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A METRIC CHARACTERIZATION OF
NORMED LINEAR SPACES

TIMUR OIKHBERG AND HASKELL ROSENTHAL

ABSTRACT. Let X be a linear space over a field K = R
or C, equipped with a metric ρ. It is proved that ρ is
induced by a norm provided it is translation invariant, real
scalar “separately” continuous, such that every 1-dimensional
subspace of X is isometric to K in its natural metric, and (in
the complex case) ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

1. Introduction and main results. Recall that a linear space, also
called a vector space, X over a field of scalars K (either R or C) is a
set, endowed with compatible operations of addition and multiplication
by a scalar. A topological linear space is, in addition, equipped with
a topology compatible with these operations. The reader is referred
to [3, Chapter 1] for a lucid introduction into this topic. We use the
term real, respectively complex, linear space to indicate whether we are
working with real or complex scalars.

A function ρ : X ×X→[0,∞) is called a metric if

1. ρ(x, y) = ρ(y, x) for any x, y ∈ X.

2. ρ(x, y) = 0 if and only if x = y.

3. ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for any x, y, z ∈ X (the triangle
inequality).

A metric ρ is called translation invariant if, in addition, ρ(x, y) =
ρ(x+ z, y + z) for any x, y, z ∈ X.

A norm is a function ‖ · ‖ : X→[0,∞) with the following properties:

1. Positive homogeneity: ‖λx‖ = |λ| ‖x‖ for any x ∈ X and λ ∈ K.

2. Positive definiteness: ‖x‖ = 0 if and only if x = 0.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for any x, y ∈ X.
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A linear space equipped with a norm (or a metric) is called a normed,
respectively metric, space. A norm or a metric defines the topology of a
linear space as follows: E ⊂ X is open if and only if for any x ∈ E there
exists ε > 0 such that any y ∈ X satisfying ‖x − y‖ < ε, respectively,
ρ(x, y) < ε, belongs to E.

Clearly, any norm induces a metric on X (just set ρ(x, y) := ‖x−y‖).
In this case, ‖x‖ = ρ(x, 0). In this paper we give a geometric description
of metrics on linear spaces which are induced by norms. In other words,
we establish that metric spaces with certain properties are, in fact,
normed spaces.

The exposition is fairly self-contained. The only major result we need
is a description of isometries between normed linear spaces, proved by
Mazur and Ulam in the 1930s, see the original paper [2] or [1, Chapter
XI]: if φ is a bijective isometry between real normed linear spaces X
and Y , then φ is an affine map, that is, there exists a linear isometry
T : X→Y such that φ(x) = φ(0) + Tx for any x ∈ X.

Below we formulate the main results of our paper. They will be
proved in Section 2. Finally, Section 3 contains a counterexample
showing that the assumptions of our theorems cannot be significantly
weakened.

Theorem 1.1. Let X be a linear space over a field K = R or C,
equipped with a metric ρ. Assume:

1. ρ is translation invariant, that is, ρ(x, y) = ρ(x+ z, y+ z) for any
x, y, z ∈ X.

2. Multiplication by real scalars is continuous: for any x ∈ X, the
map [0, 1]→X : t �→ tx is continuous.

3. Every one-dimensional affine subspace of X is isometric to K. In
addition, if K = C, then ρ(x, y) = ρ(ix, iy) for any x, y ∈ X.

Then ρ induces a norm on X. In other words, ‖x‖ = ρ(x, 0) is a norm.

The conclusion of this theorem fails if condition (2) is omitted, see
Example 3.1. However, we can do away with (2) by strengthening (3):
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Theorem 1.2. Let X be a linear space over a field K = R or C,
equipped with a translation invariant metric ρ. Assume that one of the
three statements holds for all x ∈ X:

1. K = R, and {λx | −1 ≤ λ ≤ 1} is isometric to [−ρ(x, 0), ρ(x, 0)].

1′. K = R, and {λx | 0 ≤ λ ≤ 1} is isometric to [0, ρ(x, 0)].

2. K = C, and {λx | λ ∈ C, |λ| ≤ 1} is isometric to {λ ∈ C | |λ| ≤
ρ(x, 0)}.
Then ρ induces a norm on X.

Our main tool is

Lemma 1.3. Suppose φ : C→C is a bijection satisfying, for all
x, y ∈ C,

1. |φ(x+ y)| = |φ(x) + φ(y)|;
2. |φ(ix)| = |φ(x)|;
3. φ is separately real continuous, that is, φ(tnx)→φ(tx) whenever

tn→t (tn, t ∈ R).

Then φ is either linear or conjugate linear : either φ(z) = αz for all
z ∈ C, or φ(z) = αz for all z ∈ C.

Remark. To prove Theorem 1.1, we only need the equality |φ(z)| =
a|z| for some a > 0. However, this fails if (3) is not assumed.

2. Proof of the main theorem. We start by stating a well known
(and easily proved) result concerning translation invariant metrics.

Proposition 2.1. Suppose ρ is a translation invariant metric on a
linear space X, and define, for x ∈ X, ‖x‖ := ρ(x, 0). Then, for any
x, y ∈ X,

1. ‖x‖ = ‖ − x‖.
2. ‖x‖ = 0 if and only if x = 0.

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖.
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We state the next two results in greater generality than is required
for the proof of Theorem 1.1.

Lemma 2.2. Suppose X and Y are real linear spaces, ‖ · ‖ is a
norm on Y , and let φ : X→Y be a map for which ‖φ(x1 + x2)‖ =
‖φ(x1) + φ(x2)‖ for any x1, x2 ∈ X. Then, for any x ∈ X, we have:

1. φ(0) = 0.

2. φ(−x) = −φ(x).

3. ‖φ(rx)‖ = |r|‖φ(x)‖ for any r ∈ Q.

Proof. (1) 2‖φ(0)‖ = ‖φ(0) + φ(0)‖ = ‖φ(2 · 0)‖ = ‖φ(0)‖, hence
‖φ(0)‖ = 0, which implies φ(0) = 0.

(2) 0 = ‖φ(x+ (−x))‖ = ‖φ(x) + φ(−x)‖, hence φ(x) + φ(−x) = 0.

(3) It suffices to show that

(2.1) ‖φ(mx)‖ = m‖φ(x)‖

whenever m ∈ N and x ∈ X. Indeed, ‖φ(x)‖ = ‖φ(n(x/n))‖ =
n‖φ(x/n)‖, n ∈ N, and therefore, ‖φ(mx/n)‖ = m‖φ(x/n)‖ =
(m/n)‖φ(x)‖ whenm,n ∈ N. Moreover, ‖φ(−mx/n)‖ = (m/n)‖φ(x)‖.

We use induction to prove (2.1). This equality clearly holds form = 1.
For m = 2, we have

‖φ(2x)‖ = ‖φ(x+ x)‖ = ‖2φ(x)‖ = 2‖φ(x)‖.

Now suppose (2.1) has been established for m = 1, 2, . . . , 2k. Then

‖φ((2k+ 2)x)‖ = ‖φ(2((k+ 1)x))‖ = 2‖φ((k+ 1)x)‖ = 2(k+ 1)‖φ(x)‖.

Therefore,

2(k + 1)‖φ(x)‖ = ‖φ((2k + 2)x)‖
= ‖φ((2k + 1)x) + φ(x)‖ ≤ ‖φ((2k + 1)x)‖ + ‖φ(x)‖,

which implies ‖φ((2k + 1)x)‖ ≥ (2k + 1)‖φ(x)‖. On the other hand,

‖φ((2k + 1)x)‖ = ‖φ(2kx) + φ(x)‖ ≤ (2k + 1)‖φ(x)‖.
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Thus, ‖φ((2k + 1)x)‖ = (2k + 1)‖φ(x)‖. We have established (2.1) for
m = 2k + 1, 2k + 2.

Remark. φ as above is not necessarily a linear isometry: consider,
for instance, φ : R→R2 : t �→ (t, sin t), where R2 is equipped with the
norm ‖(x, y)‖ = max{|x|, |y|}.

Lemma 2.3. Suppose X is a topological linear space, Y is a normed
linear space, φ : X→Y is a bijection satisfying :

1. φ|Z is separately real continuous for all one-dimensional subspaces
Z of X, that is, φ(tx) = limn φ(tnx) whenever x ∈ X and limn tn = t
for real (tn), t.

2. ‖φ(x1 + x2)‖ = ‖φ(x1) + φ(x2)‖ for any x1, x2 ∈ X.

3. In the complex case, iφ(Z) = φ(Z) for all one-dimensional
subspaces Z of X, and ‖φ(ix)‖ = ‖φ(x)‖ for any x ∈ X.

Then φ is either linear or conjugate linear.

Proof. For any x ∈ X define |||x||| := ‖φ(x)‖. Show first that
|||λx||| = |λ| · |||x||| for any x ∈ X and λ ∈ R. To this end,
find a sequence of rational numbers (rn) converging to λ. By the
previous lemma, |||rnx||| = |rn| · |||x|||. By continuity of φ on Rx,
φ(λx) = limn φ(rnx), hence

|||x||| = lim
n

‖φ(rnx)‖ = lim
n

|rn| · |||x||| = |λ| · |||x|||.

In the real case, we conclude that |||·||| is a norm (all the conditions on
||| · ||| can now be easily verified). Therefore, φ is a bijective isometry
between normed spaces (X, ||| · |||) and (Y, ‖ · ‖). By Mazur-Ulam’s
theorem, φ is a linear map.

Now consider the complex case. The reasoning above shows that φ
is “real linear,” that is, φ(λx) = λφ(x) for any x ∈ X and λ ∈ R. It
remains to show that either φ(ix) = iφ(x) for every x ∈ X (in this case,
φ is linear), or φ(ix) = −iφ(x) for every x ∈ X (φ is conjugate linear).

Fix x ∈ X. Let Z = Cx, y1 = φ(x), y2 = φ(ix). By (3), y2 = λy1 for
some λ ∈ C. But ‖φ(ix)‖ = ‖φ(x)‖, hence |λ| = 1, and ‖y1‖ = ‖y2‖.
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Then

‖φ(x+ ix)‖ = ‖(1 + λ)y1‖ =
√

2 + 2Reλ ‖y1‖,
and

‖φ(i(x+ ix))‖ = ‖φ(ix) − φ(x)‖ = ‖(λ− 1)y1‖ =
√

2 − 2Reλ ‖y1‖.

However, ‖φ(x + ix)‖ = ‖φ(i(x + ix))‖, hence Reλ = 0, and λ = ±i.
Thus, φ((a+ ib)x) equals to either (a+ ib)φ(x), or (a− ib)φ(x). That
is, φ|Z is either linear, or conjugate linear.

Now suppose, for the sake of contradiction, that φ is linear on
Z1 = Cx1, and conjugate linear on Z2 = Cx2. φ is real linear, hence

(2.2) φ(i(x1 + x2)) = φ(ix1) + φ(ix2) = iφ(x1) − iφ(x2).

On the other hand, φ must be either linear or conjugate linear on
C(x1 + x2). Therefore, either

φ(i(x1 + x2)) = iφ(x1 + x2) = iφ(x1) + iφ(x2),

or

φ(i(x1 + x2)) = − iφ(x1 + x2) = − iφ(x1) − iφ(x2).

In either case, x1 or x2 must equal 0 for the equality (2.2) to hold.
Therefore, φ is either linear on the whole space X, or conjugate linear
on the whole space X.

Lemma 1.3 follows easily from Lemma 2.3 (just take X = Y = C).
In the real case (X = Y = R) we obtain:

Corollary 2.4. Suppose φ : R→R is a continuous bijection, and
|φ(x + y)| = |φ(x) + φ(y)| for any x, y ∈ R. Then φ is linear, that is,
there exists α ∈ R such that φ(x) = αx for any x ∈ R.

Proof of Theorem 1.1. To show that ‖·‖ = ρ(·, 0) is a norm, it suffices
to prove that

(2.3) ‖λx‖ = |λ| ‖x‖
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for any λ ∈ K and x ∈ X. We begin by considering the real case. Fix
a nonzero x ∈ X, and consider Z = {λx | λ ∈ R}. There exists a
bijective isometry T : Z→R. Assume without loss of generality that
T (0) = 0. Then |T (z)| = ‖z‖ for any z ∈ Z. Define φ : R→R by
setting φ(λ) = T (λx). For any λ1, λ2 ∈ R, we have

|φ(λ1 − λ2)| = |T (λ1x− λ2x)| = ρ((λ1x− λ2x), 0) = ρ(λ1x, λ2x)
= |T (λ1x) − T (λ2x)| = |φ(λ1) − φ(λ2)|.

By our assumption, φ(0) = 0, hence φ is an odd function (φ(−λ) =
−φ(λ) for any λ ∈ R). Moreover, the map λ �→ ρ(λx, 0) is continuous,
hence φ is continuous. By Corollary 2.4, φ is linear, that is, φ(λ) = αλ.
Here, |α| = |φ(1)| = ρ(x, 0). Thus,

‖λx‖ = ρ(λx, 0) = |φ(λ)| = |λ| ‖x‖.

This establishes (2.3) in the real case.

In the complex case, fix x ∈ X\{0}, and consider a subspace
Z = Cx ⊂ X and a bijective isometry T : Z→C (that is, ρ(λ1x, λ2x) =
|T (λ1) − T (λ2)| whenever λ1, λ2 ∈ C). As in the real case, we set
φ(λ) = T (λx), and show that |φ(λ1 − λ2)| = |φ(λ1) − φ(λ2)|. In
particular, ‖λx‖ = ρ(λx, 0) = |φ(λ)|, and therefore,

|φ(λ)| = ρ(λx, 0) = ρ(iλx, 0) = |φ(iλ)|

for any λ ∈ C. By Lemma 1.3, either φ(λ) = αλ, or φ(λ) = αλ, with
|α| = |φ(1)| = ‖x‖. Thus, ‖λx‖ = |φ(λ)| = |λ|‖x‖ for any λ ∈ C.

Proof of Theorem 1.2. As before, we only have to show that ‖λx‖ =
|λ|‖x‖. Consider the cases (1) and (2) first. Observe first that
‖λx‖ ≤ ‖x‖ whenever |λ| ≤ 1. Indeed, let D(c) = {λ ∈ K | |λ| ≤ c}.
We know that D(1)x is isometric to D(ρ(0, x)). Therefore, D(1)λx
is isometric to D(ρ(0, λx)). If |λ| ≤ 1, then D(1)λx ⊂ D(1)x, and
therefore, D(ρ(0, λx)) is isometric to a subset of D(ρ(0, x)). This is
possible only if ρ(0, x) ≥ ρ(0, λx).

By the above, ρ(0, x) = ρ(0, ωx) whenever |ω| = 1.
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Fix x ∈ X for which ρ(0, x) = 1, and consider the function φ :
[0,∞)→[0,∞) : λ �→ ρ(0, λx). It suffices to show that φ is the
identity function. We already know that φ is nondecreasing. The
triangle inequality implies the subadditivity of φ, that is, φ(λ1 +λ2) ≤
φ(λ1) + φ(λ2).

Moreover, φ(0) = 0, and limλ→0+ φ(λ) = 0 (otherwise, there can be
no isometry between D(1)x and D(ρ(0, x))). Therefore, φ is uniformly
continuous on [0,∞). Indeed, for any ε > 0 there exists δ > 0 such
that φ(ε) < δ. If x < y < x+ δ, we have, by the above,

φ(x) ≤ φ(y) ≤ φ(x) + φ(δ) < φ(x) + ε.

We next show that φ(nλ) = nφ(λ) for any n ∈ N and λ ∈ [0,∞).
Clearly, the equality holds for n = 0, 1. Suppose φ((n − 1)λ) =
(n − 1)φ(λ), and show that φ(nλ) = nφ(λ). Consider an isometry
ψ : D(nλ)x→D(φ(nλ)). ρ(0, ωnλ) = φ(nλ) whenever |ω| = 1, hence
ψ(0) = 0. Assume without loss of generality that ψ(nλx) = φ(nλ).
Then there exists ω such that |ω| = 1 and ψ((n−1)ωλx) = (n−1)φ(λ).
Then

φ(nλ) − (n− 1)φ(λ) =
∣∣ψ(nλx) − ψ((n− 1)ωλx)

∣∣
= ρ(nλx, (n− 1)ωλx) = ρ((n− (n− 1)ω)λx, 0)
= φ(|n− (n− 1)ω|λ) ≥ φ(λ).

On the other hand, the triangle inequality implies φ(nλ) ≤ nφ(λ).
Thus, φ(nλ) = nφ(λ).

Suppose, for the sake of contradiction, that φ(λ) < λ for some λ.
Then, for sufficiently large n,

φ(nλ) = nφ(λ) < nλ− 1 < �nλ� = φ(�nλ�) ≤ φ(nλ).

The possibility of φ(λ) > λ is ruled out the same way.

The case (1′) is dealt with in a similar way. As above, we show
that ρ(0, λx) = λρ(0, x) for any x ∈ X and λ ≥ 0. Moreover,
ρ(0, x) = ρ(0,−x) due to the translation invariance of ρ. Thus,
ρ(0, λx) = |λ|ρ(0, x) for any x ∈ X and λ ∈ R.
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3. A counterexample. We shall show that Theorem 1.1 fails if
condition (2) (real continuity) is dropped. For the sake of convenience,
we define the “real multiplication map” Mx : R→RN (or R→K): for
x in RN (or K, respectively), we set Mx(t) = tx. The “inverse” M−1

x

maps Rx to R.

Example 3.1. There exists a translation invariant metric ρ on
K = R or C, satisfying assumptions (1) and (3) of Theorem 1.1, such
that ρ is not induced by a norm. Moreover, for any x ∈ K\{0}, the
real multiplication map Mx, as well as its inverse, are discontinuous
everywhere.

The construction is based on the following lemma.

Lemma 3.2. (a) There exists a bijection ψ : R→R such that
ψ(0) = 0, ψ(1) = 1, and ψ(

∑n
k=1 rkxk) =

∑n
k=1 rkψ(xk) whenever

n ∈ N, rk ∈ Q, and xk ∈ R. Moreover, for every interval (a, b),

sup
x,y∈(a,b)

|ψ(x) − ψ(y)| = sup
x,y∈(a,b)

|ψ−1(x) − ψ−1(y)| = ∞.

Consequently, the map Nx : t �→ ψ(tx) and its inverse are discontinuous
everywhere whenever x 
= 0.

(b) Suppose G is a countable semi-group of unitary operators on
RN (N ∈ N). Then there exists a bijection φ : RN→RN , such
that φ(

∑n
k=1 rkUkxk) =

∑n
k=1 rkUkφ(xk) whenever n ∈ N, rk ∈ Q,

Uk ∈ G, and xk ∈ RN . Moreover,

sup
x,y∈E∩L

|φ(x) − φ(y)| = sup
x,y∈E∩L

|φ−1(x) − φ−1(y)| = ∞

for every open set E ⊂ RN and any affine subspace L ⊂ RN of
dimension at least 1. Consequently, the map Nx : t �→ φ(tx) and its
inverse are discontinuous everywhere whenever x 
= 0.

Proof. Consider the countable group F , containing all rational
numbers, entries of unitaries U ∈ G, as well as products, inverses, and
sums of its members. In the case (a), the group G consists of just one
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operator the identity, and F = Q. An application of Zorn’s lemma
produces a Hamel basis for R over F , that is, an uncountable family
(bα)α∈I ⊂ (0,∞) such that any x ∈ R\{0} can be uniquely represented
as x =

∑n
k=1 fkbαk

, with n ∈ N and fk ∈ F\{0} (here bα1 , . . . , bαn
are

distinct). Moreover, we can assume that 1 = bα for some α ∈ I.

Pick distinct β1, β2 ∈ I for which bβ1 , bβ2 
= 1. Let aβ1 = bβ2 ,
aβ2 = bβ1 , and aα = bα if α ∈ I\{β1, β2}. Define ψ by setting

ψ

( n∑
k=1

fkbαk

)
=

n∑
k=1

fkaαk
.

It is easy to see that ψ is rational-linear, ψ(0) = 0, and ψ(1) = 1. ψ is
a bijection, since any non-zero x ∈ R has a unique decomposition as a
linear combination of bα’s with coefficients from F .

To show that ψ is discontinuous everywhere, observe that

S =
{ n∑

k=1

fkbαk

∣∣∣n ∈ N, fk ∈ F, αk ∈ I\{β1, β2}
}

is dense in R (indeed, Fbα is dense in R for any α). Thus, S +Nbβ1

is dense in R for any N ∈ N. Therefore, for every a, b ∈ R and
N ∈ N there exist s, t ∈ (a, b) such that s ∈ S (hence ψ(s) = s)
and t ∈ S + Nbβ1 (hence ψ(t) = t + N(bβ2 − bβ1)). In particular,
|ψ(s) − ψ(t)| ≥ N |bβ2 − bβ1 | − (b − a). N can be selected to be
arbitrarily large, hence sups,t∈(a,b) |ψ(s) − ψ(t)| = ∞. The equality
sups,t∈(a,b) |ψ−1(s) − ψ−1(t)| = ∞ is proved in the same manner.

To establish (b), define

φ(x1, . . . , xN ) = (ψ(x1), . . . , ψ(xN ))

for (x1, . . . , xN ) ∈ RN . Then, for any rk ∈ Q, Uk = (Ukij)N
i,j=1 ∈ G,

and xk = (xkl)N
l=1, 1 ≤ k ≤ n, we have

φ

( n∑
k=1

rkUkxk

)
=

(
ψ

( n∑
k=1

rk

N∑
j=1

Ukijxkj

))N

i=1

=
n∑

k=1

rk

( N∑
j=1

Ukijψ(xkj)
)N

i=1

=
n∑

k=1

rkUk

(
ψ(xkj)

)N

j=1
=

n∑
k=1

rkUkφ(xk).
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Suppose E and L are an open subset of RN and an affine sub-
space of RN , respectively, with L 
= {0}. For 1 ≤ k ≤ N , denote
by Pk the kth coordinate projection, that is, Pk(x1, x2, . . . , xN ) =
(0, . . . , 0, xk, 0, . . . , 0). Clearly, there exists k for which Pk(E ∩ L)
contains an open interval (a, b). Then

sup
x,y∈E∩L

|φ(x) − φ(y)| ≥ sup
s,t∈(a,b)

|ψ(s) − ψ(t)| = ∞.

Similarly, one can show that

sup
x,y∈E∩L

|φ−1(x) − φ−1(y)| = ∞.

Thus, φ has all the desired properties.

Construction of Example 3.1. In the real case, define ρ(x, y) =
|ψ(x−y)| for x, y ∈ R (here ψ is the function from Lemma 3.2(a)). Then
(R, ρ) is isometric to (R, | · |) via ψ, and ρ is a translation invariant.
Moreover, by Lemma 3.2, for any interval (a, b) ⊂ R and x ∈ R\{0},

sup
s,t∈(a,b)

ρ(Mx(t),Mx(s)) = sup
s,t∈(a,b)

|ψ(tx) − ψ(sx)| = ∞.

Therefore, multiplication by scalars is not continuous in (R, ρ) (condi-
tion (2) of Theorem 1.1 fails). Thus, ‖x‖ = ρ(x, 0) is not a norm. The
discontinuity of M−1

x is proved in the same way.

In the complex case, consider the group G of operators on R2,
generated by the matrix U =

(
0 −1

1 0

)
(that is, G consists of the identity

I, U , U2 = −I, and U3 = −U). Note that R2 can be canonically
identified with C (the vector (x, y) corresponds to x + iy). Then U
can be viewed as the operator of multiplication by i. For z1, z2 ∈ C,
let ρ(z1, z2) = |φ(Re z1, Im z1) − φ(Re z2, Im z2)|. By construction, ρ
is invariant under translation and multiplication by i, and (C, ρ) is
isometric to (C, | · |). The discontinuity of Mx and M−1

x is proven as
in the real case. This allows us to conclude that ‖x‖ = ρ(x, 0) is not a
norm.

Remark. In fact, we have shown that Lemma 1.3 fails if condition (3)
is not satisfied.
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