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GENERALIZED FREE PRODUCTS
OF RESIDUALLY P -FINITE GROUPS

P.C. WONG, C.K. TANG AND H.W. GAN

ABSTRACT. In this note, we characterize the residual
p-finiteness of generalized free products and tree products
of certain residually p-finite groups with non-trivial center
amalgamating infinite cyclic subgroups and the tree products
of certain one-relator groups. We then apply our results to tree
products of finitely generated torsion-free nilpotent groups
and free groups.

1. Introduction. Let p be a prime. A group G is said to be
residually p-finite if for each non-trivial element x of G, there exists
a normal subgroup N of index a power of p in G such that x /∈ N .
It is well known that free groups and finitely generated torsion-free
nilpotent groups are residually p-finite for all primes p (Iwasawa [5],
Gruenberg [3]). In [4], Higman proved that a generalized free product
of two finite p-groups amalgamating a cyclic subgroup, is residually
p-finite. Kim and McCarron [6] then generalized Higman’s result
by proving that the generalized free product of residually p-groups
amalgamating a finite cyclic subgroup, is residually p-finite. In the
same paper [6], they also proved a sufficient condition for a free product
of finitely many residually p-finite groups amalgamating a single infinite
cyclic subgroup, to be residually p-finite. From this, they showed
that a generalized free product of finitely many free groups or finitely
generated torsion-free nilpotent groups amalgamating a maximal cyclic
subgroup is residually p-finite for all primes p. In [11], Wong and Tang
extended Kim and McCarron’s result to finite tree product of residually
p-finite groups, amalgamating infinite cyclic subgroups. Thus, the
finite tree products of finitely many free groups or finitely generated
torsion-free nilpotent groups amalgamating maximal cyclic subgroups
are residually p-finite for all primes p.
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More recently, Kim and Tang [9] characterized the residual p-
finiteness of generalized free products and tree products of finitely
generated torsion-free nilpotent groups and free groups amalgamating
maximal cyclic subgroups while in [7], Kim and McCarron character-
ized the residual p-finiteness of certain one-relator groups. In this note
we continue the work of Kim, McCarron and Tang. In the first part we
characterize the residual p-finiteness of generalized free products and
tree products of certain residually p-finite groups with non-trivial center
amalgamating infinite cyclic subgroups. In the second part we char-
acterize the residual p-finiteness of tree products of certain one-relator
groups. Then by applying our results to tree products of finitely gener-
ated torsion-free nilpotent groups and free groups amalgamating cyclic
subgroups, we obtain partial extensions of the results in [7, 9].

The notation used here is standard. In addition, the following will
be used for any group G: p shall denote a prime. N �p G means N is a
normal subgroup of index a power of p in G. Z(G) denotes the center
of G. CG(x) denotes the centralizer of the element x in G.

2. Preliminaries. In this section, we give some definitions and
lemmas which will be used to prove our results.

Definition 2.1 [6, Definition 2.2]. Let H be a subgroup of a group
G. Then H is said to be p-closed in G if for x /∈ H, there exists N �p G
such that x /∈ HN .

Lemma 2.2 [9, Lemma 2.4]. Let G be a residually p-finite group and
〈h〉 is p-closed in G. Then 〈hn〉 is p-closed in G where |n| = pα, α ≥ 0.

Definition 2.3. A subgroup H of a group G is called a retract of G
if G has a normal subgroup L such that G = LH and L ∩ H = 1.

Lemma 2.4 [8, Lemma 3.2]. Let G be a residually p-finite group and
〈h〉 be a retract of G. Then 〈h〉 is p-closed in G.

Lemma 2.5. Let G be a residually p-finite group and x ∈ G. If
CG(x) = 〈x〉, then 〈x〉 is p-closed in G.
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Proof. Let g ∈ G \ 〈x〉. Since CG(x) = 〈x〉, then [g, x] �= 1. By
residual p-finiteness of G, there exists N �p G such that [g, x] /∈ N .
Clearly g /∈ 〈x〉N and we are done.

Lemma 2.6. Let G be a free group or a finitely generated torsion-free
nilpotent group, and let 〈h〉 be a maximal cyclic subgroup or a retract of
G or CG(h) = 〈h〉. Then 〈hn〉 is p-closed in G where |n| = pα, α ≥ 0.

Proof. Let p be any prime. It is well known that free groups and
finitely generated torsion-free nilpotent groups are residually p-finite [3,
5]. Furthermore, maximal cyclic subgroups of a free group are p-closed
(see Theorem 3.9 of Kim and McCarron [6]). Also maximal cyclic
subgroups of a finitely generated (non-cyclic) torsion-free nilpotent
group are isolated and hence are p-closed (see Theorem 2.5 of Baumslag
[2]). By Lemma 2.4, retracts of a residually p-finite group are p-closed.
By Lemma 2.5, the cyclic subgroup 〈h〉 is p-closed since CG(h) = 〈h〉.
The result now follows from Lemma 2.2.

Lemma 2.7 [11, Lemma 2]. Let G = A ∗
a=bB. Suppose that A, B are

residually p-finite groups and 〈a〉 is p-closed in A and 〈b〉 is p-closed in
B. If K is a subgroup of A and K is p-closed in A, then K is p-closed
in G.

Definition 2.8. Let Ai, 1 ≤ i ≤ n, be groups where n is finite. Then
G = 〈A1, . . . , An; aij = aji, i �= j, 1 ≤ i, j ≤ n〉 where aij ∈ Aij , shall
denote a tree product of the groups Ai, with the cyclic subgroups 〈aij〉
of Ai and 〈aji〉 of Aj amalgamated.

Theorem 2.9 [11, Theorem 3]. Let G = 〈A1, . . . , An; aij = aji, i �=
j, 1 ≤ i, j ≤ n〉 where aij ∈ Aij and n is finite, be a tree product of the
groups Ai, amalgamating the cyclic subgroups 〈aij〉 of Ai and 〈aji〉 of
Aj. Suppose each Ai is residually p-finite and 〈aij〉 is p-closed in Ai.
Then G is residually p-finite.

3. Generalized free products and tree products of residually
p-finite groups with non-trivial center. In this section, we
characterize the residual p-finiteness of generalized free products and
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tree products of certain residually p-finite groups with non-trivial center
amalgamating infinite cyclic subgroups.

Lemma 3.1. Let G = A ∗
a=bm 〈b〉, and suppose that there exists

c ∈ A\〈a〉 such that [c, at] = 1 for some t ∈ Z, t �= 0. If G is residually
p-finite, then |m| = pβ, β ≥ 0.

Proof. Suppose that m = qm1 where q �= p is a prime. By our
assumption, there exists c ∈ A\〈a〉 such that [c, at] = 1 for some t ∈ Z,
t �= 0.

Case 1. q does not divide t. Since c ∈ A\〈a〉 and bm1t /∈ 〈bm〉, we
have x = [c, bm1t] �= 1. Since G is residually p-finite, there exists
N �p G such that x /∈ N . Let G = G/N . Since b̄ has order a
power of p in G and p �= q, we have b̄ = b̄qs for some s. Therefore,
x̄ = [c̄, b̄m1t] = [c̄, b̄m1qst] = [c̄, āst] = 1̄ since [c̄, āt] = 1̄, a contradiction.
This implies that m = 1 or m has no prime factor other than p, that
is, |m| = pβ, β ≥ 0.

Case 2. q divides t. Let t = qrm2 where (q, m2) = 1 and r �= 0. Since
c ∈ A\〈a〉 and bm1m2 /∈ 〈bm〉, we have x = [c, bm1m2 ] �= 1. By residual
p-finiteness of G, there exists N �p G such that x /∈ N . Since b̄ has
order a power of p in G = G/N and p �= q, we have b̄ = b̄qs for some
s. Therefore, x̄ = [c̄, b̄m1m2 ] = [c̄, b̄m1qsm2 ] = · · · = [c̄, b̄m1qqrm2sr+1

] =
[c̄, b̄mtsr+1

] = [c̄, ātsr+1
] = 1̄, a contradiction. The result now follows as

in Case 1.

Lemma 3.2 [7, Theorem 1.1]. Let G = 〈a〉 ∗
an=bm 〈b〉. Then G is

residually p-finite if and only if either |n| = 1 or |m| = 1 or |n| = pα

and |m| = pβ, α, β > 0.

Theorem 3.3. Let G = A ∗
an=bm B, and suppose that there exist

c ∈ A\〈a〉, d ∈ B\〈b〉 such that [c, at] = 1 and [d, bs] = 1 for some
s, t ∈ Z. If G is residually p-finite, then |n| = pα and |m| = pβ,
α, β ≥ 0.
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Proof. Since G is residually p-finite, then the subgroup 〈a〉 ∗
an=bm 〈b〉

is residually p-finite and hence, by Lemma 3.2, |n| = 1 or |m| = 1
or |n| = pα and |m| = pβ, α, β > 0. If |n| = 1, then the subgroup
A ∗

a=bm 〈b〉 is residually p-finite and hence, by Lemma 3.1, |m| = pβ,
β ≥ 0. Similarly, if |m| = 1, then |n| = pα, α ≥ 0. The result now
follows.

Lemma 3.4. Let A be a group with Z(A) �= 1 and a ∈ A. If A �= 〈a〉,
then there exists c ∈ A\〈a〉 such that [c, at] = 1 for some t ∈ Z.

Proof. Suppose that there exists some t such that at ∈ Z(A). Since
A �= 〈a〉, we can choose c ∈ A\〈a〉. Clearly [c, at] = 1, and we are
done. So suppose Z(A) ∩ 〈a〉 = 1. Since Z(A) �= 1, we can choose
1 �= c ∈ Z(A). Then [c, a] = 1 and c /∈ 〈a〉.

Lemma 3.5. Let G = A ∗
a=bm 〈b〉 where Z(A) �= 1. If G is residually

p-finite, then either A = 〈a〉 or |m| = pβ, β ≥ 0.

Proof. Suppose that A �= 〈a〉. Then by Lemma 3.4, there exists
c ∈ A\〈a〉 such that [c, at] = 1 for some t ∈ Z. Hence |m| = pβ, β ≥ 0
by Lemma 3.1.

We now state and prove the main results of this section, that is, The-
orem 3.6 and Theorem 3.8 which are partial extensions of Theorem 4.4
and Theorem 5.4 of [9], respectively.

Theorem 3.6. Let G = A ∗
an=bm B where Z(A) �= 1 and Z(B) �= 1.

If G is residually p-finite, then |m| = 1 and G= A or |n| = 1 and G=
B or |n| = pα and |m| = pβ, α, β ≥ 0.

Proof. Since G is residually p-finite, then the subgroup 〈a〉 ∗
an=bm 〈b〉

is residually p-finite and hence, by Lemma 3.2, |n| = 1 or |m| = 1
or |n| = pα and |m| = pβ, α, β > 0. If |n| = 1, then the subgroup
A ∗

a=bm 〈b〉 is residually p-finite and hence by Lemma 3.5, either A = 〈a〉
which implies G = B or |m| = pβ, β ≥ 0. Similarly, if |m| = 1, then
either B = 〈b〉 which implies G = A or |n| = pα, α ≥ 0. The result
now follows.
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Next we extend Theorem 3.6 to finite tree products of residually
p-finite groups with non-trivial center amalgamating infinite cyclic
subgroups. First we have the following definition.

Definition 3.7 [9, Definition 5.3]. Let G be the tree product of a
tree T and H the tree product of a subtree S of T . Then H is called a
subtree product of G. If G = H, then G is said to be contractible to
H.

Let I be a finite set.

Theorem 3.8. Let G = 〈G1, . . . , Gn; u
nij

ij = u
nji

ji , i �= j, i, j ∈ I〉
where uij ∈ Gij and I is finite, be a tree product of the groups Gi with
Z(Gi) �= 1, i ∈ I, amalgamating the cyclic subgroups 〈unij

ij 〉 of Gi and
〈unji

ji 〉 of Gj.

(a) If G is residually p-finite, then G is contractible to a subtree
product of Gi, i ∈ J ⊂ I, amalgamating the cyclic subgroups 〈unij

ij 〉
of Gi and 〈unji

ji 〉 of Gj where |nij | = pαij and |nji| = pβji , αij , βji ≥ 0.

(b) Suppose each Gi is a residually p-finite group and 〈unij

ij 〉 is p-
closed in Gi. If G is contractible to a subtree product of Gi, i ∈ J ⊂ I,
amalgamating the cyclic subgroups 〈unij

ij 〉 of Gi and 〈unji

ji 〉 of Gj, then
G is residually p-finite.

Proof. (a) Suppose Gi is connected to Gj and |nij | �= pαij , αij ≥ 0
where i, j ∈ I. Since T1 = Gi

∗
u

nij
ij

=u
nji
ji

Gj is residually p-finite, then by

Theorem 3.6, |nji| = 1 and T1 = Gi. Now, if Gj is connected to Gk,
then T2 = Gi

∗
u

nij
ij

=u
nji
ji

Gj
∗

u
njk
jk

=u
nkj
kj

Gk = Gi
∗

u
nijnjkr

ij
=u

nkj
kj

Gk for some

r ∈ Z. Since |nij | �= pαij , αij ≥ 0, then |nijnjkr| �= pαij , αij ≥ 0.
Therefore by Theorem 3.6, |nkj | = 1 and T2 = Gi. Continuing in this
way, we see that the tree product of the subtree connected to Gi by the
subgroup 〈uij〉 = Gi if |nij | �= pαij , αij ≥ 0. This implies that G = a
subtree product of Gi, i ∈ J , amalgamating 〈unij

ij 〉 of Gi and 〈unji

ji 〉 of
Gj where |nij | = pαij and |nji| = pβji , αij , βji ≥ 0.

(b) Follows from Theorem 2.9.
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Note that Theorem 3.8 can only be applied to residually p-finite
groups with non-trivial center but this class of groups is not small.
It includes the finitely generated torsion-free nilpotent groups which
are residually p-finite for all primes p as well as the two-generator
one-relator groups 〈x, y; xpα

= ypβ 〉 and 〈x, y; [x, ypβ

] = 1〉 which
are residually p-finite for that particular prime p [7, 10]. Thus from
Theorem 3.8 and Lemma 2.6, we have the following extensions of
Theorem 5.4 and Corollary 5.5 of [9].

Corollary 3.9 (see [9]). Let G = 〈G1, . . . , Gn; u
nij

ij = u
nji

ji , i �=
j, i, j ∈ I〉 where uij ∈ Gij and I is finite, be a tree product of the
groups Gi, i ∈ I, amalgamating the cyclic subgroups 〈unij

ij 〉 of Gi and
〈unji

ji 〉 of Gj. Suppose the Gi, i ∈ I, are finitely generated torsion-free
nilpotent groups and 〈uij〉 is a maximal cyclic subgroup or a retract of
Gi. Then G is residually p-finite if and only if G is contractible to a
subtree product of Gi, i ∈ J ⊂ I, amalgamating the cyclic subgroups
〈unij

ij 〉 of Gi and 〈unji

ji 〉 of Gj where |nij | = pαij and |nji| = pβji ,
αij , βji ≥ 0.

Corollary 3.10 (see [9]). Let G = 〈G1, . . . , Gn; u
nij

ij = u
nji

ji , i �=
j, i, j ∈ I〉 where uij ∈ Gij and I is finite, be a tree product of the
groups Gi, i ∈ I, amalgamating the cyclic subgroups 〈unij

ij 〉 of Gi and
〈unji

ji 〉 of Gj. Suppose the Gi, i ∈ I, are finitely generated torsion-free
nilpotent groups and 〈uij〉 is a maximal cyclic subgroup or a retract of
Gi or CGi

(uij) = 〈uij〉. Then G is residually p-finite for all primes p
if and only if G is contractible to a subtree product of Gi, i ∈ J ⊂ I,
amalgamating the cyclic subgroups 〈unij

ij 〉 of Gi and 〈unji

ji 〉 of Gj where
|nij | = 1 = |nji|.

4. Tree products of certain one-relator groups. In this section
we characterize the residual p-finiteness of tree products of certain
one-relator groups. We start with the following theorem of Kim and
McCarron in [7].

Theorem 4.1 [7, Theorem 3.2]. The group G = 〈x, y; [xs, yt] = 1〉
is residually p-finite if and only if |s| = pα and |t| = pβ, α, β ≥ 0.



1736 P.C. WONG, C.K. TANG AND H.W. GAN

We shall extend Theorem 4.1 to certain tree products. First we have
the following lemma.

Lemma 4.2. Let G = 〈x, y; [xs, yt] = 1〉. If |s| = pα and |t| = pβ,
α, β ≥ 0, then 〈x〉 and 〈y〉 are p-closed in G.

Proof. Since G is residually p-finite and 〈x〉 and 〈y〉 are retracts of
G, then 〈x〉 and 〈y〉 are p-closed in G by Lemma 2.4.

Before proceeding further, we give here an example. Let G =
〈a1, a2, a3, a4, a5; [as12

1 , as21
2 ] = 1, [as13

1 , as31
3 ] = 1, [as24

2 , as42
4 ] = 1, [as25

2 ,
as52
5 ] = 1〉. We note that no sequences of relations of the form

[asij1
i , a

sj1i

j1
] = 1, [asj1j2

j1
, a

sj2j1
j2

] = 1, . . . , [asjri

jr
, a

sijr
i ] = 1 for r ≥ 2,

occurs in G. Then by using this fact, we can show that G can be
considered as a tree product and extend the result of Theorem 4.1 to
this group.

Let G1 = 〈a1〉, G21 = 〈a2, x12; [as21
2 , xs12

12 ] = 1〉, G31 = 〈a3, x13; [as31
3 ,

xs13
13 ] = 1〉, G42 = 〈a4, x24; [as42

4 , xs24
24 ] = 1〉, G52 = 〈a5, x25; [as52

5 , xs25
25 ] =

1〉. Next we form the generalized free products H21 = 〈G1, G21; a1 =
x12〉, H31 = 〈G1, G31; a1 = x13〉, H42 = 〈G21, G42; a2 = x24〉 and
H52 = 〈G21, G52; a2 = x25〉. Now let T be the group with presentation
obtained by taking the union of the presentations of the generalized free
products H21, H31, H42 and H52. We associated with T a linear graph,
where the vertices are the groups G1, G21, G31, G42 and G52 with an
edge joining each following pair of the vertices {G1, G21}, {G1, G31},
{G21, G42} and {G21, G52}. Clearly there are no loops in this graph,
and hence this graph is a tree. Therefore, T is called a tree product
of the groups Gij amalgamating the cyclic subgroups 〈ai〉 of Gij and
〈xik〉 of Gki. Since T is isomorphic to G by Tietze transformations, by
abuse of notation we say that G is a tree product.

Now we extend Theorem 4.1 to the following class of tree products.
Let G = 〈a1, . . . , an; [asij

i , a
sji

j ] = 1, i �= j, 1 ≤ i, j ≤ n〉 be such that
no sequences of relations of the form [asij1

i , a
sj1i

j1
] = 1, [asj1j2

j1
, a

sj2j1
j2

] =
1, . . . , [asjri

jr
, a

sijr
i ] = 1 for r ≥ 2, occurs in G. We shall show that G

can be considered as a finite tree product.
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Suppose [as1p1
1 , a

sp11
p1 ] = 1, [as1p2

1 , a
sp21
p2 ] = 1, . . . [as1pr

1 , a
spr1
pr ] = 1 are

all the relations in G which involve a1. Then pi �= pj if i �= j. Now for
each 1 < i ≤ r, define the group Gpi1 = 〈api

, x1pi
; [aspi1

pi , x
s1pi
1pi

] = 1 and
then form the generalized free product Hpi1 = 〈G1, Gpi1; a1 = x1pi

〉.
Suppose inductively, for each relation of the form [asij

i , a
sji

j ] = 1, j �=
i, 1 ≤ i, j ≤ n〉 which involve aj in G, we have defined Gij =
〈ai, xji; [asij

i , x
sji

ji ] = 1, i �= j, 1 ≤ i, j ≤ n〉 and form the generalized
free product Hij = 〈Gjh, Gij ; aj = xji〉. Now suppose that the relation
[asik

i , aski

k ] = 1, where i �= k, 1 ≤ i, k ≤ n, holds in G. Then we define
Gki = 〈ak, xik; [aski

k , xsik

ik ] = 1, i �= k, 1 ≤ i, k ≤ n〉 and form the
generalized free product Hki = 〈Gij , Gki; ai = xik〉. We proceed in
this manner until all the relations [asrt

r , astr
t ] = 1, where r �= t, 1 ≤ r,

t ≤ n, of G have been considered.

Let T be the group with presentation obtained by presenting each of
the generalized free product 〈Gij , Gki; ai = xik〉 of the groups Gij and
Gki with the cyclic subgroups 〈ai〉 of Gij and 〈xik〉 of Gki amalgamated
under ai = xik and then taking the union of these presentations. With
T we associated a linear graph, where the vertices are the groups Gij

and each of whose edges joins two vertices Gij and Gki if ai = xik.
When this graph is a tree, T is called a tree product of the groups Gij

amalgamating the cyclic subgroups 〈ai〉 of Gij and 〈xik〉 of Gki.

Since no sequences of relations of the form [asij1
i , a

sj1i

j1
] = 1, [asj1j2

j1
,

a
sj2j1
j2

] = 1, . . . , [asjri

jr
, a

sijr
i ] = 1 for r ≥ 2, occurs in G, then the linear

graph associated with T contains no loop. Hence the linear graph is a
tree and so T is a tree product. Furthermore, T is isomorphic to G by
Tietze transformations. By abuse of notation we say that G is a tree
product if T is a tree product. Now we can extend Theorem 4.1.

Theorem 4.3. Let G = 〈a1, . . . , an; [asij

i , a
sji

j ] = 1, i �= j, 1 ≤
i, j ≤ n〉 and suppose that G is a tree product. Then G is residually
p-finite if and only if |sij | = pαij and |sji| = pβji , αij , βji ≥ 0.

Proof. As in the discussion above, we can assume that G is a tree
product of the groups Gij = 〈ai, xji; [asij

i , x
sji

ji ] = 1〉 amalgamating the
cyclic subgroups 〈ai〉 of Gij and 〈xik〉 of Gki.
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Suppose G is residually p-finite. Then the subgroup Gij is residually
p-finite. By Theorem 4.1, |sij | = pαij and |sji| = pβji , αij , βji ≥ 0.

Conversely, suppose |sij | = pαij and |sji| = pβji , αij , βji ≥ 0. By
Theorem 4.1, Gij is residually p-finite. Moreover, by Lemma 4.2,
〈ai〉 and 〈xji〉 are p-closed in Gij . Hence G is residually p-finite by
Theorem 2.9.

To further extend Theorem 4.3, we have the following two lemmas.

Lemma 4.4. Let A, B be residually p-finite groups, and let 〈a〉, 〈b〉
be infinite cyclic subgroups of A, B respectively. Suppose that 〈a〉 is p-
closed in A and 〈b〉 is p-closed in B. If |s| = pα and |t| = pβ, α, β ≥ 0,
then the group G = 〈A, B; [as, bt] = 1〉 is residually p-finite and 〈a〉, 〈b〉
are p-closed in G.

Proof. Let G1 = 〈x, y; [xs, yt] = 1〉. Then G can be written as
G = A ∗

a=xG1
∗

y=bB. By Theorem 4.1, G1 is residually p-finite and,
by Lemma 4.2, 〈x〉 and 〈y〉 are p-closed in G1. Hence, G is residually
p-finite by Theorem 2.9 and 〈a〉, 〈b〉 are p-closed in G by Lemma 2.7.

Next we extend Theorem 4.3 to the following class of tree products.
Let Ai, 1 ≤ i ≤ n, be residually p-finite groups and 〈aij〉 an infinite
cyclic subgroup of Ai where aij is not a proper power of another
element. Let G = 〈A1, . . . , An; [asij

ij , a
sji

ji ] = 1, i �= j, 1 ≤ i, j ≤
n〉. Further, suppose that no sequences of relations of the form
[asij1

i , a
sj1i

j1
] = 1, [asj1j2

j1
, a

sj2j1
j2

] = 1, . . . , [asjri

jr
, a

sijr
i ] = 1 for r ≥ 2,

occurs in G. Then, as in the discussion before Theorem 4.3, we show
that G can be considered as a finite tree product as follows. Let
G1 = A1 and Gij = 〈Ai, xji; [asij

ij , x
sji

ji ] = 1, aij ∈ Ai〉 for i �= j,
1 ≤ i, j ≤ n. Then G can be considered as a tree product of the
groups Gij = 〈Ai, xji; [asij

ij , x
sji

ji ] = 1, aij ∈ Ai〉 amalgamating the
cyclic subgroups 〈ai〉 of Gij and 〈xik〉 of Gki. Now we can prove the
following theorem.
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Theorem 4.5. For each 1 ≤ i ≤ n, let Ai be residually p-finite such
that 〈aij〉 is an infinite cyclic subgroup of Ai where aij is not a proper
power of another element. Further, suppose that, for each Ai, 〈aij〉 is p-
closed in Ai. Let G = 〈A1, . . . , An; [asij

ij , a
sji

ji ] = 1, i �= j, 1 ≤ i, j ≤ n〉,
and suppose that G is a tree product. Then G is residually p-finite if
and only if |sij | = pαij and |sji| = pβji , αij , βji ≥ 0.

Proof. If all the Ai are cyclic, the result follows from Theorem 4.3. So
we may assume that there exists at least one i such that Ai is non-cyclic.
As in the discussion in Theorem 4.3 and above, we can assume that G
is a tree product of the groups Gij = 〈Ai, xji; [asij

ij , x
sji

ji ] = 1, aij ∈ Ai〉
amalgamating the cyclic subgroups 〈ai〉 of Gij and 〈xik〉 of Gki.

Suppose that G is residually p-finite. Then the subgroup 〈aij , xji;
[asij

ij , x
sji

ji ] = 1〉 of Gij is residually p-finite and hence, by Theorem 4.1,
|sij | = pαij and |sji| = pβji , αij , βji ≥ 0.

Conversely, suppose that |sij | = pαij and |sji| = pβji , αij , βji ≥ 0.
By Theorem 4.1, Lemmas 4.2 and 4.4, Gij is residually p-finite and
〈aij〉, 〈xji〉 are p-closed in Gij . Hence G is residually p-finite by
Theorem 2.9.

We apply Theorem 4.5 to free groups and finitely generated torsion-
free nilpotent groups.

Corollary 4.6. Let Ai, 1 ≤ i ≤ n, be free groups or finitely generated
torsion-free nilpotent groups, and let 〈aij〉 be a maximal cyclic subgroup
or retract of Ai or CAi

(aij) = 〈aij〉. Let G = 〈A1, . . . , An; [asij

ij , a
sji

ji ] =
1, i �= j, 1 ≤ i, j ≤ n〉, and suppose that G is a tree product. Then
G is residually p-finite if and only if |sij | = pαij and |sji| = pβji ,
αij , βji ≥ 0.

Proof. Clearly aij is a non-proper power. Since Ai is residually p-
finite and for each Ai which is non-cyclic, 〈aij〉 is p-closed in Ai, then
the result follows from Theorem 4.5.

In [7], Kim and McCarron also proved the following theorem:
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Theorem 4.7 [7, Theorem 3.4]. The group G = 〈x, y; x−sytxs =
y−t〉 is residually p-finite if and only if p = 2 and |s| = 2α and |t| = 2β,
α, β ≥ 0.

As above we shall extend Theorem 4.7 with the help of the next
lemma.

Lemma 4.8. Let G = 〈x, y; x−sytxs = y−t〉. If |s| = 2α and
|t| = 2β, α, β ≥ 0, then 〈x〉 and 〈y〉 are 2-closed in G.

Proof. Since G is residually 2-finite and 〈x〉 is a retract of G, 〈x〉
is 2-closed in G by Lemma 2.4. To show 〈y〉 is 2-closed in G, we let
u ∈ G\〈y〉. Clearly there is a homomorphism θ from G to 〈x〉 defined
by xθ = x and yθ = 1. Since uθ �= 1 and 〈x〉 is residually 2-finite, our
result follows.

Theorem 4.9. Let Ai, 1 ≤ i ≤ n, be residually p-finite groups, and
〈aij〉 is an infinite cyclic subgroup of Ai such that aij is not a proper
power of another element. Further, suppose that, for each Ai which is
non-cyclic, 〈aij〉 is p-closed in Ai. Let G = 〈A1, . . . , An; a

−sij

ij a
sji

ji a
sij

ij =
a
−sji

ji , i �= j, 1 ≤ i, j ≤ n〉, and suppose that G is a tree product.
Then G is residually p-finite if and only if p = 2 and |sij | = 2αij and
|sji| = 2βji , αij , βji ≥ 0.

Corollary 4.10. Let Ai, 1 ≤ i ≤ n, be free groups or finitely gener-
ated torsion-free nilpotent groups, and let 〈aij〉 be a maximal cyclic sub-
group or retract of Ai or CAi

(aij) = 〈aij〉. Let G = 〈Ai; a
−sij

ij a
sji

ji a
sij

ij =
a
−sji

ji , 1 ≤ i ≤ n〉, and suppose that G is a tree product. Then G is
residually p-finite if and only if p = 2 and |sij | = 2αij and |sji| = 2βji ,
αij , βji ≥ 0.

Since elements of finite orders in residually p-finite groups are of
orders pα we restate Baumslag’s result [1, Lemma 2]:

Theorem 4.11. The group G = 〈x, y; (xlym)t = 1〉, t > 1, is
residually p-finite if and only if t = pα, α > 0.
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Lemma 4.12. Let G = 〈x, y; (xlym)t = 1〉, t > 1. If t = pα, α > 0,
then 〈x〉 and 〈y〉 are p-closed in G.

Proof. By Theorem 4.11, G is residually p-finite. We shall now
consider the following cases.

Case 1. |l| �= 1 �= |m|. Note that G = 〈x〉 ∗
xl=cG0 where G0 =

〈c, y; (cym)t = 1〉. Then CG(x) = 〈x〉, and hence, 〈x〉 is p-closed in G
by Lemma 2.5. Similarly, we can show that 〈y〉 is p-closed in G.

Case 2. |l| = 1 = |m|. Without loss of generality, we may assume
that G = 〈x, y; (xy)t = 1〉. Let z = xy. Note that G = 〈x, z; zt = 1〉 =
〈x〉 ∗ 〈z; zt = 1〉. Clearly, CG(x) = 〈x〉 and hence 〈x〉 is p-closed in G
by Lemma 2.5. Similarly, 〈y〉 is p-closed in G.

Case 3. |l| = 1, |m| �= 1. Without loss of generality, we may assume
that G = 〈x, y; (xym)t = 1〉. Let z = xym. Then G = 〈y, z; zt =
1〉 = 〈y〉 ∗ 〈z; zt = 1〉. Now, CG(x) = CG(zy−m) = 〈zy−m〉 = 〈x〉,
CG(y) = 〈y〉 and we are done by Lemma 2.5.

Case 4. |l| �= 1, |m| = 1. This case is similar to Case 3.

As above we can extend Theorem 4.11 to the following theorem:

Theorem 4.13. Let Ai, 1 ≤ i ≤ n, be residually p-finite groups, and
let 〈aij〉 be an infinite cyclic subgroup of Ai where aij is not a proper
power of another element. Further, suppose that for each Ai which is
non-cyclic, 〈aij〉 is p-closed in Ai. Let G = 〈A1, . . . , An; (alij

ij a
mji

ji )tij =
1, i �= j, 1 ≤ i, j ≤ n〉, tij > 1, and suppose that G is a tree product.
Then G is residually p-finite if and only if |tij | = pγij , γij > 0.

Corollary 4.14. Let Ai, 1 ≤ i ≤ n, be free groups or finitely
generated torsion-free nilpotent groups, and let 〈aij〉 be a maximal cyclic
subgroup or retract of Ai or CAi

(aij) = 〈aij〉. Let G = 〈A1, . . . , An;
(alij

ij a
mji

ji )tij = 1, i �= j, 1 ≤ i, j ≤ n〉, tij > 1, and suppose that G is
a tree product. Then G is residually p-finite if and only if |tij |= pγij ,
γij >0.
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