(a, 8,7, 9, 0)
the C*-subalgebra of B(L?(T?)) generated by w, ie., by U, V,
W and X. Since Ag’g(a, B, 7, 9, 0) is generated by a representa-
tion of Hss(a, 0,7, 6, 0), it is a quotient of the group C*-algebra
C*(Hs3(w, 8,7, 6, 0)). It follows readily that Ag’?’(a7 B, 7, 6, 0) is
isomorphic to the simple C*-crossed product C’ above, and hence is
simple.

However, when 0 < € < ged {~, 6}/2 (which implies v > 1, by (%)),
Hs s(, 8, 7, 6, €) is only an extension (Z,Z,0,7Z,0) x (0,0,Z,0,Z) =
N x Z2, and not a semi-direct product. Nonetheless, we can modify
the flow F’ representing Ag’?’(a, 8,7, 9, 0) above to ge t a concrete

representation of Ag’?’(a, B, 7, §, €). Consider the flow F = (Z2,T?)
generated by the commuting homeomorphisms

Y1 : (w,v) — Aw, Pw*v)  and s 1 (w,v) — (w, A"%v).

The flow F is minimal, so the C*-crossed product C = C*(C(T?),Z?)
is simple. Define unitaries on L?(T?) by

U: fr— foun, Vifr—uf,

@) W:fr—wfotys and X :fr—w’f

These unitaries satisfy

(CR) UV =MX°VU, UX=\NXU  VW=XWYV,
UW = XWU, VX =XV, WX = XW,

equations which ensure that

7 (h,j, k,m,n) — NP XIWkympyn
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is a representation of Hs 3(«, 8, 7, J, €). Denote by AZ’S(a, 8,7, 9, €)
the C*-subalgebra of B(L?(T?)) generated by 7. Now A3*(a, 3, 7, 4, €)
is isomorphic only to a subalgebra of C (as may be shown using con-
ditional expectations); a unitary that is missing is X' : f +— wf, since
v > 1.

Note. The reason we did not use F when € = 0, and v > 1, is that
Ag’g(a, B, v, 9, 0) seems to be isomorphic only to a subalgebra of C in
that case too, whereas with F, A2’3(047 B, 7, 6,0) (.

Since the flow method can no longer be used to prove the simplicity
of the algebra AY*(a, 8, 7, 6, €) (when 0 < e < ged {v,8}/2), we use
the strong result of Packer [10].

Theorem 2. Let A\ = 2™ for an irrational 6.

(a) There is a unique (up to isomorphism) simple C*-algebra Ag’?’(a,
B, 7, 8, €) generated by unitaries U, V., W and X satisfying
(CR) UV =MNX"VU  UX=XNXU, VW = AWV,

UW = NWU, VX=XV, WX =XW,
Furthermore, for a suitable C-valued cocycle on Hs(a) X Z,
AZ73(047 B, 7, 0, €) =2 C*(C,Hs(a) X Z).

(b) Let 7' be a representation of Hi 3 = Hs 3(a, 8, 7, 9, €) such that
7 = 7', as scalars, on the center (Z,0,0,0,0) of Hy 3, and let A be
the C*-algebra generated by w'. Then A = Az’?’(a, B, 7, 0, ¢) = A?’?’

(say) via a unique isomorphism w such that the following diagram

commutes. -
/ T 15,
H5,3 Ae

N

A

Proof. To use Packer’s result, we regard Hss(a, 3, 7, d, €) as an
extension

H513(Ck, ﬂ7 7> 5a 5) =Zx (O,Z,Z,Z,Z) =7Zx (H3(a) X Z)
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(with Hsz(o) = (0,Z,0,Z,Z) C H5 3(cv, 5, 7, 0, €)); this extension has
cocycle

[s,8'] = [(4, k,m,n), (', K',m/, n")]
— )\Amjuroc'ym'n(nfl)/2+ﬂnm'+5mk'+6nk¢'

(Hg(Ot) X Z,Hg(a) X Z) — T.

The application of Packer’s result requires the consideration of the
related function

’

X® (s) = [, s][s,s"1s's] for s,8' €(0,Z,Z,Z,Z) = Hz(a) x Z.

It must be shown that X is non-trivial on the centralizer of s’ in
H;(a) x Z if ¢’ has finite conjugacy class in Hz(a) x Z; this is easy
because the only elements of H3(«) x Z that have finite conjugacy class
are in the center Z; = (Z,Z,0,0) of H3(«) X Z, so their centralizer is all
of Hz(a) x Z. Thus the C*-crossed product C*(C, Hs(«) x Z) is simple;
it is isomorphic to Ag’g(a, B, v, 9, €) because, with basis members

€1 = (1a05070)a €2 = (0717()’0)7
es =(0,0,1,0) and e4=(0,0,0,1)
for Hy(a) X Z, the unitaries
U =06¢, V' =06, W =06, and X' =9,
in l;(Hs(a) x Z) C C*(C,Hs(«) x Z) satisty (CR). O
4. Other simple quotients of C*(Hs3(«, 8,7, 6, €)). Now
assume that A is a primitive gth root of unity and that U, V', W and X

are unitaries generating a simple quotient A of C*(Hs 3(a, 8, 7, 9, €)),
i.e., they satisfy

(CR) UV =MX°VU, UX=\NXU  VW=XWV,
UW = XWU, VX =XV, WX = XW,

We may assume that A is irreducibly represented. Then, if

() { q1 is the order of X7 and

¢o is the lem of the orders of A% and \¢,
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W42 and X% are scalar multiples of the identity, by irreducibility. Since
W can be multiplied by a scalar without changing (CR), we may assume
W% = 1. However, X% = y/, a multiple of the identity. Put X = uX;
for p9' =y, so that X{' = 1, and substitute X = uX; in (CR) to get

UV = ueXevu, UX,=\NXU, VX=XV,
(CRy) WX, =X1W, VW =XWV, UW =XWU
and W =1=X]".

1. If p is also a root of unity, then (CR;), along with irreducibility,
shows that U and V', as well as W and X, are (multiples of) finite order
unitaries, so A is finite dimensional.

2. If 4 is not a root of unity, the dynamical system F = (Z2, T?)
used above to get a concrete representation of AZ’S(a, B, 7, 9, €) can
be modified to get a concrete representation of A on L*(Z, x T),
where Z,, is the subgroup of T with ¢; elements. We shall now
show that A is isomorphic to My, ® C*(C(Z,, x T),Z), where ¢, is
as in (¢’) and the action of Z on Z,, x T is generated by a minimal
transformation ¢(w,v) = (Nw, & A7*%2v) for suitable A’ of order ¢; and
&1, see Theorem 3 below.

First consider the universal C*-algebra 2 generated by unitaries
satisfying

UV = MueXevu, UX,=XNXU VX=XV,
(CRy) WX, =X1W, VW =XWV, UW =XWU
and W =1= X7,

A change of variables is useful. Pick relatively prime integers c, d such
that dd 4+ ce = 0, and let a, b be integers such that ad — bc = 1. Put

U'=UV" and V' =UV
Then keeping X and W the same, (CR;) becomes
UV =¢Xevy!, U'Xy =X7XU0, WX, =XW,

(CRy) L VW =WV', UW = MNWU', V'X =XV
and W =1=X/"
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where & = M u\® for some integer s, and ¢’ = b6 + ae. It is clear that
2 s a primitive goth root of unity and that the algebra 2 is generated
by U, V', W and X1, since ad — bc = 1.

Let B = C*(X1,V’) and let C(Z,,) = C*(W) be the C*-algebra
generated by W. Since W commutes with Xy and V', we can form the
tensor product algebra B ® C(Z,,) = C*(X1,V’,W). The automor-
phism Ady. acts on this tensor product as ¢ ® 7, where ¢ and 7 are
automorphisms of B and C(Z,,), respectively, given by

o(X1) =2A"Xy, o(V)=&X{V' and T(W)=(W.

Therefore, by the universality of 2 and of the C*-crossed product
C*(B® C(Zy,),Z), these algebras are isomorphic. By Rieffel’s Propo-
sition 1.2 [17], the latter of these is isomorphic to Mg, (D), where
D =C*(B,Z) = C*(X,,V',U'%), and the action of Z on B is gener-
ated by o%.

Now, the unitaries X, V' and U’% generating D satisfy

) { U'eV! =g\ XPeVUe, VX = TX, V),

U2X; =\72X,U'%? and X' =1,

for some s’ € Z.

Now we apply another change of variables. Choose relatively prime
integers ¢/, d’ such that cd’ + agac’ = 0, then pick integers a’,b’ with
a'd —bvcd =1, and put

U// _ U/qzalvlb/ and V/I — U/qgc/ Vd/.
Then (%) becomes (keeping X; the same)

U//vl/ — ngIOLQQ V//U// V//Xl — le//
*ox
(%) {U”Xl =XNX;U” and X7 =1,
where & = €920 for some integer s/, X = \V(@©20'+¥) hag order g5
dividing ¢; (the order of \7), and perhaps g5 # ¢1.

Now, with Z,, C T representing the subgroup with ¢; members, one

observes that D is isomorphic to the crossed product of C*(C(Z,, %
T),Z) from the flow generated by ¢(w,v) = (Nw, & A7*%2v). (Note
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that the flow is not minimal unless the order of X is exactly ¢;.) This
proves the following.

Theorem 3. The universal C*-algebra A generated by unitaries
U, V, W and X; satisfying (CR1) as for 2 near the beginning of
this section, (see also (c')) is isomorphic to Mgy, (D), where D =
C*(C(Zy, x T),Z), as above.

Therefore, we now obtain all simple algebras satisfying (CRy).

Corollary 4. FEvery simple C*-algebra generated by unitaries sat-
isfying (CRy), with p not a root of unity, is isomorphic to a matriz
algebra over an irrational rotation algebra.

Proof. By Theorem 3, any such simple algebra @) is a quotient of
M,, (D). Hence Q = M,,(Q') where Q' is a simple quotient of D. But
such a @' is generated by unitaries satisfying (%), but with X5, of order
q1, replaced by another unitary X5, which after suitable rescaling, has
order equal to the order of the N appearing in (%x). But this algebra
is known to be a matrix algebra over an irrational rotation algebra, see
for example Theorem 3 of [5]. o

We state

Theorem 5. A C*-algebra A is isomorphic to a simple infinite
dimensional quotient of C*(Hss(w, 5,7, 0, ¢)) if and only if A is
isomorphic to Ag’g(a, B, 7, 8, €) for an irrational 0, or to an algebra
as in Corollary 4.

5. K-theory and the trace invariant. In this section we shall
calculate the K-groups of the C*-algebra A := Ag"g(oz7 B, 7, 9, €) by
means of the Pimsner-Voiculescu six term exact sequence [16]. Since
one of the groups in the sequence turns out to have torsion elements,
the application of this result requires careful examination.



1780 P. MILNES AND S. WALTERS

Theorem 6. For the C*-algebra AZ’S(a, B, 7, 9, €), one has Ky =
K, =759 Z,.

Proof. To prove this theorem, we combine two applications of the PV
sequence corresponding to two presentations P1 and P2 of A as follows.

P1. In view of (CR), let B; = C*(X,V,U) and let Ady, with
Adw(X) =X, Adw(V)=A"°V, Adw(U)=\"°U,
generate an action of Z on By, so that A = C*(By,Z). Applying the PV
sequence to By, viewed as the crossed product of C(T?) = C*(X,V)
by the automorphism Ady, it is not hard to see that Ko(B;) = Z* and
Ki(By) = Z3 ® Z,. Since Ady is homotopic to the identity, the PV

sequence immediately gives
Ki(A) =Z°® Z,.
However, since in the short exact sequence

0 — Ko(B1) = Ko(A) - K1(By) — 0

K1(By) has torsion, we cannot readily obtain Ky(A). For this, the next
presentation will help.

P2. In view of (CR), we can also let By = C*(X,V,W) = C(T) ®
Aso, where C(T) = C*(X) and Asg = C*(V,W). Let 0 = Ady, with

o(X)=NX, o(V)=MNXV, oW)=X\XW,

generate an action of Z on Bs, so that A = C*(Bag, Z). In this case the
PV sequence becomes

Ko(Bs) “%2%, Ko (By) — 2 Ko(A)

() aj J50

K1 (A) = K1 (By) <4=7= K\(By)
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It is not hard to see that a basis for Ki(By) = Z* is given by
{IX],[V],[W],[€]} where ¢ = X ® e+ 1® (1 —e) and e = e(V,W)
is a Rieffel projection in Agsg of trace 0 mod 1. Also, a basis of
Ko(BQ) = Z4 is given by {[1], [6], BXV7 wa} where BXV = [va]—[l]
is the Bott element in X,V and Pxy the usual Bott projection in the
commuting unitaries X, V. The action of id, — o, on K;(Bs2) is given
by

ide —0x: [X]—0, [V]— —a[X], [W]—0, [£— ma[X]

for some integer m, as shown by the following lemma. The action of
id. — 0, on Ko(Bs) is given by

ide —ox: [1]—0, [e]— aBxw, Bxwr—0, Bxy+—D0.

Here, that o.(Bxy) = Bxy is a well-known fact, see for example
Lemma 3.2 of [18]. The action on [e] is also shown in the following

Lemma 7. We have o.le] = [e] — aBxw in Ko(Bz2) and o.[§] =
[€] + ma[X] for some integer m.

Proof. The proof of the first equality can be established using an
argument quite similar to that of the proof of Lemma 4.2 of [18]. Hence
the kernel of id, — o, on Ky(Bs) is Z3. For the second equality, let
7 = (idx — 04)[¢]. From P1 and (*) we have

7280 Z, =2 K\(A) =72 $Im (i)

mgpg BB s KBy
Im (idy — 04) Zol X+ Zn
Thus
K1 (Bs) 3
——— =72 B Z,.
(+) ZoX|+2zy 2 ©

But since K1 (Bs) = Z*, it follows that the subgroup Za[X] + Zn must
have rank one.! Therefore, Za[X] + Zn = Zd[X] for some integer d.
Substituting this into (xx*), one gets d = « and so n € Za[X]. O
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It now follows that in K;(Bs) one has Im (id, — 0.) = Za[X] and
that Ker (ids —o,) = Z3 whether m is zero or not. Therefore, from the
exactness of (x) we obtain Im (dy) = Z3 and hence, by Lemma 7,

Ko(B2) Ko(B2)

Ko(A) =Z@Im (i) = Z3p——1"2 = 73¢ "2 — 7547,
O( ) 8 m(Z ) @Im(id* —0'*) 69ZOéBXVV O,

which completes the proof of Theorem 6. o

5.1 The trace invariant. Let us first note that when @ is irrational,
the C*-algebra Ag’?’(a, B, v, 0, €) has a unique trace state . Such a
trace clearly exists by defining 7(X™W"V"U*®) = 0 when (m,n,r, s) #
(0,0,0,0) and 1 otherwise. The uniqueness of a trace state follows
from showing that, for any such trace 7, one has z(X"W"V"U?) =0
when (m,n,r,s) # (0,0,0,0). Indeed, using Adx in the trace, one
gets T(X"WmVTU®) = ¢(X*X™W"VTUSX) = A3¢(X™W"VTU#),
which shows that 7(X™W"V"U®) =0 for s # 0, as v > 0. One then
looks at (X™W"™V"). Here one uses Ady to see that this trace is 0
for r # 0. For 7(X™W™) one uses Ady and for 7(X™) one uses Ady.
This proves uniqueness of the trace.

Theorem 8. The range of the unique trace on KO(AZ’3 (o, B, 7, 9, €))
is Z + Zp0 + Z66? where p = ged{~, 6, }.

Note that this agrees with the trace invariant Z + Z6 + Z6? of the
algebra AZ’3 as done in [18, Section 2], in the case (a, 8,7, 6, &) =
(1,0,1,1,0).

Proof. First we make an appropriate change of variables for the
unitary generators of the algebra A = AS’S(a7 B, 7, 6, €). Referring
back to the defining relations (CR), pick integers a, b, ¢,d such that
bd + ae =0, ad — bc = 1, and let

u=u"vt, V' =0V
Then the commutation relations (CR), with W remaining the same and
X suitably scaled, become

UV =XV, UX=X\7XU', VW= xBrewy,
UW=WU, VX=XV, WX=XW



DISCRETE COCOMPACT SUBGROUPS OF Gs 3 1783

Let B = C*(X,U’,V’). Tt is isomorphic to the crossed product of
C*(X,U’) = Aavo by Z and automorphism Ady/. An easy application
of Pimsner’s trace formula [15, Theorem 3] shows that

1. Ko(B) =Z + Zav0 + Zcvyd = Z + ZA0,

since (a,c) = 1. Next, it is not hard to see that an application of the
Pimsner-Voiculescu sequence to the above crossed product presentation
of B gives the basis {[X], [V'], [U], [£]} for K;(B), where [X] has order
a, £ = 1— e+ ecw*V'*e is a unitary in B, e is a Rieffel projection
in Agyg of trace (ayf)mod1, and w is a unitary in A,,p such that
V'*eV’ = wew*, which exists by Rieffel’s cancellation theorem [17].
The underlying connecting homomorphism 0 : Ki(B) — Ko(Aay0)
gives 0[¢] = [e] and O[V’] = [1], the usual basis of Ky(Age)-

To apply Pimsner’s trace formula, one calculates the usual “determi-
nant” on the aforementioned basis, since the kernel of id, — (Adw )«
is all of K;(B), since Ady is homotopic to the identity. It is easy to
see that this determinant, whose values are in R/7,Ky(B), on the el-
ements [X], [V'], [U’] gives the respective values 1, (dd + ce)f, 1. For &,
since now Ady fixes Aq46, and in particular e and w, one obtains

Ady (6)€* = (1 —e+ A eV e) (1 —e+eV'we) = 1 — e+ \PHee,

Now a simple homotopy path connecting this element to 1 is just
t — 1 — e+ e2mfditee)te  and the corresponding determinant gives
the value (dd + ce)fz(e). Since 7(e) = ayf mod 1, the range of the
trace is

7. Ko(A) = Z + Zry0 + Z(dS + c£)0 + Zrya(ds + c£)0>.

Now a(dd + ce) = add + ace — ¢(bd + ag) = 0, and similarly —b(dd +
ce) = ¢, thus showing that dé + ce = ged{d,e}. Therefore, one gets
7.Ko(A) = Z + Z ged{, 6, e}0 + Z~5662. o

5.2 Discussion of classification. Next, let us consider briefly the
classification of the algebras A2’3(047 B, 7, 8, ). First, it is easy to
show that Az’?’(a, B, 7, 0, €) = Ai’g(a, B, 7, 0, €). Second, we note
that the simple quotients AZ’?’ = A2’3(1,0, 1,1,0) have been almost
completely classified in [18]; specifically, they have been classified for
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all non-quartic irrationals, which are those that are not zeros of any
polynomial of degree at most 4 with integer coefficients. But, generally,
with A = e>™ for an irrational 6, the operator equations

(CR) UV =XXVU, UX=XNXU  VW=XWV,

UW = XWU, VX =XV, WX = XW,
for Ag’g(a, B, 7, 0, €) can be modified by changing some of the vari-
ables, i.e., by substituting X, = €2™?8/@ X and putting \g = \?, where
p = ged {7, 6, €}, and then vo = v/p, dg = 0/p and gy = &/p with
ged {70, 90, €0} = 1. The equations (CR) become
(CRo)

{ UV = X§VU, UXo=M"XU, VW =WV, VX,=XyV,
UW = )\SOWU, WX() = X()VV, with ng {’)/0, 50,60} = ].,

which are the equations for Ai’e‘o’(a, 0,70, 90, €0), SO

AZ,S(% ﬂv v 63 6) = AZbS(aa0,70760;50)

where ged {70, 00,e0} = 1. This reduces the classification to the class
of algebras Ag’?’(a7 0,7, 0, €) where ged {7, 6, e} = 1.

If two such C*-algebras A; = Ag;s(aj,o,vj,éj,sj), j = 1,2, are
isomorphic, where now p; = ged{v;,d;,6;} = 1, what constraints
must hold between their respective parameters? As we observed in
Theorem 6, one must have a; = as. By Theorem 8, one has

One can show that if one assumes that 6; are non-quadratic irra-
tionals, then these trace invariants are equal if, and only if, there is a
matrix S € GL(2,Z) such that

0\ 6, z
(7252%) =9 (’71519%) mod <Z> '

Further, one can more easily show that if 6; are non-quartic irrationals,
i.e., not roots of polynomials over Z of degree at most four, then the
trace invariants are equal if, and only if,

0y = (£6;)mod 1, and 790203 = (£716107 +mb;)mod 1,
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for some integer m. If 6; are in (0, (1/2)) for j = 1,2, then this shows
that #; = 02 and hence 167 = 7202. We therefore have one direction
of what could be a classification theorem.

Theorem 9. Let 01 and 03 be non-quartic irrationals in (0, (1/2)).
If the C*-algebras A1 and As are isomorphic, then 61 = 05, a1 = aso,
and 181 = y205.

As to the converse, the necessary conditions by themselves seem
to suggest that the Elliott invariant of both algebras are isomorphic.
This will hold if it can be shown that the positive cone of K(A4;)
consists of those elements with positive trace. Further, if one can show
that the algebras A; fall into the classification class of Qing Lin and
Chris Phillips, i.e., are direct limits of recursive subhomogeneous C*-
subalgebras, which is a highly nontrivial matter, then one will have
obtained a complete classification theorem for these algebras. The
difficulty in doing this is illustrated by their recent unpublished papers
[3, 13, 14], in which [3] is a 200-page classification theorem. The
authors are thankful to Chris Phillips for making these and related
papers available to them.

ENDNOTES

1. If 0 - F1 — G — F2 & H — 0 is a short exact sequence of finitely
generated Abelian groups, where Fi, Fy are free groups and H is torsion, then
rank (G) = rank (F1) 4 rank (F»). This can be seen from the naturally obtained
short exact sequence 0 — F1 & Fo — G — H — 0, from which the result follows.
(If G has rank greater than that of a subgroup K, then G/K contains a non-torsion

element.)
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