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GENERALIZED RADON TRANSFORM

R. ROOPKUMAR

ABSTRACT. We extend the Radon transform to the con-
text of Boehmians consistent with the Radon transform on
the space of tempered distributions and on the space of dis-
tributions by constructing suitable Boehmian spaces. We also
prove that the generalized Radon transforms are continuous,
linear, bijections and their inverses are also continuous.

1. Introduction. Starting from the work [13] of Radon, the
theory of Radon transform has been developed on various testing
function spaces and distribution spaces, and their properties have been
discussed. See [1 6]. Let S(RN ) denote the space of smooth rapidly
decreasing functions on RN , N > 1, and D(RN ) denote the space of
smooth functions with compact supports. Their dual spaces S ′(RN ),
D′(RN ) are called the space of tempered distributions and the space of
distributions respectively. We also denote by I(RN ), the space of all
slowly increasing continuous functions on RN with the following notion
of convergence: ηn → η as n→ ∞ if there exists m ∈ N and a sequence
(Cn) in R converging to zero, such that |ηn(x)−η(x)| ≤ Cn(1+‖x‖m),
for all x ∈ RN , where ‖x‖ is the Euclidean norm of x ∈ RN .

The space RS consists of all functions f :R × SN−1 → C satisfying
the following conditions:

α : ‖f‖m = sup
(s,w)∈R×SN−1

0≤k≤m

(1 + s2)m

∣∣∣∣ ∂
k

∂sk
f(s, w)

∣∣∣∣ <∞.

β : f(s, w) = f(−s,−w) for all s ∈ R and w ∈ SN−1.

γ :
∫ ∞

−∞
f(s, w)sk ds is a polynomial of degree ≤ k in w, ∀ k ∈ N0.
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Let K be an operator defined, see (1.10) in [6], on S(R× SN−1) by

(1.1) (Kf)(s, w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2(2π)N−1

(
∂

i∂s

)N−1

f(s, w) if N is odd,

1
2(2π)N−1

iH
(
∂

i∂s

)N−1

f(s, w) if N is even

where Hg(t, w) = 1/π P
∫ ∞
−∞(g(s, w)/t− s) ds, the Hilbert transform

of g( · , w). Let KRS be the image of RS under the operator K.
Clearly, KRS ⊂ E(R × SN−1), the space of all smooth functions on
R × SN−1. The space KRS is given a suitable topology which makes
K as a continuous map from RS into KRS.

In the literature, the Radon transform is introduced on the space of
integrable Boehmians, and rapidly decreasing Boehmians by Mikusiński
and Zayed [11]. Though this theory is generalizing the Radon trans-
form on L1(RN ) and on S(RN ), it is not generalizing the Radon trans-
form on distribution spaces D′(RN ), S ′(RN ). Our objective of the
paper is to find some Boehmian spaces which are larger than S ′(RN ),
D′(RN ), rapidly decreasing Boehmians, integrable Boehmians and to
extend the Radon transform as a continuous, linear, bijection with its
inverse also continuous.

We know that the space B(I(RN ), (D(RN), ∗), ∗,Δ) of tempered
Boehmian space is larger than S ′(RN ), rapidly decreasing Boehmians
and the space B(C∞(RN ), (D(RN ), ∗), ∗,Δ) of C∞-Boehmians con-
tains D′(RN ), integrable Boehmians. Since the classical Radon trans-
form is not applicable on I(RN ) or C∞(RN ), we are forced to use the
distributional Radon transform and hence the range Boehmians are
constructed with distribution spaces. We also alter the space of tem-
pered Boehmians and C∞-Boehmians by using S ′(RN ) and D′(RN )
instead of I(RN ) and C∞(RN ) respectively, since the notions of con-
vergence on these function spaces are not suitable to prove the conti-
nuity of the inverse Radon transform. This alteration may enlarge the
collection of representatives of each Boehmian and does not change the
spaces of Boehmians as vector spaces.

2. Preliminaries.



GENERALIZED RADON TRANSFORM 1377

Definition 2.1. The Radon transform R on S(RN ) is defined by

(2.1) (Rφ)(s, w) =
∫

x·w=s

φ(x) dm(x)

where dm is the Euclidean measure on the hyperplane x · w = s.

The Radon transform is a continuous, one-to-one map from S(RN )
into the space S(R × SN−1) of all rapidly decreasing functions on
R× SN−1 whose range RS is characterized in [6, Theorem 2.1].

Definition 2.2. The adjoint Radon transform Rt: E(R × SN−1) →
E(RN ) is defined by

(2.2) (Rtf)(x) =
∫

SN−1
φ(x · w,w) dw.

It is proved thatRt: E(R×SN−1) → E(RN ) is a bicontinuous, bilinear
map [3].

Definition 2.3. The Radon transform of a tempered distribution Λ
is defined as

(2.3) 〈RΛ, f〉 = Λ(Rtf), f ∈ KRS.

The Radon transform R:S ′(RN ) → (KRS)′ is a linear homeomor-
phism. See [6].

Given a continuous function f on R× SN−1, and φ ∈ D(RN ), define

(2.4) (f×φ)(s, w) =
∫
Rn

f((s−y ·w), w)φ(y) dy, (s, w) ∈ R×SN−1.

Lemma 2.5. If f ∈ RS and φ ∈ D(RN ), then f × φ ∈ RS.



1378 R. ROOPKUMAR

Proof. First we show that

(2.5)
∂

∂s
(f × φ)(s, w) =

(
∂f

∂s
× φ

)
(s, w).

Consider

lim
t→s

∫
RN

f((t− y · w), w) − f((s− y · w), w)
t− s

φ(y) dy,

since the integrand is dominated by ‖f‖1|φ(y)| for all t, and φ ∈
D(RN ), using dominated convergence theorem we can take limit into
the integral and hence (2.5) follows. To prove ‖f ×φ‖m <∞, consider

(1 + s2)m

∣∣∣∣
(
∂

∂s
f × φ

)
(s, w)

∣∣∣∣
≤ (1 + s2)m

∫
RN

∣∣∣∣ ∂∂s f((s− y · w), w)φ(y)
∣∣∣∣ dy

≤
∫
RN

(1 + (|s− y · w| + |y · w|)2)m

×
∣∣∣∣ ∂∂s f((s− y · w), w)φ(y)

∣∣∣∣ dy
≤

∫
RN

(1 + (|s− y · w| + C)2)m

×
∣∣∣∣ ∂∂s f((s− y · w), w)φ(y)

∣∣∣∣ dy (for some C > 0)

≤ C ′‖f‖m

∫
RN

|φ(y)| dy (for some C ′ > 0).

Since f ∈ RS and φ ∈ D(RN ), it follows that ‖f × φ‖m <∞.

Let (s, w) ∈ R × SN−1 be arbitrary. Then

(f × φ)(−s,−w) =
∫
RN

f((−s+ y · w),−w)φ(y) dy

=
∫
RN

f((s− y · w), w)φ(y) dy

= (f × φ)(s, w).
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For k ∈ N0 and (s, w) ∈ R × SN−1, we have

∫ ∞

−∞
(f × φ)(s, w)sk ds

=
∫ ∞

−∞

∫
RN

f((s− y · w), w)φ(y) dy sk ds

=
∫
RN

∫ ∞

−∞
f((s− y · w), w)sk ds φ(y) dy

=
∫
RN

∫ ∞

−∞
f((s, w), w)(s+ y · w)k ds φ(y) dy

=
k∑

j=0

(
k

j

) ∫
RN

∫ ∞

−∞
f((s, w), w)sj ds (y · w)k−jφ(y) dy

which is a polynomial of degree ≤ k since each term in the above sum
is a polynomial of degree at most k.

Lemma 2.6. If f ∈ RS, and φ ∈ D(RN ), then for each (s, w) ∈
R × SN−1, H(f × φ)(s, w) = (Hf × φ)(s, w).

Proof. Let z ∈ C \ R. Using Fubini’s theorem we get

H(f × φ)(z, w) =
1
π

∫ ∞

−∞

(f × φ)(s, w)
z − s

ds

=
1
π

∫ ∞

−∞

∫
RN

f(s− y · w,w)
z − s

φ(y) dy ds

=
1
π

∫
RN

∫ ∞

∞

f(s− y · w,w)
z − s

φ(y) ds dy

=
1
π

∫
RN

∫ ∞

−∞

f(s, w)
(z − y · w) − s

φ(y) ds dy

= (H f × φ)(z, w).

Let s ∈ R, t > 0 and w ∈ SN−1 be arbitrarily fixed. By the
classical theory of Hilbert transform [12, pp. 170 171], we have the
limits limt→0± H(f × φ)((s + it), w) = F±(s, w) exist in Lp(R1), for
any p > 1, and H(f × φ)(s, w) = (F+ − F−)(s, w). If G±(s, w) =
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limt→0± H f((s+ it), w), then we claim that

lim
t→0±

(H f × φ)((s+ it), w) = (G± × φ)(s, w).

Using Jensen’s inequality and Fubini’s theorem, we get

∫ ∞

−∞

∣∣∣∣
∫
RN

(H f((s+ it− y · w), w) −G+((s− y · w), w)φ(y) dy
∣∣∣∣
p

ds

≤
∫ ∞

−∞

∫
RN

|H f((s+ it− y · w), w) −G+((s− y · w), w)|p|φ(y)| dy ds

=
∫
RN

|φ(y)| dy
∫ ∞

−∞
|H f((s+ it− y · w), w) −G+((s− y · w), w)|p ds

=
∫
RN

|φ(y)| dy
∫ ∞

−∞
|H f((s+ it), w) −G+(s, w)|p ds.

Therefore we get limt→0+(H f × φ)((s+ it), w) = (G+ × φ)(s, w), and
hence F+(s, w) = limt→0+ H(f×φ)(s+it) = limt→0+(H f×φ)(s+it) =
(G+×φ)(s, w). Similarly we can show that F−(s, w) = (G−×φ)(s, w).
Combining these observations we conclude that H (f×φ)(s, w) = (F+−
F−)(s, w) = ((G+ × φ) − (G− × φ))(s, w) = ((G+ −G−) × φ)(s, w) =
(H f × φ)(s, w).

Lemma 2.7. If f ∈ S(R×SN−1) and φ ∈ D(RN ) then K(f ×φ) =
Kf × φ.

Proof. When N is odd, the lemma follows from equation (2.5). For
the other case, equation (2.5) and Lemma 2.6 prove the lemma.

Lemma 2.8. If f ∈ KRS and φ ∈ D(RN ), then f × φ ∈ KRS.

The proof of the lemma follows from Lemma 2.5 and Lemma 2.7.

Lemma 2.9. If f ∈ E(R × SN−1) and φ, ψ ∈ D(RN ) then
f × (φ ∗ ψ) = (f × φ) × ψ.
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Proof. Let s ∈ RN and w ∈ SN−1 be arbitrary. Using Fubini’s
theorem, we get that

(f × (φ ∗ ψ))(x · w,w) =
∫
RN

f((x− y) · w,w)(φ ∗ ψ)(y) dy

=
∫
RN

∫
RN

φ(y − z)ψ(z) dzf((x− y) · w,w) dy

=
∫
RN

∫
RN

f((x− y) · w,w)φ(y − z) dyψ(z) dz

=
∫
RN

∫
RN

f((x− z − y) · w,w)φ(y) dyψ(z) dz

=
∫
RN

(f × φ)((x− z) · w,w)ψ(z) dz

= ((f × φ) × ψ)(x · w,w).

Hence the lemma.

Lemma 2.10. If f ∈ E(RN × S−1) and φ ∈ D(RN ), then
Rt(f × φ) = Rtf ∗ φ.

Proof. The equality

∫
SN−1

∫
RN

f((x− y) · w,w)φ(y) dy dw

=
∫
RN

∫
SN−1

f((x− y) · w,w) dwφ(y) dy

proves the lemma.

Definition 2.11. For f ∈ E(R × SN−1) and φ ∈ D(RN ) define
f̆(s, w) = f(−s, w), (s, w) ∈ R× SN−1, φ̌(x) = φ(−x), for all x ∈ RN .

Lemma 2.12. Let f ∈ E(R× SN−1) and φ ∈ D(RN ). Then

(i) (f × φ)̆ = f̆ × φ̌;

(ii) Rtf̆ = (Rtf )̌.
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Proof. Let (s, w) ∈ R × SN−1. Now

(f̆ × φ̌)(x · w,w) =
∫
RN

f̆((x− y) · w,w)φ̌(y) dy

=
∫
RN

f((−x+ y) · w,w)φ(−y) dy

=
∫
RN

f((−x− y) · w,w)φ(y) dy

= (f × φ)(−x · w,w)

= (f × φ)̆(x · w,w)

Hence (i) holds.

We prove (ii) by

Rt(f̆)(x) =
∫

SN−1
f̆(x · w,w) dw

=
∫

SN−1
f(−(x · w), w) dw

=
∫

SN−1
f((−x) · w,w) dw

= (Rtf)(−x) = (Rtf )̌(x).

Definition 2.13. For u ∈ (KRS)′, and φ ∈ D(RN ), define

(2.6) 〈(u⊗ φ), f〉 = 〈u, (f × φ̌)〉, f ∈ KRS,

where φ̌(x) = φ(−x), for all x ∈ RN .

By Lemma 2.8, we see that the left-hand side of the above equation
is meaningful. The linearity of u⊗φ is obvious. The continuity of u⊗φ
follows by the fact that fn × φ → f × φ as n → ∞ in RS whenever
fn → f as n → ∞ in RS, K is continuous and by Lemma 2.7. Thus
we can see that u⊗ φ ∈ (KRS)′.

Lemma 2.14. If u, v ∈ (KRS)′, φ, ψ ∈ D(RN ) and α ∈ C, then

(i) (u+ v) ⊗ φ = (u⊗ φ) + (v ⊗ φ).
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(ii) (αu) ⊗ φ = α(u⊗ φ).

(iii) u⊗ (φ ∗ ψ) = (u⊗ φ) ⊗ φ.

Proof. (i) and (ii) follow directly from the definition. To prove (iii),
let f ∈ (KRS). Now (u⊗(φ∗ψ))(f) = u(f×(ψ∗φ)̌) = u((f×ψ̌)×φ̌) =
(u ⊗ φ)(f × ψ̌) = ((u ⊗ φ) ⊗ ψ)(f). Here we have used the fact that
the convolution ∗ is commutative on D(RN )×D(RN ) and Lemma 2.9.

Lemma 2.15. If Λ ∈ S ′(RN )and φ ∈ D(RN ), then R(Λ ∗ φ) =
RΛ ⊗ φ in (KRS)′.

Proof. Let f ∈ KRS(RN ) be arbitrary. Using Lemma 2.10 we get,

〈R(Λ ∗ φ), f〉 = (Λ ∗ φ)(Rtf) = (Λ ∗ φ ∗ (Rtf )̌)(0)

f = (Λ ∗ (Rtf ∗ φ̌)̌)(0) = Λ(Rtf ∗ φ̌)
= Λ(Rt(f × φ̌)) = 〈RΛ, (f × φ̌)〉
= 〈(RΛ ⊗ φ), f〉

Thus the lemma follows.

3. Boehmian spaces. A Boehmian space [8] is a special generalized
function space consisting of convolution quotients with two notions of
convergences. At this juncture it is helpful to recall the construction
of an abstract Boehmian space.

To construct a Boehmian space we need a topological vector space G,
a commutative semi-group (S, ∗), an operation 
 : G×S → G satisfying
the conditions:

For all α, β ∈ G and ζ, η ∈ S, (i) α 
 (ζ ∗ η) = (α 
 ζ) 
 η,
(ii) (α+ β) 
 ζ = α 
 ζ + β 
 ζ; and a collection Δ of sequences from S
satisfying

(a) If (λn), (ηn) ∈ Δ then (λn ∗ ηn) ∈ Δ.

(b) If α, β ∈ G and (λn) ∈ Δ such that α 
 λn = β 
 λn, for all n ∈ N
then α = β.



1384 R. ROOPKUMAR

Let A denote the collection of all pairs of sequences ((αn), (λn)) where
αn ∈ G, for all n ∈ N and (λn) ∈ Δ satisfying the property

(3.1) αn 
 λm = αm 
 λn, ∀m,n ∈ N.

Each element of A is called a quotient and is denoted by αn/λn. Define
a relation ∼ on A by

(3.2) αn/λn ∼ βn/ηn if αn 
 ηm = βm 
 λn, ∀m,n ∈ N.

It is easy to verify that ∼ is an equivalence relation on A and hence it
decomposes A into disjoint equivalence classes. Each equivalence class
is called a Boehmian and is denoted by [αn/λn]. The collection of all
Boehmians is denoted by B, more explicitly B(G, (S, ∗), 
,Δ).

B is a vector space with addition and scalar multiplication defined as
follows.

• [αn/λn] + [βn/ηn] = [(αn 
 ηn + βn 
 λn)/(λn 
 ηn)].

• a [αn/λn] = [(aαn)/λn].

The operation 
 can be extended to B×S by the following definition.

Definition 3.1. If x = [αn/λn] ∈ B and ζ ∈ S, then

x 
 ζ = [(αn 
 ζ)/λn] .

Each α ∈ G can be uniquely identified with a member of B by
α �→ [(α 
 λn)/λn] where (λn) ∈ Δ is arbitrary. We say that a
Boehmian x belongs to G if x represents a member of G in B.

Now we recall the existing two notions of convergences [8] on B.

Definition 3.2. A sequence (xn) in B is said to δ-converge to x in
B, denoted by xn

δ→ x as n → ∞ if there exists a delta sequence (λk)
such that for each n, k ∈ N, xn 
 λk, x 
 λk ∈ G and for each k ∈ N,
xn 
 λk → x 
 λk as n→ ∞ in G.

Definition 3.3. xn
Δ→ x as n → ∞ if there exist αn ∈ G and

(λk) ∈ Δ such that (xn − x) 
 λn = [(αn 
 λk)/λk] for all n ∈ N and
αn → 0 as n→ ∞ in G.
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Theorem 3.4 [8]. xn
δ→ x as n→ ∞ in B if and only if there exist

αn,k, αk ∈ G and (λk) ∈ Δ such that xn = [αn,k/λk], x = [αk/λk] and
for each k ∈ N, αn,k → αk as n→ ∞ in G.

We denote B1 by the Boehmian space B(S ′(RN ), (D(RN), ∗), ∗,Δ)
where ∗ is the convolution defined on S ′(RN ) ×D(RN ) by

(Λ ∗ φ)(ψ) = Λ(ψ ∗ φ̌), ∀ψ ∈ S(RN ),(3.3)

(ψ ∗ φ)(x) =
∫
Rn

ψ(x− y)φ(y) dy, x ∈ Rn,(3.4)

and Δ is the collection of all sequences (φn) in D(RN ) satisfying

(1)
∫
Rn φn(x) dx = 1, for all n ∈ N.

(2)
∫
Rn |φn(x)| dx ≤M , for all n ∈ N, for some M > 0.

(3) s(φn) → 0 as n → ∞ where s(φn) = sup{‖x‖ : x ∈ RN ,
φn(x) �= 0}.

To construct the Boehmian space B2, we first prove the following
lemmas.

Lemma 3.5. If f ∈ RS and (φn) ∈ Δ, then f × φn → f as n→ ∞
in RS.

Proof. For m ∈ N0, (s, w) ∈ R × SN−1 and 0 ≤ k ≤ m, using the
properties of delta sequence and mean-value theorem we get

(1 + s2)m

∣∣∣∣
∫
Rn

∂k

∂sk
[f((s− y · w), w) − f(s, w)]φn(y) dy

∣∣∣∣
≤ (1 + s2)m

∫
Rn

∣∣∣∣ ∂
k

∂sk
[f((s− y · w), w) − f(s, w)]

∣∣∣∣ |φn(y)| dy

≤ (1 + s2)m

∫
Rn

|y · w|
∣∣∣∣∂

k+1f

∂sk+1
((s− h(y · w)), w)

∣∣∣∣
× |φn(y)| dy, for some h ∈ (0, 1)

≤ s(φn)
∫
Rn

(1 + (|s− h(y · w)| + |h(y · w)|)2)m

×
∣∣∣∣∂

k+1f

∂sk+1
((s− h(y · w)), w)

∣∣∣∣ |φn(y)| dy
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≤ s(φn)
∫
Rn

(1 + (|s− h(y · w)| + s(φn))2)m

×
∣∣∣∣∂

k+1f

∂sk+1
((s− h(y · w)), w)

∣∣∣∣ |φn(y)|dy
≤ CM‖f‖m+1s(φn) for some C > 0.

Thus we get ‖f × φn − f‖m ≤ C ′s(φn) → 0 as n→ ∞.

Lemma 3.6. If u ∈ (KRS)′, and (φn) ∈ Δ, then u ⊗ φn → u as
n→ ∞ in (KRS)′.

The proof of the lemma follows by using Lemmas 2.7, 3.5 and the
fact that K is continuous on RS.

Using Lemma 2.14 and Lemma 3.6, we can construct the Boehmian
space B2 = B((KRS)′,D(RN , ∗),⊗,Δ).

4. Radon transform.

Definition 4.1. Define the Radon transform R:B1 → B2 by

(4.1) R
[
Λk

φk

]
=

[
RΛk

φk

]
.

Using Lemma 2.15, we can verify that the above definition is well
defined.

Lemma 4.2. The generalized Radon transform R:B1 → B2 is
consistent with the Radon transform on R:S ′(RN ) → (KRS)′.

Proof. We know that each Λ ∈ S ′(RN ) is represented by [Λ ∗ φk/φk]
in B1. Now R [Λ ∗ φk/φk] = [R(Λ ∗ φk)/φk] = [RΛ ⊗ φk/φk] which is
nothing but the identification of RΛ in B2. This completes the proof
of the Lemma.

Theorem 4.3. The Radon transform R:B1 → B2 is a linear map.
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The proof of this theorem can be obtained by using Lemma 2.15 and
the linearity of R:S ′(RN ) → (KRS)′.

Theorem 4.4. The Radon transform R:B1 → B2 is a bijection.

Proof. Let F = [Λk/φk] ∈ B1 be such that RF = 0 in B2. Then
RΛk = 0, k ∈ N. By the injectivity of R:S ′(RN ) → (KSR)′ we get
Λk = 0, k ∈ N, and hence F = 0 in B1. Thus R is injective.

Let [uk/φk] ∈ B2 be arbitrary. Since R:S ′(RN ) → (KSR)′ is
surjective for each k ∈ N, there exists Λk ∈ S ′(RN ) such that
RΛk = uk. Using

(RΛk) ⊗ φj = (RΛj) ⊗ φk, j, k ∈ N

and Lemma 2.15, we get

R(Λk ∗ φj) = R(Λj ∗ φk), j, k ∈ N.

Again by using the injectivity of R we get ((Λk), (φk)) is a quotient
and hence [Λk/φk] ∈ B1. It is straightforward to verify that this is the
pre-image of the given Boehmian.

Theorem 4.5. The Radon transform R:B1 → B2 is continuous with
respect to δ-convergence and Δ-convergence.

Proof. Let Fn
δ→ F as n→ ∞ in B1. Then there exist representatives

Λn,k/φk and Λn/φn of Fn and F respectively such that, for each
k ∈ N, Λn,k → Λk as n → ∞ in S ′(RN ). Using the continuity of
the classical Radon transform on S ′(RN ) we get RΛn,k → RΛk as
n→ ∞ in (KRS)′. Since RFn = [RΛn,k/φn] and RF = [RΛk/φk], we

get RFn
δ→ RF as n→ ∞ in B2.

If Fn
Δ→ F as n → ∞ in B1, then there exist Λn ∈ S ′(RN ) such

that (Fn − F ) ∗ φn = [Λn/φn] for some suitable (φn) ∈ Δ and Λn → 0
as n → ∞ in S ′(RN ). Again, by using the continuity of the classical
Radon transform, we complete the proof of the theorem.

Theorem 4.6. R−1 : B2 → B1 is continuous with respect to both
δ-convergence and Δ-convergence.
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Proof. Let Hn
δ→ H as n → ∞ in B2. Then there exist un,k, uk ∈

(KRS)′ and (φk) ∈ Δ such that Xn = [un,k/φk], X = [uk/φk] and for
each k ∈ N, un,k → uk as n → ∞ in (KRS)′. If RΛn,k = un,k and
RΛk = uk, then R−1Hn = [Λn,k/φk] and R−1Hn = [Λk/φk]. Since the
inverse Radon transform R−1: (KRS)′ → S ′(RN ) is continuous we get
for each k ∈ N, Λn,k → Λk as n → ∞ in S ′(RN ). In other words we

get R−1Hn
δ→ R−1H as n→ ∞ in B1.

Let Hn
Δ→ H as n → ∞ in B2. Then there exist un ∈ (KRS)′

and (φk) ∈ Δ such that (Hn − H) ⊗ φn = [un ⊗ φk/φk] and un → 0
as n → ∞ in (KRS)′. If RΛn = un, then one can verify that
(R−1Hn −R−1H) ∗ φn = [Λn ∗ φk/φk], and hence by the continuity of
R−1: (KRS)′ → S ′(RN ) we get R−1Hn

Δ→ R−1H as n → ∞ in B1.

Now we alter the space of C∞-space as B3 = B(D′(RN ), (D(RN), ∗),
∗,Δ), where ∗ : D′(RN )×D(RN) → D′(RN ) by (Λ∗φ)(ψ) = Λ(ψ ∗ φ̌),
for all ψ ∈ D(RN ) and ∗, Δ are as defined earlier.

Let RD denote the image of D(RN ) under the classical Radon
transform. We know that g ∈ RD if and only if g ∈ RS and g
has compact support. First we prove the following lemma which is
necessary to construct the range Boehmian space.

Lemma 4.7. If g ∈ RD and φ ∈ D(RN ), then g × φ ∈ RD.

Proof. The lemma follows if we prove f × φ has compact support,
by Lemma 2.5. Let support of g be contained in [−r1, r1] × SN−1

and for each x in the support of φ, ‖x‖ ≤ r2. We claim that the
support of g × φ is contained in K = [−(r1 + r2), r1 + r2] × SN−1.
For (s, w) ∈ Kc, (g × φ)(s, w) =

∫
Rn g(s − y.w,w)φ(y) dy = 0 since

(s− y · w,w) �∈ [−r1, r1] × SN−1 for each y in the support of φ.

To construct the range Boehmian we take G as (KRD)′ and 
 as
⊗ : (KRD)′ ×D(RN ) defined by

(4.2) 〈(u⊗ φ), g〉 = 〈u, (g × φ̌)〉, ∀ g ∈ KRD.

Now we can define B4 = B((KRD)′, (D(RN ), ∗),⊗,Δ) and extend
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the generalized Radon transform R:B3 → B4 defined by

(4.3) R
([

Λk

φk

])
=

[
RΛk

φk

]

where RΛk is the distributional transform R:D′(RN ) → (KRD)′,
which is a continuous isomorphism [6, Section 4].

As we have done earlier, we can prove that R:B3 → B4 is a linear,
bijection and R and R−1 are continuous with respect to δ-convergence
as well as Δ-convergence, where R−1:B4 → B3 is defined by

(4.4) R−1

([
uk

φk

])
=

[
Λk ∗ φk

φk ∗ φk

]
.

where Λk ∈ D′(RN ) such that RΛk = uk. We can also prove that
R:B3 → B4 extends the classical Radon transform R:D′(RN ) →
(KRD)′.

Remark. We know that B1 ⊂ B3, and hence the theory of Radon
transform on B3 is the most general one, in the context of Boehmians.

Though B1 and B3 are constructed by using distribution spaces,
for each Boehmian [Λk/φk] ∈ B1 (or B3), for any (ψk) ∈ Δ,
[Λk ∗ ψk/φk ∗ ψk] is another representative of the same Boehmian with
Λ∗ψk as functions, where (Λ∗ψk)(x) = Λ(τxψ̌k) and (τxψ)(t) = ψ(t−x),
for all x, t ∈ RN . It is a known fact that this convolution agrees with
(3.3). Thus in this case, each Boehmian in B1 or in B3 can be approxi-
mated by sequences of functions. We conclude by posing the following
interesting question:

Is it possible to approximate each H ∈ B2 (or B4) by functions?
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