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PARABOLIC WAVELET TRANSFORMS AND
LEBESGUE SPACES OF PARABOLIC POTENTIALS

ILHAM A. ALIEV AND BORIS RUBIN

ABSTRACT. Parabolic wavelet transforms associated with
heat operators —D,, + 8/0t and I — Dy + 9/9; in R*T1 are
introduced. A Calderén-type reproducing formula for func-
tions f € LP(R"™*1) is proven. By making use of these trans-
forms, new explicit inversion formulas for the Jones-Sampson
parabolic potentials are obtained, and characterization of the
corresponding anisotropic Lebesgue spaces is given.

1. Introduction and main results. Continuous wavelet trans-
forms

1 [z —yl

wiea) = o [ s a
a rR” a

x e R™ a>0, fRn w(]y|) dy = 0, play an important role in analysis

and have many applications, (see, e.g., [7-9, 13, 15, 16, 22, 23, 26|

and references therein). Due to the formula

(1.1) /OO Wf(x,a)% = c(=D)*2f(z), c=-c(a,w), a€C,
0

which gives an integral representation of powers of the Laplacian
D = §%/0x3 + - -+ 0?/0z2, the wavelet transforms W f are applicable
to a variety of problems in PDE, integral geometry and function theory
13, 15, 16, 22, 24]. The formula (1.1) can be justified in the
framework of the LP-theory [22].

In the present paper, we introduce anisotropic analogues of W f which
enable one to obtain wavelet-type representations, like (1.1), of powers
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392 I.A. ALIEV AND B. RUBIN

of the heat operators —D, + /dt, I — D, + 9/0t, x € R", t € R%.
The following remark illuminates difficulties related to this problem. It
would be natural to define the parabolic wavelet transform by

(12 Anfatia)= [ fla=Vapt—ar)dn(y.r)
where m is a wavelet measure. In contrast to the standard wavelet
transform W f, for which various inversion procedures are known [26],
it is not clear how to invert (1.2) for arbitrary m. On the Fourier side
(in R™*1), the multiplier of A,, is M (y/a&, ar), where M = F[m] is the
Fourier transform of m so that the Calderén formula reads

| v an® <1
0 a

for (&, 7) # 0. This equality is satisfied if M is parabolically radial, i.e.,
constant on spheres for a parabolic norm, e.g., M = M(4/[¢|* + 72).
Such an approach is classical, (see the papers by Calderén and Torchin-
sky, Fabes and Rivere, Hofmann and others), but it does not lead to
representation of powers of the heat operator —D, + 9/0t because its
symbol, |£|? + iT, is not constant on parabolic spheres.

We chose m in a different way so that M = M(|¢|?> +47) and intro-
duced parabolic wavelet transforms associated with the heat operators
-D, +9/ot, I — D, +9/0t, x € R", t € R, Such a choice of m
enables one to obtain the relevant integral representations of the (1.1)
type and to justify them in the framework of LP-spaces. In particular,
we obtain new explicit inversion formulas for parabolic potentials H® f
and H®f defined in the Fourier terms by

(1.3) FIHf)(&,7) = ([¢* + im) /2 F[f](&, 7),
(1.4) FIH® (&, 7) = (1 + &> +im) " *2F[f)(&, 7).

These potentials were introduced by B.F. Jones, Jr. [14] and C.H.
Sampson [28] and studied in [4-6, 10, 11, 17-20]. We also obtain a
parabolic analog of Calderén’s reproducing formula for LP-functions.
As an application of our results, new characterization of parabolic
Sobolev spaces is given. These spaces were introduced by Sampson
[28], studied by Bagby [4] and Gopala Rao [10, 11] and generalized
by Nogin and Rubin [20].
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One should mention the papers [1, 2] by Aliev devoted to parabolic
potentials with the generalized translation. The techniques developed
below can be applied to this class of potentials [3].

Main results. Let R"*! be the (n+ 1)-dimensional Euclidean space
of points (z,t), * = (z1, - ,2,) € R", t € R'. Given a finite Borel
measure m = m(x,t) on R, we define an anisotropic dilation M /5.a
of m by

(1.5) /Rn+1 w(z,t)dm s ,(z,t) = / w(vaz,at)dm(x,t),

Rn+1

a>0,w € Cy= Co(R"1), the space of continuous functions vanishing
at infinity. Then (1.2) can be written as a convolution:

(1.6) A f(z,t;0) = (f xm 50) (@, 1).

In order to be consistent with heat operators and the relevant parabolic
potentials, we choose m in a special way as follows: Let

(1.7) W (z,t) = (4mt) "2 exp(—|z|?/4t), = eR™ t>0,

be the Gauss-Weierstrass kernel possessing the following properties
[29]:

1) W(z,t)de =1,
Rﬂ,

(1.8) 2) o Wy, t)W(x —y,7)dy = W(x,t + 7);

3 FOVC0IE) = [ e W) do =

Let 1 be a finite Borel measure supported by R = [0, 00) such that
p(RY) =0 and p({0}) = 0. We call p a wavelet measure and set
(1.9) dm(z,t) = W(z,t) dedu(t),

W (z,t) being extended to ¢ < 0 by zero. Clearly, m is finite and
m(R"1) = 0.
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Definition 1.1. The wavelet transform (1.6) with m defined by (1.9)
will be called a parabolic wavelet transform, associated with the heat
operator —D, + 0/0t and denoted by P, f(z,t;a). Thus,

(1.10)
Pufatia) = [ o= vyt —ar) Wiy, ) dydu(r)

(1.11) :/Rn o flx —+arz,t —ar)W(z,1)dzdu(r).

If i(z) = [;° e * du(t) is the Laplace transformation of y, then (1.8)
yields

M) = Fiml(e.r)= [ e dmie ) = (€ + i),

which motivates Definition 1.1. Given two measures u and v on R}r,
we have

(1.12) Py f(z,t;a) = P[P, f(-,-;a)](x,t;a).

Let f € LP = LP(R™™!). For p = 2, the following statement
contains an analogue of Calderén’s formula in terms of the Laplace
transformation of p.

Theorem A. Let p be a wavelet measure such that the integral
Cp = fooo i(n) dn/n converges as an improper one. Then

2
(ern) r P,uf(xa t; a)
e—0 a

p—oo V€

da = ¢, f(z,1).

In order to state an LP-analogue of this theorem, we give the following

Definition 1.2. A wavelet measure p is called admissible if

def u([0,1))

(1.13) k(t) :

€ L'(0,00).
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Theorem B. Let u be an admissible measure, and let

(1.14) ko = /000 k(t)dt, see (1.13).

(i) If feLP, 1 <p< oo, then
o da .. B
(1.15) /0 Puf(z,t;a); = lim () =kof(x,t)

(L)
where lim = lim .

(ii) If f € Co, then (1.15) holds with the limit interpreted in the
Sup(mvt)eRn+1 -norm.

(i) If f € LP, 1 < p < oo and k(t) has a decreasing integrable
magjorant, then (1.15) holds almost everywhere on R" 1.

Due to (1.12), Theorems A and B can be easily reformulated in terms
of the two measures as it is usually done in the wavelet literature. These
measures are called an analyzing measure and a reconstructing measure,
respectively.

As in [23, page 180] and [22, Section 12], a measure p is admissible
if w(R1) =0 and one of the following conditions is satisfied:

(1.16) / |log t|d|pu(t) < oo
0
or
(1.17) du(t) = g(t)dt, g€ H' (the real Hardy space on R').

Furthermore,

(1.18) ko — { Jo log(1/t) dp(t) in the case (a),

(m/2) [ Hg(t)sgntdt in the case (b),

Hg(t) = pvr=t [ g(r)(t — 7)~*dr(€ L'(0,00)) being the Hilbert
transform of g.
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Here and on, the notation like fab f(t) du(t) designates f[a p f(t) du(t).

Remark 1.3. Wavelet people are prone to think of the Gaussian as
a wavelet function (after differentiation). As one could notice, in our
case the role of the Gaussian is completely different. Note also that the
Gaussian represents an inalienable part of the kernel of the parabolic
potentials (1.3) and (1.4), which can be written as integral operators

(1.19)
o _ 1 - oyt
H f(x,t)_@/rwx(om)r "Wy, r)f(x —y, t —7)dydr
= (ha *f)(:z:,t),
ha(z,t) = F(1g>ti/2—1W(x,t);
2
(1.20)

1 o
HOf () = — = / P8 e W (g 7)ot — 7) dy dr
L'(5) Jrrx(0,00)

= (ha * f)(z,1),
ho(z,t) = e the(z,t).

It is worth noting that numerous constructions of continuous wavelet
transforms can be built without any connection with the Fourier
analysis by starting out from the corresponding analytic families of
“fractional integrals” (this approach was developed in [22] and [24]).
Parabolic potentials (1.19) and (1.20) can be included in this scheme.

Remark 1.4. We do not know whether the statement (iii) of The-
orem B holds for p = 1 because we cannot assert the validity of the
weak estimate for the relevant mixed partial maximal functions, (see
the proof of Theorem B in Section 3). These maximal functions are
inherent in the anisotropic case and represent a more difficult object
than the usual Hardy-Littlewood maximal functions associated with
classical wavelet transforms.

The following known theorem characterizes the action of parabolic
potentials on LP-functions.



PARABOLIC WAVELET TRANSFORMS 397

Theorem 1.5 [4,10]. 1. Let f € LP, 1 <p < o0, 0 < a < (n+2)/p,
g=(n+2—ap)~t(n+2)p.

(a) The integral H* f(x,t) converges absolutely for almost all (x,t) €
R

(b) For p > 1, the operator H® is bounded from LP into L.

(¢c) For p=1, H* is an operator of the weak (1,q) type

()b g > 0 < (A0 )

2. The operator H® is bounded on LP for all « >0, 1 < p < .

Remark 1.6. The proof of the weak estimate (c), sketched very briefly
in [10], seems to be wrong. A detailed proof of this result in a more
general setting can be found in [3].

Remark 1.7. If « > (n + 2)/p, the integral (1.19) can be divergent
for f € LP. In this case we interpret H*f as a distribution defined by
duality (H* f,w) = (f, H*w), H*w = UH*Uw, Uw(z,t) = w(—z, —t).
Here the test function w belongs to the space ®y = ®o(R"*1) of
Schwartz functions orthogonal to all polynomials [22, page 19|, and
the abbreviation (f, g) is used for [ fg. Since F[H%w](¢,7) = (|€* —

iT) "2 Fw](&,7), H® is an automorphism of & for any a.

A straightforward calculation enables us to represent (1.19) and (1.20)
via the relevant wavelet transforms. Namely, for Rea > 0,

N 3 oo da
H f(xat) = Ca,h/ le(x?t; a)al——a/Q’
(1.21) ’

o =T(0/2) /0 Tl du(r),

provided that [ 7 Re/2d|u|(1) < oo and ca, # 0, cf, (1.1).
Similarly,

o [ da
(122) H f(l',t) = CQ’LA P#f(x,t,a)m
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where
(1.23)

P.f(z, t;a) = / flx —Vay,t —ar)W(y,7)e” " dy du(r)

R"xRL

= / flz —Varz,t —ar)W(z,1)e™ " dz du(r),
R"xRY

will be called a weighted parabolic wavelet transform associated with the

heat operator I — D, + 0/0;.

The idea to introduce weighted wavelet transforms associated with

inhomogeneous differential operators and generalizing the notion of

weighted finite difference [21, 22] seems to be new.

The formula (1.12) remains true if P is substituted for P, and
analogues of Theorems A and B also hold for the weighted transform
(1.23).

In view of (1.3) and (1.4), explicit inverses of H* and H* can be
obtained from (1.21) and (1.22) if one replaces formally « by —ca. This
observation leads to the following;:

Theorem C. Let u be a finite Borel measure on [0, 00], such that
(1.24)
0 .
/ tVdu(t) =0, Vj=0,1,---[a/2] (the integral part of a/2);
0
(1.25)
o0
/ tPd|u|(t) < oo for some B> /2.
0

Suppose that p = H*f, f € LP, 1 <p<oo, 0 < a < (n+2)/p and
P,y is the wavelet transform defined by (1.11). Then

oo da ) oo
120) [ Rteno gz =tin [ ) = doyfa)

N
605

L(—a/2) [§5 /2 du(t) if /2 ¢ N,

(127) da”u = { ((_1)1+(y/2/(a/2)|) fOOO ta/Q IOgth(t) Zf 04/2 €N.
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The limit in (1.26) is interpreted in the LP-norm for 1 < p < oo and
almost everywhere on R for 1 < p < oc.

The same statement holds for all @« > 0 and 1 < p < oo (L is
identified with Cj), provided that H* and P, are replaced by H® and
P, (see (1.23)), respectively.

Our next result concerns application of parabolic wavelet transforms
to characterization of anisotropic spaces L . (R™*1) of parabolic po-
tentials that were introduced and studied in [20]. We recall that, given
a>0,1<p<oo,1<r< oo, the space LS, = L, (R"!) is defined
by

(1.28) Ly, ={f:Ifllcg, = IFl +IETHEP +in)2F ], < 00},

where the Fourier transform F' is understood in the sense of ®(-
distributions, (see Remark 1.7). The spaces (1.28) generalize the scale
LP = H*(LP) of parabolic Bessel potentials studied in [4, 28] and
coincide with them for » = p. In comparison with £2, the spaces (1.28)
have a number of important additional features, (see [20] for details).

Theorem D. Leta >0, 1 <p< oo, 1 <r <oo. Then
o - P,f(z,t;a)
(1.29) Epm:{feL :supH/ — iraiz da p<oo}

e>0

for any u satisfying conditions of Theorem C.

Ezample 1.8. Let
1
(1.30) p=>y ( > DES,, 1> )2,
k=0
O = O (t) being the unit mass at the point ¢ = k. By (1.11),
l
Puf(z,t;a) = ( ! ) (=% [ f(s — Vakz,t — ka)W(z,1)dz
k=0 K R7

- / DLl )W (y.a) dy,
Rn
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where D!, , f(x,t) = 22:0 (é) (=1)* f(x—+/'ky, t—ka) is an anisotropic
finite difference of f. Furthermore,

* Pfletia) DL, f(x,1)
/o PSRV d“‘/RnX(ooo)w—a/zW(yv“)dyd&

Hypersingular integrals of this form were introduced in [17-20]. As in
[22, Section 17.4], it is not difficult to show that the measure (1.30)
satisfies (1.24), (1.25) and

(1 — ¢ty
dop = /0 S di 4o,

In Sections 2, 3, 4 and 5 we prove Theorems A, B, C and D, respec-
tively. Section 6 contains concluding remarks and another Theorem E
characterizing the range H*(LP).

2. Proof of Theorem A. Denote
L da
(2.1) I ,(p, f) = Pﬂf(x,t;a)?, 0<e<p<oo,

and assume first that f € L' N L?. Then I ,(u, f) € L' N L? and
F[IE,p(Maf)] = Ks,pfa f= F[f]v where for ‘£| 7£ 0,

Repfer) = [HAELET) gy (KD g,

c a

| being the segment in the half-plane Rez > 0 connecting the point
e(|¢]? +i7) and p(|¢|> + iT). Denote [£]? + it = ret?, 0 € (—7/2,7/2).
By the Cauchy theorem, K. ,(£,7) = mé?,%({, )+ mg;(ﬁ, T), where

(1) P p(n) @) N

ms,p(ga’r) = T dn, ms,p(ga T) =1 o [:u‘(pe ) - /L({f@ )] do.
ET

Since the integral ¢, = [;° fu(n)dn/n is finite, the function ¥(t) =

fg f(n) dn/n is continuous on [0, co]. It follows that there is a constant

A > 0 for which [m{)(&,7)| < Afor all p> ¢ > 0 and (£, 7) € R+,
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Furthermore, for Rez > 0, we have |fi(z)| < |p|/(R}), and therefore
Im) (&, 7)| < m|u|(RL). By taking into account that lim, o fi(re’?) =
Jo° dp(t) = 0 and lim, o fi(re'?) = 0 for ¢ € (—7/2,7/2), due to the
Lebesgue theorem on dominated convergence we obtain

Hep (e, ) = cuf 2 = ml) +m) = cu) fll2 — 0

as ¢ — 0 and p — oo. The result for arbitrary f € L? then follows in
a standard way. |

An analogue of Theorem A for the inhomogeneous wavelet transform
(1.23) has the same proof with |¢|? replaced by 1 + |¢]2.

3. Proof of Theorem B. The integral (2.1) can be written as

(31) Ie,p(/h f) :f*KE_f*Km
(3.2) K. (x,t) = e "W (z, t)k(t/e),

k(t) being the function (1.13), extended by 0 to ¢ < 0. Indeed, by
changing the order of integration and passing to new variables, we get

Lot = [~ [T C) Y

T

b Z\/_’T >
8 R ( ! ) (\/5’
b/e

g
:/0 Tl f(x—z,t—b)W(z,b)dz/ du(r),

b/p
and (3.1) follows. If u is admissible, i.e., k(t) € L*(0, 00), then
(f * KE)(xvt) - kof(l‘,t)
= /0 k(T) dT/ i [f(x — 2T, t —eT) — f(x,t)]W(2,1)dz,

and therefore f * K. — kof in the LP-norm (or in the sup-norm for
f € Cp). Furthermore, if k(t) € L'(0,00), then

(33)  lm Kl =0, Ve PR, 1<p <o,
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(L is identified with Cp). Indeed,
(3.4)

<l = || [ ke [ @ g o

IN

/ IH f(x—y,t—pT)W(y,pT)dyH pdT‘
0 R" Lz

| k@i |,

Ly

IN

where f(t) = ||f(-,t)|l, € LP(RY). The expression (3.4) tends to 0 as
p — 00, use, e.g., Theorem 1.15 from [22, page 3]. This completes the
proof of (i) and (ii).

The validity of (iii) follows in a standard way [29] from the maximal
estimate ||supeso|f+Kelllp < c||fllp- The latter is a consequence of the
LP-boundedness of the “partial” Hardy-Littlewood maximal functions

flo. t) = )| d
f(z,t) §gg|3xr|/ t)| dy,

B(x,
Fan=sw [
s>0 &S |[t—7|<s

B(z,r) ={y € R" : |z — y| < r} due to the following estimates:

(K0l < [ WOI| [ sl = vt = or)Wgupr) dyar

<[ e

<e / k() (.t — pr)dr < erf* (2, 1),
0

{SUP/ [f(z —y,t = pr)[W(y,s) dy] dr
s>0 n
c and ¢ being some constants independent of f. ]

The proof of the analog of Theorem B for weighted wavelet transforms
(1.23) follows the same lines and is based on the equality

(3.5) /Pfxta)da—f K’E—f*KP,
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K.(z,t) = e e 'W(x,t)k(t/e), similarly for K,, cf. (3.2). Slight
additional technicalities related to the extra factor e~! are left to the
reader.

4. Proof of Theorem C. Denote hg/Q(x, t) = a®? W (x, t)(Igf,u) X
(t/a), where

a/ _ 1 ‘ a/2—1
T30 = Fa7g / (t— )2 dpu(r)

is the Riemann-Liouville fractional integral of p. We first show that
(4.1) P H® f(x,t;a) = (f * h2/?)(z, ).

Indeed, by (1.11) and (1.19),

(Pt o) = [ du(e) [ () VT - )W ) d

1 [ oy
= T%)/o du(r) - W(z,1) dz/a (Z —ar)>""dZ

T

X fla =&t =)W (E —Varz, & —ar)d

n

—
Y

= 59) /RW flx— ¢t —2Z)d¢dZ

2

o0

x/o (Z - ar) i 1(E, 2, 7) dulr),
I1(¢,Z,7) = - Wz, )W (& —arz,Z —at)dz = W(&,Z)

for all 7 > 0, @ > 0. This implies (4.1). Furthermore, by (4.1),

o def [ (P x,t;a
b e [,

where, using 3.238 from [12],

velot) = g |t [ (€= a2

='W (x, t)\a(t/e),
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Aa(t) = t_l(Ig‘fHu)(t). By Lemma 1.3 from [25], conditions (1.24)
and (1.25) imply that \,(s) has a decreasing integrable majorant and
fooo Aa(s)ds = dqa,p, (see (1.27)). Hence (1.26) follows by the same
argument as in the proof of Theorem B.

For ¢ = H“ f, the proof is similar and relies on the equality, cf. (3.5),

/ P“ﬁfa;“ da =[x, Oo(a,t) =c e W(z,)\a(t/e). O

Remark 4.1. By keeping track of the proof of (4.2) one can readily
see that the equality

(4.3) TOHOf = fxibe, Yo(x,t) = "W(x, t)\a(t/e),

holds for all a > 0, provided, e.g., f € ®y. This remark will be used in
the next section.

5. Proof of Theorem D. By Theorem 2.1 from [20], Ly =
L™ N HY(LP). In other words, L5, consists of functions f € L", such
that f = H%g for some g € L? in the ®{-sense. Thus, it suffices to
prove the equivalence

P, t
(5.1) Sli%H/ flfama da H <oo<:>f(‘5’) Heg
€

for some g € LP. Assuming the right equality, we first show that
o P, f(z,t;a
(5.2) T f(z,t) :/ —#a1(+0t/2 )da = (Y * g)(z,t)
>4

cf., (4.2) and (4.3). Let w and v € Py be such that u = H%v, (see
Remark 1.7). Then

(T f,u) = (f, UTeUG) = (f, UTSH UG =) (f,Ulpe * U)).

Since . € L', there is a sequence {t.;} C C° that converges to .
as | — oo in the L'-norm. Moreover, 9. ; * Ut € @, for all [, and

[(f, Ulpe x UD]) = {f, Ul + U] < ([ fllrlvllerllpe = eallt — 0
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(1/r+1/r'=1), as | — co. Hence

(T2 f,u)

llir&(f, Ulthe, x UB)]) = llirg@(g, HeU [ x Un))

lim (g, UH ey < Uo]) = lim (g, Ulies = HoUT))

= llir&<gv U[ws,l * UED = (g, U[% * Uﬂ] = <g * wsau>'

We have prove that the functions T¢ f € L" and g * 1. € LP coincide
as the ®f-distributions. By Corollary 1.1 from [20], they coincide
pointwise almost everywhere on R"™! and (5.2) follows. The latter
implies the left inequality in (5.1).

Conversely, if sup,.q|[|[TSf]lp < oo, then the set of functionals
o = (Tof, ), ¢ € LP, 1/p+ 1/p’ = 1 is bounded in (LP)*. Since
the bonded set in the space which is dual to the reflexive Banach space
is compact in the weak* topology, a function ¢ € LP and a sequence
ex — 0 exist such that (TS f,p) — (g, ¢) as e, — 0 for all p € LP. For
this g and any test function w € ¢ we have

(Hog,w) = (g, HOw) = lim (TS £, HOw)
= lim (f,UTSUH%®) = lim (f,UTS H*UD)
E— Ep—

) Jim (f, Ul + UG]) = Jim (f 5 v, 0) = ()

ie., f=H%g in the ®(-sense. This completes the proof. o

6. Concluding remarks. Implementation of wavelet-type integrals
Io° Puf(x,t;a) da/a*™*/? (and their inhomogeneous modifications, in-
cluding P, f) enables one to look with “bird’s-eye view” at the method
of hypersingular integrals having been used in [17-20, 22, 27]. The
essence of the latter is represented by orthogonality relations (1.24).
Without going into details, we note that the equality (4.1) can be ex-
tended to a > (n + 2)/p, thus demonstrating a regularizing effect of
the wavelet transform P,¢ when ¢ = H®f is a ®(-distribution. By
Lemma 4.12 from [22], conditions (1.24) and (1.25) imply he'? e It
so that the righthand side of (4.1) is a usual function belonging to L?
forall 1 <p < .
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By using the argument, which is similar to that in the proofs of
Theorems C and D, one can obtain the following characterization of
potentials H*f, f € LP.

Theorem E. Let a >0, f € LP, p € L"; 1 < p, r < co. Suppose
that the wavelet measure p satisfies the conditions of Theorem C. If
© = Hf pointwise almost everywhere for « < (n+2)/p or o = H*f
in the ®(-sense, then (1.26) holds with the limit interpreted in the LP-
norm. If p > 1 this limit can be understood also in the a.e. sense.
Conversely, if da,,, # 0, see (1.27), and

A Y da
lim mu/E PM@(CITJ,(I)W:f’

then ¢ = H®f in the ®(-sense, or pointwise almost everywhere for
a<(n+2)/p.

A similar statement, which does not involve distributions, also holds
for inhomogeneous potentials H* f.
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