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CYCLOTOMIC SWAN SUBGROUPS
AND IRREGULAR INDICES

DANIEL R. REPLOGLE

ABSTRACT. Let p be an odd prime, ζp a primitive pth root
of unity and Q the field of rational numbers. For K = Q(ζp),
the ring of algebraic integers is Z[ζp]. Let Cm denote the
cyclic group of order m and Cn

m denote the direct sum of n
copies of Cm. Under the assumption p satisfies Vandiever’s
conjecture T (Z[ζp]Cp), the Swan subgroup of the classgroup

Cl (Z[ζp]Cp), is isomorphic to C
((p−3)/2)+s
p where s is the

number of irregular indices of p. Hence the group of realizable

classes contains a subgroup isomorphic to C
((p−3)/2)+s
p .

1. Introduction and T (OK [Cp]). Let OK be the ring of integers
of an algebraic number field K, and let G be a finite group. The
order OK [G] in the group algebra K[G] will be denoted Λ, and the
locally free class group of Λ will be denoted Cl (Λ). There are several
interesting subgroups of Cl (Λ) one studies in relative Galois module
theory. The simplest to describe is the kernel group D(Λ); this is the
subgroup consisting of those classes in Cl (Λ) that become trivial upon
extension of scalars to the maximal OK-order in K[G] containing Λ.
In [14] Ullom studied a subgroup T (Λ), the Swan subgroup of D(Λ),
consisting of classes of Swan modules. Let n be the order of G and
let Σ =

∑
g∈G g. Then for each s ∈ OK so that s and n are relatively

prime, define the Swan module 〈s,Σ〉 by 〈s,Σ〉 = sΛ + ΛΣ. These
Swan modules are rank one locally free Λ-modules and hence determine
classes in Cl (Λ). Let OK = OK/nOK and Im (O∗

K) denote the image
of O∗

K in OK . Let ε : Λ → OK denote the augmentation map. With
this, define Γ = Λ/(Σ) and let ε̄ : Γ → OK be induced from ε. Last,
for any ring S, let S∗ be its group of multiplicative units. The major
result of [8] shows if K[G] satisfies an Eichler condition (see [1] or [8]
and note this holds in particular if G is abelian), there is an exact
Mayer-Veitoris sequence:

O∗
K × Γ∗ h−→ OK

∗ δ−→ D(Λ) −→ D(OK)⊕D(Γ) −→ 0.
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From [8] and [14] we have the following. The map h is given by
(u, v) 	→ ū · ε̄(v)−1, and δ is given by δ(u) = [u,Σ], the class of 〈u,Σ〉.
Hence, T (Λ) is a subgroup of D(Λ) and

(1) T (Λ) ∼= OK
∗
/h(O∗

K × Γ∗).

The last subgroup of Cl (Λ) we consider is the group of realizable
classes. A classical result due to Noether states that L/K is a tame
(i.e., at most tamely ramified) Galois extension of number fields with
Galois group Gal (>L/K) ∼= G if and only if OL is a locally free Λ-
module. Hence, for L/K a tame extension OL determines a “Galois
module class” [OL] in the classgroup Cl (Λ). We shall denote the set
of tame Galois module classes in Cl (Λ) by R(Λ,K) to emphasize the
dependence on the field K. One refers to the elements of R(Λ,K) as
realizable classes. McCulloh shows R(Λ,K) is a subgroup of Cl (Λ) for
all finite abelian G, [7]. For G p-elementary abelian, p prime, he gives
a convenient explicit description of R(Λ,K) in [6].

Of course from an algebraic number theoretic perspective, it is this
last subgroup which is of the most interest. One method of studying
R(Λ,K) comes from the relationship between R(Λ,K), D(Λ) and T (Λ)
from [2, Proposition 4], which we state for the case we will consider.
Let Tw(Λ) denote those classes of T (Λ) which are expressible as wth
powers.

Theorem (cf. [2, Proposition 4]). For G cyclic of order p > 2, p
prime, and K an algebraic number field, let R(Λ,K), T (Λ) and D(Λ)
be as above. Then T (p−1)/2(Λ) ⊆ R(Λ,K) ∩D(Λ).

If we restrict ourselves to when K contains the pth roots of unity and
G cyclic order p, this is in [9] and [10] using [5]. We see by the theorem
of [2] computing T (Λ), or at least achieving a nontrivial lower bound,
allows one to obtain nontrivial lower bounds on R(Λ,K) ∩D(Λ). Let
Q and Z denote the field of rational numbers and the ring of (rational)
integers, respectively. In this article we explicitly compute T (Λ) for
K = Q(ζp) and G ∼= Cp when p satisfies Vandiver’s conjecture, proving
the following result of [9].
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Theorem 1. Let p be an odd prime satisfying Vandiver’s conjecture.
The group T (Z[ζp]Cp) is isomorphic to C((p−3)/2)+s

p where s is the index
of irregularity of the prime p. Hence R(Λ,K) ∩D(Λ) contains such a
subgroup.

This result has been generalized to an analogous result that holds
for all primes p and all OK , K a real subfield of Q(ζp), in [12]. The
proof in [12] uses p-adic L-functions much more extensively and does
not mention a connection to irregular indices. The results in [12] in
fact characterize T (Λ) as a ZpH-module for H the character group of
G for all real subfields of cyclotomic fields of prime conductor. For
other results employing the method of bounding R(Λ,K) ∩ D(Λ) by
bounding T (Λ), see [2] and [4]. The results in [4] compute T (Z[ζp]C2)
in several interesting cases using [3].

Our first proposition describes T (Λ) in terms of ring theoretic in-
formation for the case we are considering. We note this result may be
generalized to all algebraic number fields to give a lower bound on T (Λ)
for G p-elementary abelian ([2, Theorem 5]) and an upper bound on
T (Λ) for G cyclic ([11, Lemma 3.4]). However, even in the case G is
cyclic of prime order these bounds may not be equal. In that regard
especially see [11, Theorem 4.2] where it is shown for K = Q(

√−d),
d > 3, and the rational prime p, in fact prime in OK , that the lower
bound on T (OK [Cp]) is C(p+1)/2 and the upper bound is Cp+1.

Proposition 2 (cf. [12]). Let K = Q(ζp), ζp a primitive pth root of
unity, and let G be a cyclic of order p. Then

T (Λ) ∼= (OK/pOK)∗/Im ((Z/pZ)∗)Im (O∗
K).

Proof. By (1) and the definition of the map h, we have

T (Λ) ∼= OK
∗
/h(O∗

K × Γ∗) ∼= (OK
∗
/Im (O∗

K))/(ε̄(Γ∗)/Im (O∗
K).

By [2, Lemma 6] one has for all γ ∈ Γ∗ that ε̄(γ)p−1 ∈ Im (O∗
K). From

this it follows that

im (h) ⊆ {s ∈ O∗
K : sp−1 ∈ Im (O∗

K)}.
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Since p totally ramifies in K/Q and the index of K/Q is p−1, it follows
that OK

∗
is an abelian group of exponent p(p − 1). As Im ((Z/pZ)∗)

is the p− 1-torsion subgroup of OK
∗
we in fact have

im (h) ⊆ Im ((Z/pZ)∗)Im (O∗
K).

It is well known that for G cyclic T (Z[G]) is trivial (see [14, 2.10] for
example). Thus by extending scalars from Z to OK , we conclude the
Swan class [s,Σ] is trivial whenever s ∈ Z. Thus we have

im (h) = ker(δ) ⊇ Im ((Z/pZ)∗)Im (O∗
K).

This proves the proposition.

We have the following corollary of Proposition 2 and the theorem of
[2].

Corollary 3. For K = Q(ζp) we have T (Z[ζp]Cp) contains a
subgroup isomorphic to Cp−2−k

p for some k such that 1 ≤ k ≤ (p−1)/2.
Therefore, R(Λ,K) ∩D(Λ) contains such a subgroup.

Proof. We show T (Λ) contains such a subgroup using Proposition 2;
the result then follows from the theorem of [2]. As p totally ramifies
Z[ζp]

∗ ∼= Cp−1 × Cp−2
p and by Dirichlet’s unit theorem Z[ζp]∗ ∼=

〈−ζ〉 × 〈ν1〉 × · · · 〈ν(p−3)/2〉 where the ν are a system of fundamental
units and ζ is any primitive pth root of unity. Since ζ is not congruent
to 1 mod p, T (Λ) ∼= Cp−2−k

p where 1 ≤ k ≤ (p− 1)/2.

Notes. (1) Corollary 3 is essentially [10, Proposition 15]. (2) In [10]
this was used to establish that R(Λ,K) ∩D(Λ) is nontrivial for p ≥ 5
for K = Q(ζp), G ∼= Cp.

2. Computing T (Z[ζp]Cp) assuming Vandiver’s conjecture.
To complete the proof of Theorem 1 it suffices to find the exact value
of the constant k in Corollary 3 above. We will show that when p
satisfies Vandiver’s conjecture there is a way of doing this that relates
this constant k to the number of irregular indices of the prime p > 2.
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Specifically, from Proposition 4 below, it immediately follows that
k = ((p − 1)/2) − s where s is the number of irregular indices when
p > 2 satisfies Vandiver’s conjecture. This with the theorem of [2]
proves Theorem 1.

Proposition 4. If p � h+
p , then T (Z[ζp]Cp) ∼= C

((p−3)/2)+s
p where s

is the number of irregular indices of the prime p.

We begin with reviewing relative class numbers and Vandiver’s con-
jecture and setting some more notation. If K is a CM -field (an imagi-
nary quadratic extension of a totally real field) one denotes by K+ its
maximal real subfield. One usually denotes by h(K) the class number of
K and by h+(K) the class number of K+. Vandiver’s conjecture is that
p � h+(Q(ζp)) for all primes p. Vandiver’s conjecture has been verified
for all primes p such that p < 4, 000, 000 [15]. To simplify notation, we
denote h+(Q(ζp)) by h+

p . Let λ = ζp−1, and let E = Z[ζp]∗. For j > 0,
let Uj denote the group of local units congruent to 1 mod λjZ[ζp]. De-
note by Zp the p-adic integers. Let ∆ = Gal (Q(ζp)/Q) and ω : ∆ → Zp

be the Teichmuller character [15, p. 81]. Then εi is the idempotent in
Zp∆ associated to ωi, that is, εi = (1/(p− 1))

∑p−1
s=1 ω

i(s)σ−1
s where σ

is a fixed generator of ∆ and σs = σs.

The proof of Proposition 4 follows in two steps. We first use Propo-
sition 2 to write T (Z[ζp]Cp) as a direct sum of p− 1 indexed quotient
groups (Lemma 5). Lemma 6 shows these quotient groups are isomor-
phic with Cp when the index i, 1 ≤ i ≤ p − 2, is odd or an irregular
index and trivial otherwise. Upon counting the result follows. The
method of proof given here comes in part from suggestions from the
referee which greatly improved the presentation.

Lemma 5. T (Z[ζp]Cp) = ⊕p−2
i=0 εi(U1/Up−1)/β(εi(E/Ep)) where β

is induced from the natural map E → (Z[ζp]/pZ[ζp])∗ and from the
isomorphism U1/Up−1 → (Z[ζp]/pZ[ζp])∗/((Z/pZ)∗).

Proof. The prime p is totally ramified in Q(ζp) of ramification degree
p − 1 and hence the ideal (p) in Z[ζp] factors (λ)p−1 = (p). Therefore
we have the isomorphism Z[ζp]/pZ[ζp] ∼= Zp[ζp]/(λ)p−1 coming from
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the natural map Z[ζp] → Zp[ζp]. Hence we have the isomorphisms

(2)
U1/Up−1

∼= (Zp[ζp]/pZ[ζp])∗/(Z/pZ)∗

∼= (Z[ζp]/pZ[ζp])∗/(Z/pZ)∗,

where U1/Up−1 has exponent p. In view of Proposition 2, we have an
exact sequence

(3) E/Ep β−→ U1/Up−1 −→ T (Z[ζp]Cp) −→ 0,

where β is induced from (2) and the natural map E → (Z[ζp]/pZ[ζp])∗.
The group ∆ is cyclic of order p−1 and ω generates the character group
of ∆. Since U1/Up−1 and Ep = E/Ep are p-groups, we have from (2)
and (3):

(4)

T (Z[ζp]Cp) ∼=
p−2⊕

i=0

εi(T (Z[ζp]Cp))

∼=
p−2⊕

i=0

εi(U1/Up−1)
β(εi(Ep))

.

This proves the lemma.

Lemma 6. The summands in (4) are nontrivial precisely when i is
odd in the range 1 < i ≤ p− 2, or i is even and irregular in the range
1 < i ≤ p− 2.

Proof. For all i > 0, the map Z/pZ → Ui/Ui+1 defined by a mod p 	→
1 + aλi mod Ui+1 is an isomorphism of additive groups. It follows for
all i > 0, Ui/Ui+1 is a vector space of dimension 1 over Z/pZ on
which ∆ acts via the character ωi. Now as Zp∆ is semi-simple and
U1/Up−1 has a composition series with factors {Ui/Ui+1}p−2

i=1 , we see
ε0(U1/Up−1) = 0 and

(5) #εi(U1/Up−1) = #εi(Ui/Ui+1) = p if 1 ≤ i ≤ p− 2.

Because ζp = 1 + λ generates U1/U2 = ε1(U1/U2), we also have

(6) ε1(U1/Up−1) = ε1(〈ζp〉) = β(ε1(Ep)).
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From [15, Proposition 8.10] one has εi(Ep) = 0 if 1 < i ≤ p− 2 and i
is odd.

We now claim that if 2 ≤ i ≤ p − 2 and 2|i, then εi(Ui/Up−1) =
β(εi(Ep)) if and only if p � Bi where Bi is the ith Bernoulli number.
To show this, note that it is shown in the proof of [15, Theorem 8.16]
that if 2 ≤ i ≤ p− 2 and i is even, then

(7) Lp(1, ωi) ≡ −Bi/i mod p,

where Lp(s, ωi) is the p-adic L-function of ωi. Now, as we’ve assumed
p � h+

p , the claim follows from (5) (7) together with Proposition 8.10,
Theorem 8.2 and Theorem 8.25 of [15]. The integer i is an irregular
index when precisely 2 ≤ i ≤ p − 2, 2|i, and p|Bi. The number of
irregular indices is called the index of irregularity and is denoted s.
This proves the lemma, Proposition 4 and Theorem 1.
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