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DIOPHANTINE APPROXIMATIONS
AND A PROBLEM FROM THE 1988 IMO

F. LUCA, C.F. OSGOOD AND P.G. WALSH

ABSTRACT. Harborth has recently shown how to describe
all integer solutions to a Diophantine equation arising from
a problem at the 1988 International Mathematical Olympiad.
Harborth uses a clever reduction method, although it seems
that this method is somewhat ad hoc. The purpose of the
present paper is to show how the result of Harborth can be
proved, and extended, using the classical theory of continued
fractions. More to the point, a shortcoming in this classical
theory is circumvented by an extension to Legendre’s theorem
concerning a sufficient condition for a rational integer to be a
convergent to a given irrational number.

1. Introduction. Problem 6 from the 1988 International Mathe-
matical Olympiad asked the participants to prove that if a and b are
positive integers for which

(1.1) k =
a2 + b2

ab + 1

is an integer, then k must be the square of an integer. Recently,
Harborth [3] has taken this problem one step further by providing
closed formulas for the complete solution set of triples of integers
(a, b, k) satisfying (1.1).

A simple rearrangement of (1.1), together with the substitution
x = bk − 2a, y = b shows that solutions (a, b, k) of (1.1) are in
correspondence with solutions (x, y, k) of the quadratic equation

(1.2) x2 − (k2 − 4)y2 = 4k.

If k is even, or if gcd(x, y) > 2, then it is relatively simple to determine
the solutions to (1.2) using the basic theory of continued fractions. To
see this, assume first that k is even, k = 2l say, and assume that k > 2,
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as the case k = 2 is trivial. It follows that x is even, say x = 2z, and
that z2 − (l2 − 1)y2 = 2l. Considering this equation modulo 8 shows
that z, y and l are all even, and furthermore if z1 = z/2, y1 = y/2,
then z2

1 − (l2 − 1)y2
1 = l/2. It follows from the theory of diophantine

approximations (in particular Legendre’s theorem, about which we will
say more in a later section), that z1/y1 is a convergent to

√
l2 − 1. From

the special form of this particular quadratic discriminant, it follows that
l/2 is the square of an integer, and that

√
l/2 must divide both z1 and

y1, i.e., that x+y
√

k2 − 4 is an integer multiple of a unit in Z[
√

l2 − 1].
Therefore, k must be the square of an integer,

√
k divides x and

√
k/2

divides y. In the case that gcd(x, y) > 2 and k = 2l is even, then x/(2y)
is a convergent to

√
l2 − 1, and the same conclusions as in the previous

case are determined. In the case that gcd(x, y) > 2 and k is odd, then
(2x + y)/(2y) is a convergent to (1 +

√
k2 − 4)/2 and once again the

same conclusions are drawn. Finally, if gcd(x, y) = 2 and k is odd, it is
then easy to check that (x1, y1) given by x1 = (x/2)k + (y/2)(k2 − 4),
y1 = (x/2) + (y/2)k is a solution to (1.2) satisfying gcd(x1, y1) = 1.

The point of this preamble is to point out that the only potential
difficulty in solving (1.2) arises in the case that k is odd and gcd(x, y) =
1. The method of using continued fractions, as described above, does
not provide a means to rule out the possibility of integer solutions to
(1.2) in this case. There is relevant work of Hurwitz [4], Fatou [1],
Grace [2] and of Khinchin [5] on mediating fractions. Also, Selenius [7]
has proved some interesting related results, but we are unable to find
explicit statements that will enable the direct resolution of equation
(1.2).

The main purpose of the present paper is to expand on the current
state of knowledge about continued fractions, in the sense of generaliz-
ing a classical theorem of Legendre. In particular, necessary conditions
will be described for when a fraction is a good approximation to a real
number, but not good enough to be deemed a true convergent. We will
then apply these results to quadratic fields, and see that solving cer-
tain types of quadratic diophantine equations, such as (1.2), can then
be achieved with minimal effort.

2. Harborth’s reduction method. Before proceeding to the main
part of our work, we describe Harborth’s method for the sake of com-
pleteness. Furthermore, we provide a somewhat different description
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of the solution set of equation (1.1). What seems most interesting is
that this method, which is designed to solve (1.1), provides a way to
completely solve equation (1.2). We will be terse for the sake of brevity.

Theorem 2.1. All positive integers (a, b, k), with a ≤ b, for which
k = (a2 + b2)/(ab + 1) is an integer are given by

1. k odd. (a, b, k) = (ly, (lx + l3y)/2, l2), where (x, y) satisfy x2 −
(l4 − 4)y2 = 4.

2. k even. (a, b, k) = (ly, lx + (l3/2)y, l2), where (x, y) satisfy
x2 − (4l4 − 1)y2 = 1.

The main idea of the proof of Theorem 2.1 is given in the following
result.

Lemma 2.1. Let a < b be positive integers such that b = ma + r
with 1 ≤ r ≤ a − 1, and put s = a − r. Then (a, b, k) is a solution to
(1.1) if and only if (a, s, k) is a solution to (1.1), and if this occurs,
k = m + 1.

Proof. Putting b = ma + r into (1.1) and solving for k, we find that

(2.1) k = m +
a2 + mar + r2 − m

ma2 + ra + 1
.

The fraction in (2.1) is strictly between 0 and 3, and being an integer,
must then either be equal to 1 or 2. We first show that the latter is
not possible. If k ≥ 6, then m ≥ 4, and it is a simple exercise to check
that the fraction in (2.1) cannot be 2. Also, one can verify that (1.1)
has no solutions for k = 2, 3, 5, and that the only solution for k = 1
is (a, b) = (1, 1). Finally, if k = 4, then (a, b) = (2y, 2x + 4y) where
x2 − 3y2 = 1. Therefore, b/a = (x/y) + 2 > 3, forcing m = 3, and the
fraction in (2.1) to be 1.

We have shown that k = m + 1, and that

a2 + mar + r2 − m = ma2 + ra + 1.

Substituting a − s for r in this last equation, and some rearranging
yields

a2 + s2 = (m + 1)(as + 1),
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which proves the only if portion of the theorem. For the converse, if
(a, s, m + 1) is a solution to (1.1), then putting b = ma + (a − s), one
can see that (a, b, k) is also a solution.

Theorem 2.1 is now a simple consequence of this lemma and the
remarks in the Introduction. First of all, it is clear that all of the
solutions given in the statement of Theorem 2.1 satisfy (1.1). To show
that all solutions of (1.1) are of the described form, let (a, b, k) be a
solution of (1.1). If gcd(a, b) > 2, then one obtains a solution (x, y)
to (1.2) with gcd(x, y) > 2. The remarks given in the Introduction
show how such a solution must be an integer multiple of a unit in
either Z[

√
l2 − 1], where k = 2l, or Z[(1 +

√
k2 − 4)/2] in the case that

k is odd. By considering the two cases of the parity of k separately,
one is led to a solution of the form described in the statement of the
theorem. If gcd(a, b) = 2, then there exists a solution to (1.2) with
gcd(x, y) = 2. If k is odd, then as described in the previous section,
this leads to a solution (x, y) to (1.2) with gcd(x, y) = 1, and hence
to a solution (a, b) of (1.1) with gcd(a, b) = 1, and this will be dealt
with henceforth. If (x, y) is a solution to (1.2) with gcd(x, y) = 2 and
k = 2l, then 4 divides x. It follows that (x/4)/(y/2) is a convergent to√

l2 − 1, and the argument proceeds as in the previous cases. Finally,
if (a, b, k) is a solution to (1.1) with gcd(a, b) = 1 and b > a, then
in the notation of Lemma 2.1, (a, s, k) is also a solution and satisfies
a > s > 0, gcd(a, s) = 1. Repeating this reduction procedure must
eventually lead to a solution (s1, 1, k), where s1 > 1, contradicting the
fact that (a, b, k) = (1, 1, 1) is the only solution to (1.1) with one of a
or b equal to 1.

We see then that the method of Harborth not only determines all
solutions to (1.1), but also provides a clever, but somewhat ad hoc,
approach for solving equation (1.2). We state this as a corollary to
Theorem 2.1.

Corollary 2.1. If k > 1 is an odd integer, then the quadratic
equation

x2 − (k2 − 4)y2 = 4k

has no solutions in coprime integers (x, y).
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As mentioned before, it is very surprising that this result can
be proved using the reduction techniques described in the proof of
Lemma 2.1 and yet does not follow directly from known results in the
theory of diophantine approximation, in particular, from Legendre’s
necessary condition for an approximation to be a convergent. The next
section is an attempt to remedy this situation.

3. Diophantine approximations. Throughout this discussion, α
will denote an irrational number. Legendre proved that if a rational
number p/q satisfies |α−p/q| < 1/(2q2), then p/q is a convergent to α.
As we have seen above, this result is not strong enough to show that
(1.2) is not solvable in coprime integers x and y. In this section we
describe necessary conditions when a given approximation is not quite
good enough to be concluded a convergent.

Throughout the paper we will make reference to the usual notation
concerning the continued fraction expansion of an irrational number.
In particular, if

α = a0 +
1

a1 + 1
a2+...

for an integer a0 and positive integers a1, a2, . . . , then this is the con-
tinued fraction expansion of α, denoted neatly by α = [a0; a1, a2 . . . ],
each an is a partial quotient , and the convergents to α are given by

pn

qn
= [a0; a1, a2 . . . , an], (pn, qn) = 1.

The numerators and denominators of convergents satisfy the recursion
formulae

pn+1 = an+1pn + pn−1, qn+1 = an+1qn + qn−1 for n ≥ 1.

We will use the fact that, for each n ≥ 0, the inequality

(3.1)
∣∣∣∣α − pn

qn

∣∣∣∣ < 1
qnqn+1

holds (for example, see Lemma 3E of [6]). For more details on continued
fractions, and their properties, the reader is referred to either [5] or [6].
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Definition. Assume that α has the continued fraction expansion
given above. A mediating fraction to α is any rational number p/q of
the form

p = mpn + pn−1, q = mqn + qn−1,

where 1 ≤ m ≤ an+1.

Notice that a convergent is the special case of a mediating fraction,
namely when m = an+1.

Theorem 3.1. Let α denote an irrational number and r/s a rational
number in reduced form, with s ≥ max(2, q1), such that

(3.2)
∣∣∣∣α − r

s

∣∣∣∣ < 2
s2

.

Then there exist integers n ≥ 1 and 1 ≤ m < an+1, such that one of
the following conditions hold.

(i) (r, s) = (pn, qn).

(ii) (r, s) = (mpn + pn−1, mqn + qn−1).

(iii) (r, s) = (pn + 2pn−1, qn + 2qn−1).

(iv) (r, s) = (2pn − pn−1, 2qn − qn−1).

Moreover, if (r, s) satisfies condition (iii), but not (i) or (ii), then

∣∣∣∣α − r

s

∣∣∣∣ > 1
s2

,

and if (r, s) satisfies condition (iv), but not (i), (ii), or (iii), then

∣∣∣∣α − r

s

∣∣∣∣ >
3

2s2
.

Remark. In the case that s < max(2, q1), the theorem does not hold.
On the other hand, it is not difficult to prove under these circumstances
that either s = 1 or r/s = a0 +1/(a1−1). We do not pursue the details
here.
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Proof. By replacing α by α − a0, there is no loss in generality in
assuming that 0 < α < 1. Given r/s, let n ≥ 1 be defined by
qn ≤ s < qn+1. We will also assume that r/s > α, since the alternative
case can be treated in a similar manner. We use the fact that

(3.3) rqn − spn = sqn

(
r

s
− α

)
+ sqn

(
α − pn

qn

)
.

If s = qn, then (3.1) and (3.2) show that

qn|r − pn| = |rqn − spn| < q2
n

∣∣∣∣α − r

qn

∣∣∣∣+ q2
n

∣∣∣∣α − pn

qn

∣∣∣∣ < 2 +
qn

qn+1
< 3.

Therefore, qn|r−pn| ≤ 2, and since qn ≥ 2, it follows that either r = pn

or qn = 2. In the latter case we see that pn = 1, and hence |r−pn| = 1,
implying that either r = 0 or r = 2. These are not possible since the
fractions 0/2 or 2/2 are not in reduced form, showing that r = pn.

We shall henceforth assume that qn < s < qn+1. The quantity
((r/s) − α) appearing in (3.3) is positive. We study the sign of
(α − (pn/qn)). If this quantity is negative, then

pn

qn
> α.

Therefore,
pn−1

qn−1
< α < min

{
pn

qn
,

r

s

}
.

It follows that

(3.4)
0 < |rqn − spn| ≤ max

{
sqn

(
r

s
− α

)
, sqn

(
pn

qn
− α

)}

< max
{

2qn

s
,

s

qn+1

}
.

Since qn < s < qn+1, we deduce various statements from (3.4). For
example, since

sqn

(
α − pn

qn

)
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is negative, but of absolute value smaller than s/qn+1 < 1, it follows
that rqn − spn is nonnegative. Moreover, since 2qn/s < 2, we see that

(3.5) rqn − spn = 1.

Therefore 1 < 2qn/s, which also implies that s < 2qn. Since (pn/qn) >
α, it follows that (pn/qn) > (pn−1/qn−1), and hence

(3.6) pn−1qn − qn−1pn = −1.

It is well known that, if a and b are coprime and x0 and y0 is an integer
solution of ax − by = 1, then all the solutions of ax − by = 1 are of
the form x = x0 + mb and y = y0 + ma for some integer m. From this
remark, together with (3.5) and (3.6), there is an integer m for which
r = −pn−1 + mpn and s = −qn−1 + mqn. Since qn < s < 2qn, the only
possibility is m = 2. Thus, (r, s) = (2pn − pn−1, 2qn − qn−1), which is
condition (iv) of the theorem. We now show that the inequality

(3.7)
∣∣∣∣α − r

s

∣∣∣∣ >
3

2s2

must hold for this case. Assume that (3.7) does not hold. Then
inequality (3.4) holds with the better factor 3/2 instead of the factor
2, showing that s < 3qn/2. Thus, 2qn − qn−1 < 3qn/2, and therefore
qn < 2qn−1. If n = 1, we then get q1 < 2q0 = 2 implying q1 = 1,
and now the inequality s < 3q1/2 = 3/2 implies s = 1, which is a
contradiction. So, n ≥ 2. Since qn = anqn−1 + qn−2, we deduce that
an = 1, and so pn = pn−1 + pn−2 and qn = qn−1 + qn−2. That is,
r = 2pn − pn−1 = pn−1 + 2pn−2 and s = 2qn − qn−1 = qn−1 + 2qn−2,
and (r, s) satisfies condition (iii).

We will now assume that the quantity (α − (pn/qn)), appearing in
(3.3), is positive. In this case, we have

min
{

pn−1

qn−1
,

r

s

}
> α >

pn

qn
,

as well as

(3.8) 0 < rqn − spn < sqn

(
r

s
− α

)
+

s

qn+1
.
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If

(3.9)
(

r

s
− α

)
<

1
s2

,

then
0 < rqn − spn <

qn

s
+

s

qn+1
< 2.

Therefore,
rqn − spn = 1.

Note that, in the case being considered,

pn−1qn − pnqn−1 = 1,

and so r = pn−1 + mpn and s = qn−1 + mqn for some integer m. Since
qn < s < qn+1 = an+1qn + qn−1, we see 1 ≤ m < an+1, and hence
condition (ii) holds. Finally, let us assume that (3.9) does not hold. By
(3.3), we have that

(3.10) 0 < rqn − spn <
2qn

s
+

s

qn+1
< 3.

The case rpn − sqn = 1 being already treated, we may assume that
rpn − sqn = 2. Since s/qn+1 < 1, (3.10) can hold only if s < 2qn.
Subtracting the equation pn−1qn − pnqn−1 = 1 from rqn − spn =
2, we get (r − pn−1)qn − (s − pn−1)pn = 1. Since we also have
pn−1qn − qn−1pn = 1, it follows that r − pn−1 = pn−1 + mpn and
s−qn−1 = qn−1 +mqn for some integer m. Thus, r = mpn +2pn−1 and
s = mqn + 2qn−1 for some integer m. If m < 0, then s ≤ 2qn−1 − qn <
qn, which is impossible, while if m = 0, we get r = 2pn−1 and s = 2qn−1

which are not coprime. Thus, m > 0 and since s < 2qn, we see that
m < 2. Therefore, m = 1 and so condition (iii) holds.

4. The equation x2 − (k2 − 4)y2 = 4t. Armed with these new
results on diophantine approximations, equations such as (1.2) can be
solved. In particular, we prove the following more general result.

Theorem 4.1. Let k > 1 be an odd integer. If t is a positive integer
for which t < 2

√
k2 − 4 and the equation

(4.1) x2 − y2(k2 − 4) = 4t

has solutions in coprime positive integers x, y, then t = 1 or t = k + 2.
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Proof. Let α = (1 +
√

k2 − 4)/2. As x and y are odd, (4.1) can be
rewritten as(

(x+y)/2
y

−
(

1 +
√

k2− 4
2

))(
(x+y)/2

y
−
(

1 −√
k2− 4
2

))
=

t

y2
.

If ((x + y)/2)/y < (1 +
√

k2 − 4)/2, the product is negative, contra-
dicting the fact that t is positive. Therefore, we must have that
((x + y)/2)/y > (1 +

√
k2 − 4)/2. From our assumption on t, we have

that

(x + y)/2
y

−
(

1 +
√

k2 − 4
2

)

=
t

y2(((x + y)/2)/(y) − ((1 −√
k2 − 4)/2))

<
t

y2
√

k2 − 4
<

2
y2

.

The results of the previous section imply that ((x + y)/2)/y is either
a convergent, a mediating fraction to α, or there are two convergents
pn−1/qn−1, pn−2/qn−2 to α for which either

(x + y)/2
y

=
pn−1 + 2pn−2

qn−1 + 2qn−2
,

or

(x + y)/2
y

=
2pn−1 − pn−2

2qn−1 − qn−2
.

The partial quotients to α are given by

α = [(k − 1)/2; 1, k − 2, 1, k − 2, . . . , ] ,

and the first few convergents p0/q0, p1/q1, . . . , are ((k − 1)/2)/1, ((k +
1)/2)/1, ((k2 − 3)/2)/(k − 1), . . . . An inductive argument shows that
x and y, defined by (x, y) = (2pi − qi, qi), satisfy

x2 − y2(k2 − 4) = −4(k + 2)
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for i ≥ 0 and even, and

x2 − y2(k2 − 4) = 4

for i ≥ 0 and odd.

Consider first the case that ((x + y)/2)/y is a mediating fraction.
In the 0th step, the mediating fractions are simply i/1 with 1 ≤ i ≤
(k − 1)/2. Putting (x, y) = (2i − 1, 1), we see that these mediating
fractions lead to x, y for which x2 − y2(k2 − 4) is negative.

For 1 ≤ i ≤ (k−1)/2, put δi = ((2i − 1) +
√

k2 − 4)/2. Consider now
the case that (x, y) = (2u − v, v) where u/v is a mediating fraction in
the 2nth iteration of the continued fraction (recall that a2n−1 = 1 for
all n ≥ 1, and so we need only consider the even-indexed iterations).
Define

ε =
k +

√
k2 − 4
2

;

then it can be seen that for some i = 1, . . . , (k−1)/2, and some integer
j,

x + y
√

k2 − 4
2

= δiε
j ,

from which it follows that x2 − y2(k2 − 4) is negative. Thus, mediating
fractions lead only to values x, y for which x2 − y2(k2 − 4) is negative.

Now consider the case that there are consecutive convergents pn−1/
qn−1, pn−2/qn−2 to α for which

(4.2)
(x + y)/2

y
=

pn−1 + 2pn−2

qn−1 + 2qn−2
,

and an = 1. It follows that n must be odd. In the case n = 1, we see
that ((x + y)/2)/y = ((k + 3)/2)/1. Therefore, y = 1, x = k + 2 and
x2 − y2(k2 − 4) = 4(k + 2). Let γ1 = ((k + 2) +

√
k2 − 4)/2, and for

n > 1 and n odd, let γn = (x + y
√

k2 − 4)/2, where x and y satisfy
(4.2). Then, as in the previous case,

γn = γ1ε
j

for some integer j, and so x2 − y2(k2 − 4) = 4(k + 2).
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In the case that there are consecutive convergents pn−1/qn−1,
pn−2/qn−2 to α for which

((x + y)/2)/y = (2pn−1 − pn−2)/(2qn−1 − qn−2),

a similar analysis shows that either x2 − y2(k2 − 4) = 4(k + 2) or
x2 − y2(k2 − 4) = −6k + 13. This completes the proof of the theorem.

Note added in proof. Worley [8] has proved results very similar to
Theorem 3.1. We thank Andrej Dujella for making us aware of Worley’s
work.
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Brüche, Math. Ann. 44 (1894), 417 436.

5. Y.A. Khinchin, Continued fractions, Univ. of Chicago Press, Chicago, 1964.

6. W.M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785,
Springer-Verlag, New York, 1980.

7. C.-O. Selenius, Kriterion für Zahlen quadratischer Zahlkörper mit Normbetrag
kleiner als die Quadratwurzel aus der Diskriminante, Acta Acad. Abo. 26, 1966.

8. R.T. Worley, Estimating |α− p/q|, J. Austral. Math. Soc. 31 (1981), 202 206.
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