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ROBUST GLOBAL EXPONENTIAL STABILITY
OF LINEAR IMPULSIVE SYSTEMS WITH
TIME-VARYING DELAY AND UNCERTAINTY

BIN LIU AND XINZHI LIU

ABSTRACT. This paper studies linear impulsive systems
with varying time-delay and uncertainty. By using the method
of Lyapunov functions and matrix inequalities, robust global
exponential stability criteria are established in terms of fairly
simple algebraic conditions. Estimate of the decay rate of the
solutions of such systems are also derived. Some examples are
given to illustrate the main results.

1. Introduction. Many real world systems display both continuous
and discrete characteristics. For example, evolutionary processes such
as biological neural networks, bursting rhythm models in pathology,
optimal control models in economics, frequency-modulated signal pro-
cessing systems and flying object motions, etc., are characterized by
abrupt changes of states at certain time instants. Those sudden and
sharp changes are often of very short duration and are thus assumed to
occur instantaneously in the form of impulses. Such impulses may be
represented by discrete maps. Systems undergoing abrupt changes may
not be well described by using purely continuous or purely discrete mod-
els. However, they can be appropriately modeled by impulsive systems.
It is now recognized that the theory of impulsive systems provides a
natural framework for mathematical modeling of many real world phe-
nomena. Significant progress has been made in the theory of impulsive
systems in recent years, see [1, 4, 5, 7—11] and references therein.
However, the corresponding theory for impulsive systems with uncer-
tainty has not been fully developed. Recently, some robust stability
results for impulsive systems with uncertainty have been established in
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[9, 10]. In this paper, we shall study linear impulsive systems with un-
certainty and time-varying delay. By using Lyapunov functions, matrix
inequalities and the theory of M-matrix, we shall establish some crite-
ria on robust global exponential stability and provide some estimate of
the decay rate for such systems. Some examples are also worked out
to demonstrate the main results.

2. Preliminaries. Let R"™ denote the n-dimensional real vector
space and || A|| the norm of a matrix A induced by the Euclidean norm,
i, [|A]| = [Mmax(ATA)]Y/2. Let N denote the set of positive integers,
ie, N ={1,2,...,} and Rt = [0,+00). Let Aty = tp41 — t5, S, =
{z € R™ :||z|| < p}, and Amax(X) (Amin (X)) the maximum (minimum)
eigenvalue of a symmetric matrix X.

Consider the following linear impulsive system with time-varying
delay and uncertainty

0 i(t) = Aw(t) + Bx(t — h(t)) t € [th1,tr),
Az(t) = Cra(t™) + Drz(t~ — h(t)) t=ty, k€N,

where h(t) is a continuous function on R™ satisfying 0 < h(t) < 7, for
some positive constant 7 > 0, and A, B,Cy, Dy, € R™ ™ are interval
matrices satisfying

i Incn iy < Gy < ey, @Y,
dij Inxen * dij, D < dij, < dij, P},

1k

where AD = (a;;0)nxny BY = (b5 0)nxny O = () )xn and
D,(Cl) = (dgél)nxn € R"" [ =1,2, k € N, are known matrices. The

following definition is adopted from [2].

Definition 1. System (1) is said to be robustly globally exponen-
tially stable with decay rate A > 0 if for every A € N[AM) A®)],
B e N[BW, B®], ¢}, e N[ct”,c?], Dy € NID", D?)] the trivial
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solution of system (1) is globally exponentially stable with decay rate
A>0.

The following lemma is taken from [12].

Lemma 1. An interval matriz X € N[ XU, X®)] can be described
as

(2) X = X 4+ Ex¥xFx,

where X = (XM + X@)/2. H = (hij)nxn = (X@ — x1)/2,
Sx € F = {% e R . % = diag{e11, ... ,en2n2 ) ey < 15 0,j =
1,2,...,n}, Ex - EY = diag {37 hij, 201 hajs oo, 20— by} €
R, FE - Fyx = diag {37, hj1, Y0y by, S0 hjn} € R

By Lemma 1, we can rewrite system (1) as

(3)
#(t) = (A+ EaXaFa)z(t)+ (B + EgXpFp)z(t — h(t))
te [tk—latk),
Az(t) = (Co+ Ec, Yo, Fo, )x(t7)+(De+ Ep, Xp, Fp, )x(t™ — hi(t))
t=t.

where EA,EB,Eck,EDk eX* ke N.

Lemgna 2. Lgt 3 € ¥*. Then, for any positive constant X\ and any
Ee R" ,ne R, the following inequality holds.

(4) 2678 < ATHETE+ T

Proof. 1t follows by using the Schwartz inequality and the fact that
Y .-2T =37 .% < I,> where I,,2 is the n? x n? identity matrix. o

Lemma 3. Let X € R™"™ be a positive definite matriz and
Q € R™™ a symmetric matriz. Then, for any x € R"™, the following
inequality holds.

(5) Mnin(X71Q) - 2T Xz < 2TQx < Amax (X 71Q) 2l Xz,
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Proof. Since X is a positive definite matrix, there exists a nonsingular
matrix C such that X = CTC. Let J = 27Qz/2" Xz and z = Cuz.
Then,

(e HreC™)z

(6) J= 2Tz

< Amax((C7HTQ(CT).

Since

(CchHfeeh=c.cTt (et =C-x71Q-C,
we get
(7) Amax(X 71Q) = Amax ((C™HTQ(CT)).

By (6) and (7), we get 7 Qz < Mpax (X 71Q) - 27 Xz. Similarly, we can
get Amin(X71Q) - 2T X2 < 27 Q. Hence, inequality (5) follows.

We shall use the following results [6].

Lemma 4 (Halanay lemma). Let m € C[R, R4] be a scalar positive
function such that

(8) D m(t) < —a1m(t) + agm(t), t>to,

where ay > ag > 0 and m(t) = sup,_ <<, {m(s)}

Then, there exist constants v > 0, a > 0 such that, for all t > to,
(9) m(t) < ymto)e 1),

where o > 0 satisfies a — ay + age®” = 0.

Lemma 5. Let x; € CY[R,R],i=1,...,n, and assume that

(1)

(10) D ()] < eijlay (0] + Y digla; ()], i=1,....n
i=1 i=1
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H€T€, jj(t) = SUPtﬂ-gsgt%‘(S), Cij > 07 { 7é j; dij > 07 Za] =
1,2,... ,n.

(ii) M = —(cij + dij)nxn s an M-matriz.

Then, there exist constants ~v; > 0, o > 0 such that for all t > tg,
i=1,2,...,n,

(11) 2 (8)] < i - {Z |jj(t0)|}ea<uo>.

3. Main results. For any positive definite matrix P € R"*", and
the matrices given in system (3) and constants u; >0, i =1,2,...,9,
we introduce the following notations for convenience.

Y (p2, p3) = pz ' I + py ' Fi Fp;

Z(pa, p2, ps; P) = ATP + PA+ iy PEAEYP + 19 PEg ELP
+ pusPBBT P 4 i ' F4 Fa;

apir, pi2, 1135 P) = —Amax{P ™" - Z (11, 2, p13; P) };
b(p2, 133 P) = Amax{P ™" - Y (2, 3) };

Wi(pa, - - - 5 po; P)
= [P [Bey |1 - 11 Fep? - T+ (us '+ 16 '+ g ) FE, Fo,

+ (I+Cy)" | P+ P(uaDy Df + psEc, EE + psEp, ED )P | (I+Cy);

Xk(/J/4,... ,,U/g,P)
= (ug "+ P - IED 1P |Fp ) - T+ (n7 '+ pg '+ ol |ES, PED, |1?)

. F} Fp, + DI |P+ P(usEc, E& + nrEp,ED, )P} Dy;
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ok (piay - 1195 P) = Amax{ P~ Wi(pta, -+, pio; P)};
ﬂk(:u47"' 7/~‘L91P) = Amax{Pil 'Xk(:uﬁlv"' 7/,,L9,P)}

Theorem 1. Assume that there exist a positive definite matriz P
and constants p; > 0,1 =1,2,...,9, 0 > 1 and M > 1 such that the
following inequalities hold.

(i) 0 < b(p2, p3; P) < —alp, pa, ps; P);
(11) ot <o= infkeN{tk — tk,1};
(iil) max{e ", ax (ta, - - - , pto; P)+Br(pa, - - -, pio; P)er} < M < M7,
k € N, where A\ > 0 satisfying equation

(12) A+ a(p, pa, p; P) + blpa, pia; P)er™ = 0.

Then, system (1) is robustly globally exponentially stable with decay
rate {\ — (In M /d7)}/2.

Proof. Let V(x) = T Pz. Then we have

Amin(P) - ||$H2 <V (2) < Amax(P) - ||$H2

Firstly, we shall show for all ¢, < ¢t < tx, k € N, there exists a
constant v > 1 such that

(13) V() < vy Vi(a(ty_y))e Mete1),

where V(z(t)) = sup,_, <, {V (2(s))}.
By Lemma 2 and Lemma 3 we get, for ¢ <t <tx, k€ N,

(14)
DYV (x(t)) = 2T Pz + 27 P&
= 2T (ATP + PA)x + 22" PBx(t — h(t))
+ 20T PEAS AF sz + 227 PERY. g Fpa(t — h(t))
<a™{ATP + PA+ yPEAEYP + uyPERELP
+ pusPBBTP + ' Fi Fala
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+ 2" (t — h(t){py ' FhFp + ps ' Tha(t — h(t))
=" Z(p, p2, ps; P)x + x” (t = h(1))Y (p2, pa)z(t — h(t))
< Amax{P ™' Z (1, p2, pi3; P)}

V(@) + Amax{ P~'Y (2, u3) } - V((t — h(t)))
= —a(p1, p2, p3; P) - V(2 (t)) + b(p2, pz; P)

-V(x(t — h(t))).

From Lemma 4, condition (i) and (14), we see that there exist constants
v > 0, > 0 such that

(15) V() <7-Viz(ts-1)e M0 e [y, te).

where V(z(t—1)) = sup,, |, _r<s<r, {1V (2(s))} and A > 0 satisfies
(12).
Thus, (13) is true.

Secondly, we shall show

V(x(ty)) < ar(pa, - 5 po; P) - V(x(t,)) + Br(pa, -+, po; P)

(16) . V(:I?(tk — h(tk)), ke N.

Let hy = h(tx). For system (3), we get, for t = t,

(17)
Vix(te)) = V(x(ty ) + Ax(ty))
{1+ Calt) + Eo, S, Fo,a(ty)

T
+ Dkl'(tk — hk) + EDkEDkFDkx(tk — hk)} P
A+ Coalty) + B, S, Fo,o(ty)
+ Dk;ﬂ;‘(tk — hk) + EDkEDk,FDkx(tk — hk)}

=a(ty ) (I + Cp)TP(I + Cr)z(ty)
+a(ty — hi)' DF PDya(ty, — ha,)
+ 22(t; )" (I + Cp)" PDya(ty, — hi)
+a(ty)'FE 5S¢, EL, PEc, Sc Fo,x(t;)
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+22(t; ) (I + Cr) ' PEc, Yc, Fo, x(ty,)

+ 2x(t; ) FE 5S¢, EL, PDra(ty, — hu)

+x(ty — hy) " Fh X}, EL, PEp, Yp, Fp,x(t;, — hy)
+2x(ty — hy)' DY PEp, Yp, Fp, x(ty — h)
+22(t; )1 (I + Cp)' PEp, Yp, Fp,x(tr — hi)

+2x(t; )" FE S, EL, PEp,Sp, Fp,x(ts — hi).

Using Lemma 2, we obtain the following inequalities:

(18) 2x(t;)" (I + Cx)" PDya(ty — hy)
< sz (ty )1 (I + Cp)" PDR DL P(I + Cy)x(ty,)
+ gt (ty — he) Tty — ha);

(19) a(t;) )T FL S8, ES, PEc, So Fo,o(ty)

<Pl [|Ec, 1> - [|1Fe, | Po(ty) a(ty,);

(20) 2%(15;)([ —+ Ck)TPECk EckFCk.’[(t’;)

< psz(ty)" (I + Cy) " PEc, EL, P(I+ Cr)x(ty)
+ s ()T FE, Fo,x(ty);

(21) 2a(t,)FE S, EL PDya(ty, — hy)
< pex(ty — hk)TDgPECkEngDkl‘(tk — hk)
+pg x(ty )T FE, Fo,a(ty);

(22) x(te — he)" Fp, XD, ED, PEp, p, Fp,a(te — hi)
<Pl - 1| Ep,|* - | Py 22 (t — hi) T (te — hu);

(23) 2{E(tk — hk)TDgPEDkZDkFDk:L‘(tk — hk)
< wra(ty — hi)" D PEp, EL, PDya(ty — hy)
+ pr tw(ty — hi) " Fp, Fp,a(ty — hy);
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(24) 22(t;)"(I + Cx)" PEp,Sp, Fp, x(t), — hi)
< psa(ty)"(I + Cy)" PEp, E}, P(I + Cy)x(t;)
+ pg ta(ty — hi) T Fp, Fp,x(ts — hy);

(25) 2a(t,) F& XE, EL PEp,Sp, Fp,x(t, — hy)
< g x(ty )T FE, Fo,a(ty) + po
|| EE, PED, |2ty — i) " Fp, Fp, (ty — hy).
Substituting (18)—(25) into (17), we get
(26)
Via(t)) < 20)" - {I1PIl- 1Ba, |12 - || Fo, | - 1
+ (5" + g+ pg ) Fo,
+ (I +CW)T [P+ P(usDy DY + s Fe, B,
+ MSEDkEgk)P} (I + Ck)} . x(t;)
+ a(ty — hk)T{(uzl P [[Ep P - |Fp %) - 1
+ (n7 '+ pg 't + ol [EE, PED,||*)FD, Fo,
+ D |P + P(usEc, EL, + prEp, ED,)P| Dy } - w(ti— hy).

Hence, (16) follows directly from Lemma 3.

Thirdly, we shall show by induction
(27)

V(z(t) < yM* N (P)||]|2e A1)t € [ty tg), k€N,
where A > 0 is determined by (12).

When k = 1, since for all ¢ € [tg — T, to],

eIl =lle@l <ligll = sup_ [le@®ll,

0—T<t<to

we get
V(2(t) < Amax(P) - [l ()" < Amax(P) - [|¢]]*.



624 B. LIU AND X. LIU

Hence, we have

(28) V(2(t0)) < Amax(P) - ||¢]1*.
By (13) and (28), we get

V(z(t)) < AV (2(to))e 1) < yhnax(P) - [|]|2e =210
= Y MO Amax(P) - ||][2e 2710 ¢ € [t ).

Thus, (27) holds for k = 1.

Now assume (27) holds for £ < m, m > 1. Then we shall show that
(27) holds for k =m + 1.

By (13), (16) and the induction assumption, we have
(30)
V(z(tm)) < om(pa, - .., o3 P)V (x(t,))
- Bn(fs - 03 PV (2 (b — h(tm)))
< AM™ Y (s 57 P) A (P)] ] 26— t0)
+YM" T B (s - s 193 P) Mmaxe(P)]| ] P77 t0)
= YM" ™ Anax (P)||6]* {ovm (ia, - .., p1o3 P)
+ B (ptas - - -, pho; P)e’\T}e_)‘(tm_t‘))
<YM Ao (P) | ]P0 10).

Hence, by conditions (3), (13) and (30), for k =m + 1, ¢ € [tm, tm+1),
we get

(31)
V@(®) <7 - V(a(tn)) - e20-t)
=~ max {V(z(t)}- e~ A—tm)

b =T <t<lm

—yemax{ s V@O V() fe 20t

L =T <t<tm
< 5 max { M Aax (P) ] [Pe 0710,

M™ Aax (P)]|@]|2e™ A Im=10) 1 g=A(=tm)
= - max { M™ 1N, M™ I \pax (P)|[¢][2e A Em—to) g=Alt=tm)
<YM ™ Aax (P)||g][7e ™10
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Therefore, by induction principle, we see (27) holds for all k € N.

Lastly, we show

(32) le(@)]] < Kllglle™* 1), t > 1o,

where, a = {A — (In M /67)}/2 > 0, K = /v - (Amax(P)/Amin(P)).

Since 07 < 0 = infren{tr — tg—1}, we have k — 1 < (tp_1 — to/07),
which implies M*~1 < e(InM/07)(tk—1=%0) ~ Thus, for t € [tp_1,t), We
get

< V(x(t)) <y Amax (P)

[l ()] [l M* et

o Ami]ﬂ P)— )\min P

(33) /\( )(P) (P)
< ~ . Jmax 2 {—)\—i-(lnM/(ST)}(t—to)'
<o 5mll e

Hence, (32) is true, which implies that system (1) is robustly globally
exponentially stable with decay rate {\ — (In M /é7)}/2. The proof is
thus complete. a

Theorem 2. Assume that there exist a positive definite matriz P,
and constants a > b >0, pu1 > 0,...,u9 >0, >1, ¢, >0, d >0,
k€ N and M > 1 such that the following inequalities hold.

(1) Z(p1, pr2y pr3; P) +a - P < 0;

(i) ¥ (s 13) — b~ P < 0

(iil) Wi (pay ... ,puo; P) — e - P <0, k€ N;

(iv) Xi(piay ... ypo; P —di - P <0, k € N;

(v) 01 <o =infren{tr —tk-1};

(vi) max{e*, ¢ + dpe’} < M < M7, k € N, where A > 0

satisfying equation

(34) A —a+ber =0.

Then, system (1) is robustly globally exponentially stable with decay rate
{AN=(InM/o7)}/2.
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Proof. Let V(z) = 2T Pz. From conditions (i)—(iv), we get, as in
Theorem 1,

(35)

27 Z(pn, s igi P+ 2" (t = h(t)Y (siz. pia)a(t — (1)
—a-V(zt)+b-V(x(t—h(t)),

V(x(tr) < z(ty) Wilpa, ..., po; Pz(ty)
(36) + 2ty — h(te)" Xi(pa, - -, po; P)(ty — h(te))
<cp-V(x(ty))+dp - V(x(ty — h(tr))), ke€N.

The rest of the proof is the same as in Theorem 1 and thus the details
are omitted. ]

Next we shall make use of the M-matrix theory and derive some fairly
simple algebraic criteria with which we do not need to solve matrix
inequalities.

Let a;; = max{|a(1)| |a(2)|} bij = max{|b(1)| |b(2)|}, Cij, = max X

{\ ml |c”k|} and d;;, —max{|d l, \d@)\},z,]—l,l... ,n, keN.

ik 1k

n A n 7
Define oy, = maxi<j<n { Dic1 Cijk}7 Br = maxi<j<n { > et dijk}a
where

Civn = ma'X{|1+Cuk‘ ‘1+an|} lflfj—l,Q,...’ n,
s Ciji, ifi£j=1,2,...,n

Define H = (h;j)nxn with

(2) N
Thy ifi=j=1,2...,
(37) hij = Ll "
a”—i—bw ifi£j4,1,7=12,...,n

Theorem 3. Assume that —H (hij)nxn s an M -matriz, and suppose
further that

(i) 07 < o = infren{ty — tp—1}, for some § > 1;
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(i) max{e®™,ar + Bre®™} < M < ™7 k € N, for some o > 0,
M >1.

Then, system (1) is robustly globally exponentially stable with decay rate
a— (InM/oT).

Proof. Let x(t) be any solution of system (1). Then, for ¢ € [tx_1, tx),
taking the time Dini derivative of |z;(¢)| along system (1), we get
(38)

n

D¥[ai(t)] < @ulwa(O+ Y ] la; (O1+ Y [bigl laj (¢ = h(2)]

j—l,#i j=1
< alP|a(t)] + Xjam% |+2}m%
Jj=1,j#i

By Lemma 5, we see that there exist constants v; > 0, @ > 0 such
that for alli =1,2,... ,n

(39) |z (£)] < i - {Z|x3 tr—1 } _a(t_tk’l), t € [tg—1,tk).

When t = ti, from system (1), we get

(40)
()| = [y () + A (t-1)|

n
= ‘(1 + & )i () + D Gt y)
7
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Defining v(t) = Y27, [z;(t)] and v = 37, 7;, then by (39) for
t e [tkfl,tk), we get

(41)
= ()] <Y v(teor)e T = gty e TR,
j=1 j=1

By (40), we have

(12) - nl {fjéﬂm}m(tk_m

du l}m (ter — hte))]

_|_
3
——
M:

(t 1)+ Be—1 - v(tk—1 — h(tk-1))

Then, by a similar argument to that used in the proof inequality (27)
in Theorem 1, we obtain

(43)  w(t) < ka‘l{ > |¢j}e—a(t—t°>, t € [tp_1,tr), keEN,
j=1
Thus, by (43) and conditions (i)—(ii), we get

IIEa<X {Jz: ()|} <wv(t) < 7{ Z |¢j|}e{a(ln M/5m)}(t—to)
(44) r=n =1

t e [tkfl,tk), ke N.

Hence, system (1) is robustly globally exponentially stable with the
decay rate o — (In M /67). O
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Remark 2. The positive constant « > 0 determined by Lemma 5 is
difficult to get. In the following, we give an estimate of such a decay
rate.

Theorem 4. Assume that there exists a positive constant A > 0
such that —AI — H s an M -matriz and conditions (1)—(ii) of Theorem 3
hold. Then system (1) is robustly exponentially stable with at least decay
rate A.

Proof. Let y;(t) = x;(t)e*, i =1,2,... ,n, then
(45)
Dy, ()]
< N DF [zi(t)] + AeM|ai ()]

n

<@t N+ X laslle 0]+ X byl - )]}

J=1,j%#i

IN

2 - _ 2 - _
e”{w;-) PN S agle )]+ Zbij|wj<t>}
j=1,j#1 J=1
2 - _ -~ T _
@ N0+ S a0+ > byl ),
j=1,j#i =1
t e [tkfl,tk).

By Lemma 5, there exist constants 7; > 0, @ > 0 such that for all
te [tk717tk)7 S N7

n
(46) lyi(t)] < i - { Z |§j(to)}6“(tt0), i=1,2,...,n.
j=1

Hence, fori =1,2,... ,n,
|z ()] <7 { > |:zj(t0)|}e—<a+x)<t—to>
(47) j;l
=% { > |~”Cj(t0)|}€_k(t_t°), tefti-1,tr), keN,
=1

here 7; = y;eMo.
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The rest of the proof is the same as that in Theorem 3 and is thus
omitted. ]

Remark 3. Tt can be seen that the matrix A in Theorems 1-4 has to
be stable. In the following, we shall relax this condition on A. It turns
out that the time delay may help to stabilize the system.

Clearly, L
A+BeN[AD 4+ BW A® 4 BO)].

Hence, by Lemma 1, we have

(48) A+B=(A+B)+EaspYarpFarn.

Theorem 5. Assume that conditions (ii) and (iii) of Theorem 1
hold. Suppose further that

(i%)
(49) 0< b(ﬂ2>ﬂ3ap) < _a/(M17N27N3;P)7

where for some positive definite matriz P and constants pi1 > 0, pe > 0,
M3 > 0,

a(pen, p2, 135 P) = = Amax{ P~ - Z(p1, pi2, p3; P)}

Y(/J“27 /~‘L3)
Amin(P) ’

Z(p1, 2, ps; P) = (A+ B)"P+ P(A+ B) + 11 PEa; pE}, g P
+ e PERERP + psPBBTP + iy ' F1, pFa s,

b(pz, p3; P) =

Y (u2, u3) = (3" + 3 | Fs )

. 2
xmln{l 3 |:7'2(||A||+||B||+|EA||||FA|+||EBH||FB||)

2
(G~ Del+ 1 e | Fer |+ By | Es ) ]}

Then, system (1) is robustly globally exponentially stable with decay
rate {A\ — (In M /é7)}/2.
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Proof. Let V(x) = 2T Pz. Then, for t € [ty,tx41), K € N,
DV (a(t)) = 22T P[Ax(t) + Ba(t — h(t))]
20T P[(A+ B)x(t) + B(z(t — h(t)) — (t))]
=2T[P(A+B)+ (A+B)TP|z
+ 22T PB(z(t — h(t)) — x(t)).

(50)

By Lemma 2 and (48), we have
(51) 22TP(P(A+ B)+(A+ B)TP)z
=27 (P(A+ B)+(A+ B)"P)x+ 22" PEs S a pFaspa
<a2"(P(A+B)+ (A+ B)"P+ nPEsypE4, g P
+ M;1F£+BFA+B)$7
and
(52) 22T PB(x(t — h(t)) — z(t))
= 22" PB(z(t—h(t))—x(t)+22T PERY g Fp(x(t—h(t))—z(t))
< 2" (usPBB" P + s PERELP)x + (3" + pi5 || Fal|®)
la(t = h(t) — x(t)]*
In order to estimate || (t — h(t)) — x(t)||?, we consider system (1) as

the initial data defined on [—7,7]. By the Holder inequality, for ¢ > 7,
we obtain

Case a). ty, <t —7 < tgy1 for some k € N:

(53)
/ z(s)ds
t—h(t)

elt=he) (0 < |
= ’ / (gx(s) + Ex(s — h(s))) ds
t—h(¢)

O~ ~ 2
ST[ |Az(s +t) + Ba(s+t — h(s))||" ds

2

2
< (1Al + 1Bl + | EalllFall + | E5 |1 F5]) "7

2
x_max {la(t+0)|)
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Caseb). t —7 <t <t
(54) [lz(t=h(t))—=(t)|?

_'/tt" i(s)ds-l—Ax(tk)‘i"/ti(s)dS

2
7h(t) tr
of

t; t
‘ / z(s) ds / x(s)ds
t—h(t) t

2
< 3{72(||A|| + Bl + |EallllFall + |EB| F5])

}

2
+ (ICkl + 1Dkl + I Ec, I Fe |l + | Ep 1 Fp, ) }

T lAa(t) ) + }

2
x_max {Jlo(t+0)|%}.

On the other hand, we see that

lz(t = h(8)) — 2(®)|* < 2 _max {fl=(t + 0)II°}

(55) <2 max {[=z(t+0)|*}.
= 7 _2r<h<0

Hence, by (53)—(55), we have
(56) la(t —7) — =)

. 2
< min {2,3[72(||A|| + Bl + IEalllFall + |1 E5 | Fall)

2
+ (ICull+ 1Dl + [ B I Ful + 1 oy 11 ) ]}

x max_{[|l=(t+0)]*}.

—27<0<0
Substituting (56) into (52), and (51)—(52) into (50), yields
(57) DTV (x(t))
< & Z(p, p2, psi P)a+Y (p2, 13) 721113;<<0{||x(t+9)||2}

Y(:U’Qa /1'3)

< Amax{ P Z (1, pi2, ps; P)} - V((t)) + Ao (P)

x_max {V(z(t+0))}

= —a(p1, po, p3; P)V(2(t)) + b(p2, ps; P)izrgggéo{‘/(x(tw))}
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The rest of the proof is similar to that used in the proof of Theorem 1
and thus is omitted. The proof is thus complete. ]

4. Examples. To illustrate the results obtained in Section 3, we
shall discuss three examples.

Ezample 1. Consider system (1) in the form of system (3), where we

let
AT = <—16 a2) AT 6 38

B(l):<o.9 —1.2) B(2):(1.1 —0.8>.
1 ) )

1.1 1

1 2 -2 0
C,i):c,i)z(o _2>;

LetP:(?)?)7”1:”2:/1’3_1,“4_1/2,”5——
Mo = 1) then Z(/’(‘17/'[/27/'[/37 ) (7i?:15 ;43)7 Y(,U/Q,,U/?, = ( 0 14)
a(pn, pio, p3; P) = —4.18, b(pg, pz; P) = 1.4; Wilpa, ... ,po; P) =

5/2 0 5/2 0
(%0 o )» Xnlhaseoe oo P) = (P8 o), ) @iy s P) = (5/4),
6k(ﬂ47aﬂgap):9/4

Let 7 = 1, then by equation A+ a(p1, o, pi3; P) +b(pa, ps; P)e =0,
we get A = 0.8643 and M = ay,(j1a, - - . , po; P)+Be(pta, - - - , pio; P)er =
6.6. Hence, if 0 = infyen{tr — tk—1} > (In M /X)) = 2.2, then by The-
orem 1 we conclude that the system is robustly globally exponentially
stable with decay rate 0.0033.

Ezample 2. Consider system (3) with
o (131 78 @ (124 82\,
A= ( -16 —-14.2)° AT = -16 —-138 )’

g _ (09 —12) oo (L1 —08),
09 1 ) 11 1)
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o _ (—2-(1/k) 0
k 0 —-2—(2/k) )’
c® _ -2+ (1/k) 0
BT 0 —24(2/k) )
pv _ (05— (1/k2) 0
L 0 05— (1/k) )’
p@ _ (05+ (1/k?) 0
BT 0 0.5+ (1/k) )’
ke N
Then, —H = (hij)nxn = (7112741 I;’;), which is an M-matrix, o =

maxi<;j<n { 2y Ciji | = 14+(2/k) and B = maxi<j<n { 2270 dij, } =
0.5+ (1/k).

Let 7 = 1. Since —0.4-I — H is still an M-matrix, we let M = 5.24 >
ag + B1e®7, k € N. Hence, if 0 = infren{ty —tx_1} > (In M /0.4) =
4.14, then, by Theorem 4, we conclude that the system is robustly
globally exponentially stable and at least with decay rate A = 0.4.

Ezample 3. Consider system (3) with

A(l) _ A(2) _ (0.5 0 > , B(l) _ B(g) _ <—1.5 0 > :

0 05 1 —05
oW _a@ _ (1/((k+1)?+1) 0 .
k b 0 1/((k+1)*+1)
D" =D =o,
ke N.

Obviously, A = AM = A® jis not a stable matrix. Hence, Theo-
rems 1-4 are not applicable. Yet, by Matlab, with 7 = 0.1, P =

I = (é(l))’ wr = pe =1, pug = 1/27 pg = -+ = pug = 1, we get
a(p, p2, p3; P) = —0.7714, b(pz, p3; P) = 0.4800, oy (pa, . . . , po; P) =
1.2, and ﬁk(ﬂﬁl,-ﬂ 7/1'9;P) =1L

By solving equation A+ a (1, pz, ps; P) + b(uz, us; P)e’ = 0, we get
A = 0.2779. Hence, if § = 30, M = 2.2282 > ay(uq,. .., p1o; P) +
Br (i, - -, po; P)e*™ and o = infren{ty — tx_1} > 67 = 3.0. Thus, by
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Theorem 5, this system is robustly globally exponentially stable with
decay rate 0.0054.

5. Conclusions. In this paper, by employing the method of
Lyapunov functions, matrix inequalities, and the theory of M-matrix,
we have established some global exponential stability criteria for linear
impulsive system with time-varying delay and uncertainty. We have
also estimated decay rates. Those criteria may be verified by solving
matrix inequalities by Matlab or by checking the conditions for an M-
matrix. Some examples have been worked out to demonstrate the main
results.
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