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GENERALIZED UMEMURA POLYNOMIALS

ANATOL N. KIRILLOV AND MAKOTO TANEDA

ABSTRACT. We introduce and study generalized Umemura

polynomials U
(k)
n,m(z, w; a, b) which are a natural generaliza-

tion of the Umemura polynomials Un(z,w; a, b) related to
Painlevé VI equation. We will show that if a = b or a = 0

or b = 0, then polynomials U
(0)
n,m(z, w; a, b) generate solutions

to Painlevé VI. We will describe a connection between poly-

nomials U
(0)
n,m(z, w; a, 0) and certain Umemura polynomials

Uk(z, w; α, β).

1. Introduction. There is a vast body of literature devoted to the
Painlevé VI equation PVI := PVI(α, β, γ, δ):
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where t ∈ C, q := q(t;α, β, γ, δ) is a function of t and α, β, γ, δ are
arbitrary complex parameters. It is well known and goes back to
Painlevé that any solution q(t) of the equation PVI satisfies the so-
called Painlevé property:

• the critical points 0, 1 and ∞ of the equation (1.1) are the only
fixed singularities of q(t).

• any movable singularity of q(t), the position of which depends on
integration constants, is a pole.

In this paper we introduce and initiate the study of certain special poly-
nomials related to the Painlevé VI equation, namely, the generalized
Umemura polynomials U (k)

n,m(z, w; a, b). These polynomials have many
interesting combinatorial and algebraic properties and in the particular
case n = 0 = k coincide with Umemura’s polynomials Um(z2, w2; a, b),
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see, e.g., [2, 5]. In the present paper we study recurrence rela-
tions between polynomials U (k)

n,m(z, w; a, b). Our main result is Theo-
rem 4.1 which gives a generalization of the recurrence relation between
Umemura’s polynomials [5]. As a corollary, we obtain that polynomi-
als U (0)

n,m(z, w; a, 0) also generate solutions to the equation Painlevé VI.
The main tool in our proofs is Lemma 4.2 from Section 4. For example,
we prove a new recurrence relation between Umemura’s polynomials,
Theorem 4.9, and describe explicitly connections between polynomials
Un,m(0, b) and Umemura’s polynomials Um(b1, b2), see Lemma 4.7. Fi-
nally, in Section 5, we state a conjecture which describes the Plücker
relations between certain Umemura’s polynomials.

2. Painlevé VI. In this section we collect together some basic results
about equation Painlevé VI. More detail and proofs may be found in
a familiar series of papers by Okamoto [3]. We refer the reader to the
proceedings of conference, “The Painlevé property. One century later,”
[1] where different aspects of the theory of Painlevé equations may be
found.

2.1 Hamiltonian form. It is well known and goes back to a paper by
Okamoto [3] that the sixth Painlevé equation (1.1) is equivalent to the
following Hamiltonian system

(2.1) HVI(b; t, q, p) :
{
dq/dt = (∂H/∂p)
(dp/dt) = −(∂H/∂q)

with the Hamiltonian

H := HVI(b; t, q) =
1

t(t− 1)
[q(q − 1)(q − t)p2 − {(b1 + b2)(q − 1)(q − t)

+ (b1 − b2)q(q − t) + (b3 + b4)q(q − 1)}p
+ (b1 + b3)(b1 + b4)(q − t)],

where b = (b1, b2, b3, b4) belongs to the parameters space C4; the
parameters (α, β, γ, δ) and (b1, b2, b3, b4) are connected by the following
relations

(2.2)
α =

1
2

(b3 − b4)2, β = −1
2

(b1 + b2)2,

γ =
1
2

(b1 − b2)2, δ = −1
2

(b3 − b4)(b3 + b4 − 2).
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Proposition 2.1. [3]. If (q(t), p(t)) is a solution to the Hamiltonian
system (2.1), the function

h(b, t) = t(t− 1)HVI(b; t, q(t), p(t)) + e2(b1, b3, b4)

− 1
2
e2(b1, b2, b3, b4)

satisfies the equation EVI(b):

(2.3)
dh

dt

[
t(t− 1)
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dt2

]2

+
[
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2h− (2t− 1)

dh
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}
+ b1b2b3b4

]

=
4∏

k=1

(
dh

dt
+ b2k

)
.

Conversely, for a solution h := h(b, t) to the equation EVI(b) such that
d2h/dt2 �= 0), there exists a solution (q(t), p(t)), to the Hamiltonian
system (2.1). Furthermore, the function q := q(t) is a solution to the
Painlevé equation (1.1), whose parameters (α, β, γ, δ) are determined
by the relations (2.2).

We will call the equation EVI(b), see equation (0.3), by the Painlevé-
Okamoto equation.

2.2 Bäcklund transformation. Consider the following linear transfor-
mation of the parameters space C4:

s1 := (b1, b2, b3, b4) 	−→ (b2, b1, b3, b4),
s2 := (b1, b2, b3, b4) 	−→ (b1, b3, b2, b4),
s3 := (b1, b2, b3, b4) 	−→ (b1, b2, b4, b3),
s0 := (b1, b2, b3, b4) 	−→ (b1, b2,−b3,−b4),
l3 := (b1, b2, b3, b4) 	−→ (b1, b2, b3 + 1, b4).

Denote by W = 〈s0, s1, s2, s3, l3〉 the subgroup of AutC4 generated by
these transformations. It is not difficult to see, that W ∼= W (D(1)

4 ),
i.e., W is isomorphic to the affine Weyl group of type D(1)

4 .

Proposition 2.2. ([3]. For each w ∈ W , a birational transformation

Lw : {solutions to HVI(b)} 	−→ {solutions to HVI(w(b))}.
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The birational transformations Lw, w ∈ W (D(1)
4 ) are called by Bäcklund

transformations associated with the equation Painlevé VI.

2.3 τ -function. Let (q(t), p(t)) be a solution to the Hamiltonian sys-
tem (2.1), the τ -function τ (t) corresponding to the solution (q(t), p(t))
is defined by the following equation

d

dt
log τ (t) = HVI(b; t, q(t), p(t));

in other words,

τ (t) = (constant) exp
( ∫

HVI(b; t, q(t), p(t)) dt
)

2.4 Umemura polynomials. Suppose that b3 = −1/2, b4 = 0. Then it
is well known and goes back to Umemura’s paper [5] that the pair

(q0, p0) =
(

(b1 + b2)2 − (b21 − b22)
√
t(1 − t)

(b1 − b2)2 + 4b1b2t
,
b1q0 − 1

2 (b1 + b2)
q0(q0 − 1)

)

defines a solution to the Hamiltonian system (2.1) with parameters
b = (b1, b2,−1/2, 0). Note, see, e.g., [5]

H0 = HVI

(
(b1, b2,−1

2
, 0); t, q0(t), p0(t)

)

=
1

t(t− 1)

{
b1(b1 − 1)(1 − 2t) + 2b21

√
t(t− 1)

+ 2b2(b1 − t) + b2(b2 − 1)(1 − 2t) − 2b22
√
t(t− 1)

}
,

and

τ0(t) = exp
{ ∫

H0(t) dt
}
.

To introduce Umemura’s polynomials, let (qm, pm) be a solution to the
Hamiltonian system HVI(b1, b2,−(1/2)+m, 0) = HV I(lm3 (b1, b2,−(1/2), 0)
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obtained from the solution (q0, p0) by applying m times the Bäcklund
transformation l3. Consider the corresponding τ -function τm:

d

dt
log τm = HVI

((
b1, b2,−1

2
+ m, 0

)
; t, qm(t), pm(t)

)
.

It follows from Proposition 2.1, see e.g. [3, 5], that the τ -functions
τn := τn(t) satisfy the Toda equation

(2.4)
τn−1τn+1

τ2
n

=
d

dt

(
t(t− 1)

d

dt
(log τn)

)
+ (b1 + b2 +n)(b3 + b4 +n).

Following Umemura [5], define a family of functions Tn(t), n =
0, 1, 2, . . . , by

τn(t) = Tn(t) exp
( ∫ (

H0(t) − n(b1t− (1/2)(b1 + b2))
t(t− 1)

)
dt

)
.

Proposition 2.3 (Umemura [5]). Tn(t) is a polynomial in the
variable v :=

√
t/(t− 1) +

√
(t− 1)/t with rational coefficients.

For example, T0 = 1, T1 = 1, T2 = (1/2)(−4b21 +1)(2−v)/4+(−4b22+
1)(2 + v)/4). It follows from the Toda equation (2.4) that polynomials
Tn := Tn(v) satisfy the following recurrence relation [5]:

(2.5)

Tn−1Tn+1 =
{

1
4

(−2b21 − 2b22 + (b21 − b22)v) +
(
n− 1

2

)2}
T 2

n

+
1
4

(v2 − 4)2
{
Tn

d2Tn

dv2
−

(
dTn

dv

)2}

+
1
4

(v2 − 4)vTn
dTn

dv

with initial conditions T0 = T1 = 1.

Definition 2.4. Polynomials Un := Un(z, w, b1, b2) := 2n(n−1)Tn(v)
where z = (2−v)/4, w = (2+v)/4, are called by Umemura polynomials.
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The formula (2.6) below was stated as a conjecture by Okada, Noumi,
Okamoto and Umemura [2] and has been proved recently by Taneda
and Kirillov
(2.6)

2n(n−1)Tn(v) := Un(z, w, b1, b2) =
∑

I⊂[n−1]

dn(I)cId[n−1]\Iz
|I|w|Ic|,

where

(i) [n − 1] = {1, 2, . . . , n − 1}; for any subset I = {i1 > i2 >

· · · > ip} ⊂ [n − 1], dn(I) = dimGL(n)
λ(I) stands for the dimension

of irreducible representation of the general linear group GL (n) cor-
responding to the highest weight λ(I) with the Frobenius symbol
λ(I) = (i1, i2, . . . , ip|i1 − 1, i2 − 1, . . . , ip − 1);

(ii) c = −4b21, d = −4b22, z = (2 − v)/4, w = (2 + v)/4;

(iii) c̄ = c + (2k − 1)2, d̄ = d + (2k − 1)2, ck = c̄1c̄2 · · · c̄k, dk =
d̄1d̄2 · · · d̄k;

(iv) |I| = i1 + i2 + · · · + ip.

Recall that Frobenius’s symbol (a1, a2, . . . , ap|b1, b2, . . . , bp) denotes
the partition which corresponds to the following diagram

. . .

a1

a2

b2b1

3. Generalized Umemura polynomials. Let n,m, k be fixed
nonnegative integers, k ≤ n. Denote by [n;m] the set of integers
{1, 2, . . . , n, n + 2, n + 4, . . . , n + 2m}. Let I be a subset of the set
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[n;m]. Follow [6], define the numbers

(3.1) dn,m(I) =
∏
i∈I

j∈[n;m]\I

∣∣∣∣ i + j

i− j

∣∣∣∣, c(I) =
∑
i∈I
i>n

i− n

2
.

It has been shown in [6] that, in fact, dn,m(I) are integers for any subset
I ⊂ [n;m]. Now we are going to introduce the generalized Umemura
polynomials

U (k)
n,m := U (k)

n,m(z, w; a, b)

=
∑

[k]⊂I⊂[n;m]

∏
i∈I\[k]
j∈[k]

(
i + j

i− j

)
dn,m(I)(−1)c(I)e

(n,m,k)
I (z, w),

where

(i) [k] stands for the set {1, 2, . . . , k};

(ii) āk = a + (k − 1)2, b̄k = b + (k − 1)2 and a2k = ā2ā4 · · · ā2k,
a2k+1 = ā1ā3 · · · ā2k+1; b2k = b̄2b̄4 · · · b̄2k, b2k+1 = b̄1b̄3 · · · b̄2k+1;

(iii) for any subset I ⊂ [n;m], we set aI =
∏

i∈I ai, bI =
∏

i∈I bi;

(iv) e(n,m,k)
I (z, w) = aI\[k]b[n,m]\Iz

|I\[k]|w|[n;m]\I|.

Note that the polynomial U (0)
0,m coincides with Umemura’s polynomial

Tm(z2, w2; a, b). The formula for generalized Umemura polynomials
stated below follows from the Cauchy identity, and in some particular
case was used by van Diejen and Kirillov [6] in their study of q-spherical
functions.

Lemma 3.1. The generalized Umemura polynomials U (k)
n,m(a, b; z, w)

admit the following determinantal expression

U (k)
n,m(a, b; z, w) = det

∣∣∣∣aiw
i

∏
s∈[k]

(
i + s

i− s

)
δi,j

+ (−1)c(i) 2i
i + j

∏
s∈[n,m],

s �=i

∣∣∣∣ i + s

i− s

∣∣∣∣bizi

∣∣∣∣
i,j∈[n;m]\[k]

,
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where c(i) = i if i ≤ n and c(i) = (i− n)/2 if i > n.

In the particular case k = 0, n = 0, this formula gives a determinantal
representation for Umemura’s polynomials and has many applications.

4. Main result. Let us introduce notation Un,m := U
(0)
n,m(z, w; a, b).

The main result of our paper describes a recurrence relation between
polynomials Un,m.

Theorem 4.1.

(4.1)

Un,m−1Un,m+1 = (−ān+2m+2z
2 + b̄n+2m+2w

2)U2
n,m

+ 8z2w2D2
xUn,m ◦ Un,m

− 4
(n + 2m + 1)2

ab(a− b)z2w2(U (1)
n,m)2,

where for any two functions f = f(x) and g = g(x)

D2
xf ◦ g = f ′′g − 2f ′g′ + fg′′

denotes the second Hirota derivative and ′ = (d/dx); here variables
z, w and x are connected by the relations z = (1/2)(ex + e−x − 2)1/2,
w = (1/2)(ex + e−x + 2)1/2.

Below we give a sketch of our proof of Theorem 4.1. Detailed
exposition will appear elsewhere. The main step of the proof is to
establish the following algebraic identity which appears to have an
independent interest.

Lemma 4.2. For any two subsets I, J of the set [n;m], we have

∏
λ∈I

(
x + 2 + λ

x + 2 − λ

) ∏
λ∈J

(
x− λ

x + λ

)
+

∏
λ∈I

(
x− λ

x + λ

) ∏
λ∈I

(
x + 2 + λ

x + 2 − λ

)

= 2 +
∑

λ∈I∪J

bI,J
λ

(x + 2 − λ)(x+ λ)
,

where bI,J
λ are some constants, depending on λ, I and J , which may be

computed explicitly.
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One can prove this lemma by using the residue theorem.

Lemma 4.3. For any two subsets I, J of the set [n;m], we have

∑
λ∈I∪J

bI,J
λ = 4(|I| − |J |)2 − 4(|I| + |J |).

This lemma follows from Lemma 4.2.

Lemma 4.4. For an element λ ∈ I ∩J , we have bI,J
λ = 0 if and only

if λ − 2 ∈ I ∩ J . For an element λ ∈ I \ (I ∩ J), we have bI,J
λ = 0 if

and only if λ− 2 ∈ J .

This lemma follows and Lemma 4.4 can be deduced by direct calcu-
lations.

Remarks 1. If n = 0, then U0,m = Um+1(z2, w2; a, b) coincides with
the Umemura polynomial and U

(1)
0,m = 0. In this case the recurrence

relation (4.1) has been used by Taneda in his proof of Okada-Noumi-
Okamoto-Umemura’s conjecture (2.6).

2. Note that U0,m = U
(1)
2,m−1/(2m + 1), and more generally U

(k)
k,m =

U
(k+1)
k+2,m−1(2k + 1)!!(2m − 1)!!/(2k + 2m + 1)!!, where (2n + 1)!! =

1 · 3 · 5 · · · (2n + 1).

3. “Unwanted term” in (4.1) which contains (U (1)
n,m)2 vanishes if either

a = 0 or b = 0 or a = b.

In the case a = b and k = 0 the expression e
(n,m,k)
I (z, w) doesn’t depend

on a subset I ⊂ [n;m] and is equal to a[n;m]z
|I|w|[n;m]\I|. Hence, in

this case
(4.2)

U (0)
n;m(z, w; a, a) = a[n;m]

∑
I⊂[n;m]

dn,m(I)(−1)c(I)z|I|w|[n;m]\I|

= a[n;m](z + w)

(
n + m + 1

2

)
(z − w)

(
m + 1

2

)
.
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Recall that āi = a + (i − 1)2, a2i = ā2ā4 · · · ā2i, a2i+1 = ā1ā3 · · · ā2i+1

and a[n,m] =
∏

i∈[n;m] ai. The last equality in (4.2) has been proved for
the first time by van Diejen and Kirillov [6]. On the other hand, we
can show that the polynomials

Xn,m(z, w; a) = a[n;m](z + w)

(
n + m + 1

2

)
(z − w)

(
m + 1

2

)

also satisfy the recurrence relation (4.1) and coincide with polynomials
U

(0)
n,m(z, w; a, a) if m = 0. From this observation we can deduce the

equality Xn,m(z, w; a) = U
(0)
n,m(z, w; a, a), which is equivalent to the

main identity from [6]. Another case when “unwanted term” in (4.1)
vanishes is the case when either a = 0 or b = 0. In this case we have

Corollary 4.5. Assume that b = 0. Then the polynomial
Un,m(z, w; a, 0) defines a solution to the equation Painlevé VI.

Finally we compare polynomials Un,m(z, w; a, 0) and Um(z, w;α, β).
For this goal let us consider functions

h0 := h0(t) = {b21(
√
t−√

t− 1)2 + b22(
√
t +

√
t + 1)2}/4,

and

hn,m := hn,m(b1, b2) = t(t− 1) log(Un,m)′ − h0.

Proposition 4.6. (i) h0,m satisfies the Painlevé-Okamoto equation
EVI(b1, b2,m + 1/2, 0);

(ii) h1,m = −(2t − 1)(m + 1)2/2 satisfies the equation EVI(0,m +
1, b3, b4);

(iii) hn,m(0, b2) satisfies the equation EVI(0, b2, (n/2), (n+2m+1)/2).

Proposition 4.6 follows from Lemma 4.7 and Lemma 4.8 below. Let
us define Un,m(b1, b2) := Un,m(z, w;−4b21,−4b22), then
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Lemma 4.7.

(4.3) Un,m(0, b2)

=



b[n;m]+oddw

(n/2)2U0,m+(n/2)((n/2), b2) if n is even

b[n;m]oddw
n+2m+1

2 )2U0, n−1
2

(m + n+1
2 , b2) if n is odd,

where [n;m]odd = {i ∈ [n;m] | i is odd}.

From Lemma 4.7 we can deduce the following

Lemma 4.8.

hn,m(0, b2) =

{
h0,m+ n

2
(n

2 , b2) if n is even,

h0, n−1
2

(m + n+1
2 , b2) if n is odd.

It follows from Lemma 4.7, (4.3) and Theorem 4.1 that Umemura’s
polynomials Um(b1, b2) satisfy a new recurrence relation with respect
to the first argument b1.

Theorem 4.9.

Um(b1 − 1, b2)Um(b1 + 1, b2)(b21 − b22)
= (b21 − b22)U2

m(b1, b2) + 2z2D2
xUm(b1, b2) ◦ Um(b1, b2).

Recall that D2
x denotes the second Hirota derivative.

5. Conjecture. We define qm := qm(t) by

qm − t = 4U2
m

{(
m +

1
2

)
t(t− 1)

d

dt
logUm+1

−
(
m +

3
2

)
t(t− 1)

d

dt
logUm

− 1
2
b1b2 +

1
4

(
b21
z

w
+ b22

w

z

)}/
(
Um+1Um−1 − (2m + 1)2U2

m

)
.
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One can check that qm is a solution to both equations
PVI(b1, b2,m+ 1

2 , 0) and PVI(b1, b2, 0,m+ 1
2 ). It follows from Okamoto’s

theory [3] that the function

(5.1)
h̄1,m = t(t− 1)

d

dt
logUm+1 − 1

4

(
b21
z

w
+ b22

w

z

)

+
(
m +

1
2

)
qm − 1

2

(
m +

1
2

)
is also a solution to EVI(b1, b2, n+ 1

2 , 1). Based on the latter expression
for the function h̄1,m, and using Lemmas 5 and 6, we come to the
following

Conjecture 5.1. If b1 = 0, then we have

Um+1Um−1 − (2m + 1)2U2
m =

1
4b22

U2
2,m−1,

where Um := Um(0, b2) is a special case of Umemura’s polynomial, and
U2,m−1 = U2,m−1(0, b2).
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