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A WEAK HARNACK INEQUALITY FOR
FRACTIONAL DIFFERENTIAL EQUATIONS

RICO ZACHER

ABSTRACT. We prove a priori estimates for nonnegative
supersolutions of fractional differential equations of the form
∂α

t (u − u0) + μ u = f , u(0) = u0, with α ∈ (0, 1). As a
main result, we establish for such functions a weak Harnack
inequality with critical exponent 1/(1−α), which is shown to
be optimal. In addition, we obtain an Lp-estimate of Moser
type and show that positive supersolutions satisfy certain log-
estimates; the latter plays a crucial role in connection with an
abstract lemma of Bombieri and Giusti, which is an extremely
useful tool to prove Harnack-type estimates for a wide class
of elliptic and parabolic problems. Therefore, the results
obtained are also of preliminary character with regard to a
corresponding theory for fractional evolution equations of the
form ∂α

t (u − u0) − Lu = f , where L stands for a uniformly
elliptic operator of second order.

1. Introduction. Harnack inequalities have proved to be a powerful
tool in the theory of linear and nonlinear partial differential equations.
The classical parabolic Harnack inequality is due to Hadamard [10]
and Pini [22]. A seminal contribution in this field was then made
by Moser [17, 18], who established a Harnack inequality for weak
solutions of second order elliptic differential equations in divergence
form with merely bounded measurable coefficients. By means of this
result he was able to give a new proof of the well-known De Giorgi-
Nash theorem ([6, 21]) on the Hölder continuity of weak solutions
of such equations. Among the most important works on Harnack
inequalities are further Moser [19] and Krylov-Safonov [12], which deal
with parabolic differential equations in divergence, respectively non-
divergence form. In all these papers the operators under study are
local operators, that is, differential operators.
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To our knowledge, there are only a few results on Harnack inequalities
for nonlocal operators. A recent series of papers ([2, 3, 24]) is
concerned with harmonic functions with respect to integral operators
of the form

(1)
Lu(x) =

∫
Rd\{0}

[u(x+h)− u(x)− χ[0,1](|h|)h · ∇u(x)]n(x, h) dh,

x ∈ Rd,

where χ[0,1] denotes the characteristic function of [0, 1], and where with
two positive constants c1, c2 and 0 < α ≤ β < 2,

c1
|h|d+α

≤ n(x, h) ≤ c2
|h|d+β

, x ∈ Rd, |h| ≤ 2.

An important example is given by L = −(−Δ)γ with γ ∈ (0, 1). The
described class of operators is related to certain jump processes and
thus of great interest for probabilists, see, e.g., the survey [1]. In the
very recent paper [2], a Harnack inequality is established for harmonic
functions with respect to the operator (1) in a quite general setting. For
nonlocal operators corresponding to jump-diffusion processes, a weak
Harnack inequality has been obtained in [11].

The purpose of this paper is to consider nonnegative supersolutions
of fractional differential equations of the form

(2) ∂α
t (u− u0)(t) + μu(t) = f(t), t ∈ (0, T ], u(0) = u0.

Here μ ≥ 0, f ∈ L1([0, T ]), u0 ∈ R, and ∂α
t stands for the Riemann-

Liouville fractional derivation operator of order α ∈ (0, 1) defined by

(3) ∂α
t v(t) = ∂t

∫ t

0

g1−α(t− τ ) v(τ ) dτ,

where ∂t is the usual derivation operator and

gβ(t) =
tβ−1

Γ(β)
, t > 0, β > 0.

Definition 1.1 We call a function u ∈ ZT := {v ∈ C([0, T ]) : g1−α ∗
v ∈W 1,1([0, T ])} a supersolution of (2) if u(0) = u0 and the inequality
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(4) ∂α
t (u− u0)(t) + μu(t) ≥ f(t), t ∈ (0, T ),

is fulfilled almost everywhere.

Here, by h1 ∗ h2 we mean the convolution defined by (h1 ∗ h2)(t) =∫ t

0
h1(t − τ )h2(τ ) dτ , t ≥ 0, of two functions h1, h2 supported on the

positive halfline. Observe that g1−α ∗ u ∈ W 1,1([0, T ]) if and only if
g1−α ∗ (u− u0) ∈W 1,1([0, T ]).

If u ∈ ZT is a nonnegative supersolution of (2), then clearly u0 ≥ 0,
which entails ∂α

t u0(t) = u0g1−α(t) ≥ 0, t ∈ (0, T ). Hence we have

(5) ∂α
t u(t) + μu(t) ≥ f(t), t ∈ (0, T ).

Our main result says that, for nonnegative solutions of the fractional
differential inequality (5), a weak Harnack inequality holds with crit-
ical exponent 1/(1 − α), which is also optimal. This result is an im-
portant step towards an extension of the De Giorgi-Nash-Moser theory
described above to fractional evolution equations such as, for example,

(6)
∂α

t (u− u0)(t, x) − Lu(t, x) = f(t, x),
t ≥ 0, x ∈ Ω, u(0, x) = u0(x), x ∈ Ω,

where α ∈ (0, 1) and L stands for a second order uniformly elliptic
differential operator acting in the space variable x ∈ Ω ⊂ Rd. In
this sense, most of the results established in this paper are also of
preliminary character.

Besides the weak Harnack inequality, we prove an Lp-estimate of
Moser type, that is, it belongs to a kind of mean value inequalities that
is typically obtained by employing a Moser iteration scheme. The latter
method is one of the principal tools for deriving a priori estimates for
weak solutions of various types of PDE’s.

When dealing with Harnack inequalities, in the elliptic and in the
parabolic case, an abstract lemma of Bombieri and Giusti [4], see
subsection 2.4, has turned out to be extremely useful inasmuch as
it allows to avoid the rather technically involved approach via BMO,
see, e.g., [5, 13, 20, 23]. In order to apply this lemma, one needs
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among others certain weak L1-estimates for the logarithm of positive
supersolutions. In subsection 2.4, we establish the corresponding
log-estimates for positive supersolutions of the fractional differential
equation (2).

To underline the significance of the aforementioned results, we remark
that in a forthcoming paper [25], these will play a pivotal role in
deriving a priori estimates, including a weak Harnack inequality, for
weak solutions of fractional evolution equations of the form (6), where
L is a second order uniformly elliptic operator in divergence form with
merely bounded measurable coefficients.

Although we consider only the purely time-dependent case, the main
results in this paper, Theorems 2.1, 2.2 and 2.3, are by no means
elementary. In contrast to the (simple) ODE case, i.e., α = 1, one is
confronted with two major difficulties: the nonlocalness of the problem
and the more complicated fractional calculus.

A crucial property of the fractional derivative defined by (3) is what
we will call the time-shifting property. To describe it, fix a reference
time t0 > 0. For t ≥ t0 define t̄ = t− t0 and set ū(t̄) = u(t̄+ t0). Then
it follows immediately from (3) that

(7) ∂α
t u(t) = ∂α

t̄ ū(t̄) +
∫ t0

0

ġ1−α(t− s)u(s) ds, t > t0.

Since ġ1−α(t) := ∂tg1−α(t) < 0, t > 0, we see in particular that for any
nonnegative (and sufficiently smooth) function u,

∂α
t u(t) ≤ ∂α

t̄ ū(t̄), t > t0.

This indicates the possibility to pass from global to local behavior
when dealing with nonnegative supersolutions of (2). Note that this
localization step is not feasible for nonnegative subsolutions of (2), that
is, for 0 ≤ u ∈ ZT which satisfy ∂α

t (u− u0)(t) + μu(t) ≤ f(t) in (0, T ).

2. Estimates for supersolutions.

2.1. A basic estimate. Let u ∈ ZT be a nonnegative solution of
the fractional differential inequality (5), which is the case if u is a
nonnegative supersolution of (2).
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Given t0 ∈ (0, T ) we introduce the shifted time s = t − t0 and set
ū(s) = u(s+ t0) as well as f̄(s) = f(s+ t0) for s ∈ [0, T − t0]. Then (5)
implies that

(8) ∂α
s ū(s) + μ ū(s) ≥ h(s) + f̄(s), s ∈ (0, T − t0),

where

h(s) =
∫ t0

0

[−ġ1−α(s+ t0 − τ )]u(τ ) dτ ≥ 0, s ∈ (0, T − t0).

Setting

f0(s) = ∂α
s ū(s) + μ ū(s) − (h(s) + f̄(s)), s ∈ (0, T − t0),

we obtain by convolving with gα

(9) ū(s)+μ(gα∗ū)(s) = (gα∗(h+f̄))(s)+(gα∗f0)(s), s ∈ (0, T−t0).

In fact, (g1−α ∗ ū)(0) = 0 and therefore

gα ∗ ∂α
s ū = gα ∗ ∂s(g1−α ∗ ū) = ∂s(gα ∗ g1−α ∗ ū) = ū,

where we use the property gα ∗ gβ = gα+β , α, β > 0.

Let rα,μ denote the resolvent kernel corresponding to (2), that is,

rα,μ(t) + μ(rα,μ ∗ gα)(t) = gα(t), t > 0.

Observe that rα,0 = gα. Since gα is completely monotone, rα,μ enjoys
the same property, cf. [9, Chapter 5], in particular rα,μ(s) > 0 for all
s > 0. Moreover, the Volterra equation w+μgα ∗w = gα ∗ f0 preserves
positivity, that is, f0 ≥ 0 implies w ≥ 0, see [7, 16]; hence, (8) and (9)
entail

(10) ū(s) ≥ (rα,μ ∗ (h+ f̄))(s), s ∈ (0, T − t0),

since the function on the right of (10) is the unique solution of v+μgα ∗
v = gα ∗ (h+ f̄) in (0, T − t0).
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We next look at the resolvent kernel more closely. For μ > 0 we have

(11)

rα,μ(t) =
∞∑

n=0

(−μ)n([gα∗](n)gα)(t) =
∞∑

n=0

(−μ)ng(n+1)α(t)

=
∞∑

n=0

(−μ)n tnα+α−1

Γ((n+ 1)α)
= gα(t)

∞∑
n=0

(−μtα)n Γ(α)
Γ((n+ 1)α)

= Γ(α)gα(t)Eα,α(−μtα), t > 0,

where Eα,β denotes the generalized Mittag-Leffler-function defined by

Eα,β(z) =
∞∑

n=0

zn

Γ(nα+ β)
, z ∈ C.

Let now ω be a fixed positive constant, and assume that μ(T −t0)α ≤
ω. By continuity and strict positivity of Eα,α in (−∞, 0] we infer from
(11) that

(12)
rα,μ(s) ≥ Γ(α)gα(s) min

y∈[0,ω]
Eα,α(−y) =: C(α, ω) Γ(α)gα(s),

s ∈ (0, T − t0].

Using this and positivity of h we may estimate

(rα,μ ∗ h)(s) ≥ C(α, ω)Γ(α)(gα ∗ h)(s)

= C(α, ω)Γ(α)
∫ t0

0

ϕ(s, τ)u(τ ) dτ,

s ∈ (0, T − t0),
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where with η = (t0 − τ )/s ≤ t0/s,

ϕ(s, τ) =
∫ s

0

gα(s− σ)[−ġ1−α(σ + t0 − τ )] dσ

= s

∫ 1

0

gα(s− sσ′)[−ġ1−α(sσ′ + sη)] dσ′

= s1+(α−1)+(−α−1) α

Γ(α)Γ(1−α)

∫ 1

0

(1−σ′)α−1(σ′+η)−α−1 dσ′

≥ αs−1

Γ(α)Γ(1 − α)

∫ 1

0

(σ′ + η)−α−1 dσ′

=
s−1η−α

Γ(α)Γ(1 − α)

(
1 − 1

(1 + (1/η))α

)

≥ 1
Γ(α)

tα−1
0 g1−α(t0 − τ )(s/t0)α−1

(
1 − 1

(1 + (s/t0))α

)
.

Letting

ψα(t) = tα−1

(
1 − 1

(1 + t)α

)
, t > 0,

we thus obtain

(13)
(rα,μ ∗ h)(s) ≥ C(α, ω)ψα(s/t0)tα−1

0 (g1−α ∗ u)(t0),
s ∈ (0, T − t0).

By concavity of {t 	→ tα},

α

(
1 − 1

1 + t

)
≤ 1 − 1

(1 + t)α
,

and thus
ψα(t) ≥ αtα

1 + t
, t ≥ 0,

which together with (13) yields

(14)
(rα,μ ∗ h)(s) ≥ C(α, ω)

α(s/t0)α

1 + (s/t0)
tα−1
0 (g1−α ∗ u)(t0),

s ∈ (0, T − t0).
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Suppose now that f ≤ 0. Since rα,μ ≤ gα, we have the trivial estimate

(rα,μ ∗ f̄)(s) ≥ (gα ∗ f̄)(s), s ∈ (0, T − t0).

Combining this with (10) and (14) yields

Lemma 2.1. Let α ∈ (0, 1) and fix ω ≥ 0. Assume that 0 < t0 < T
and μ ≥ 0 such that μ(T − t0)α ≤ ω. Then if u ∈ ZT is a nonnegative
solution of the fractional differential inequality (5) in (0, T ) with f ≤ 0,

(15)
u(t0 + s) ≥ C(α, ω)

α(s/t0)α

1 + (s/t0)
tα−1
0 (g1−α ∗ u)(t0)

+ (gα ∗ f(· + t0))(s), s ∈ (0, T − t0).

Here the constant C(α, ω) is given by C(α, ω) = miny∈[0,ω]Eα,α(−y).

2.2. The weak Harnack inequality. The main objective of this section
is to prove a weak Harnack inequality for nonnegative solutions of the
fractional differential inequality (5). To achieve this we will employ the
basic estimate of Lemma 2.1 and the following simple but extremely
useful observation. For 0 < p < ∞ and (a, b) ⊂ R, we will write
|u|Lp(a,b) = (

∫ b

a
|u|p dt)1/p for short.

Lemma 2.2. Let α ∈ (0, 1), and fix ω0 ≥ 0. Assume that t0 > 0 and
μ ≥ 0 such that μtα0 ≤ ω0. Then, if u ∈ Zt0 is a nonnegative solution
of the fractional differential inequality (5) in (0, t0) with f ≤ 0,

(16)
t
−1/p
0 |u|Lp(0,t0) ≤ C(α, p)tα−1

0

(
[1 + Γ(1 − α)ω0](g1−α ∗ u)(t0)
+ (1 ∗ [−f ])(t0)

)
for all 0 < p < 1/(1 − α).

Proof. Without loss of generality we may confine ourselves to the
case 1 ≤ p < 1/(1 − α). Suppose u ∈ Zt0 is a nonnegative solution of
∂α

t u + μu ≥ f in (0, t0). Assume for the moment that μ = 0. Setting
w = ∂α

t u− f , we evidently have w ≥ 0 and

0 ≤ u = gα ∗ ∂α
t u = gα ∗ (∂α

t u− f) + gα ∗ f ≤ gα ∗ w
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in (0, t0). Hence, using Young’s inequality,

|u|Lp(0,t0) ≤ |gα ∗ w|Lp(0,t0) ≤ |gα|Lp(0,t0) |w|L1(0,t0).

Due to

|gα|Lp(0,t0) =
t
α−1+1/p
0

Γ(α)[1 + (α− 1)p]1/p

and positivity of w, we then deduce further that

t
−1/p
0 |u|Lp(0,t0) ≤ C(α, p)tα−1

0

(
(g1−α ∗ u)(t0) + (1 ∗ [−f ])(t0)

)
.

In the general case where μ ≥ 0, we have ∂α
t u ≥ −μu + f with

−μu+ f ≤ 0, and so the above reasoning yields

t
−1/p
0 |u|Lp(0,t0) ≤ C(α, p)tα−1

0

(
(g1−α∗u)(t0)+μ(1∗u)(t0)+(1∗[−f ])(t0)

)
.

Finally,

μ(1 ∗ u)(t0) ≤ μ

g1−α(t0)
(g1−α ∗ u)(t0) = Γ(1 − α)μ tα0 (g1−α ∗ u)(t0),

and so the proof is complete.

We come now to the main result of this section. For τ0 ≥ 0, 0 < τ1 <
τ2 < τ3, and ρ > 0, we will use the notation W−(τ0, ρ) = (τ0, τ0 + τ1ρ),
W+(τ0, ρ) = (τ0 + τ2ρ, τ0 + τ3ρ), and V (ρ) = ((τ2 − τ1)ρ, (τ3 − τ1)ρ).

Theorem 2.1. Let 0 < τ1 < τ2 < τ3 be fixed. Let further
T > 0, α ∈ (0, 1) and ω1 ≥ 0. Then, for any τ0 ≥ 0, any ρ > 0
with μρα ≤ ω1, and any nonnegative solution u ∈ Zτ0+τ3ρ of the
fractional differential inequality (5) in (0, τ0 + τ3ρ) with f ≤ 0 and
supV (ρ)(gα ∗ [−f(· + τ0 + τ1ρ)]) <∞, there holds

(17) ρ−1/p|u|Lp(W−(τ0,ρ))

≤ C
(

inf
W+(τ0,ρ)

u+ρα−1|f |L1(W−(τ0,ρ)) + sup
V (ρ)

(gα ∗ [−f(·+ τ0 + τ1ρ)])
)

for all 0 < p < 1/(1−α), where the constant C = C(α, p, τ1, τ2, τ3, ω1).
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Proof. Note first that, thanks to the time-shifting property of the
fractional derivative, we may without loss of generality assume that
τ0 = 0.

We next apply Lemma 2.1 with t0 = τ1ρ, T = τ3ρ, and ω =
(τ3 − τ1)αω1 to obtain

(18)

u(t0 + s) ≥ C(α, ω)
α(s/t0)α

1 + (s/t0)
tα−1
0 (g1−α ∗ u)(t0) + (gα ∗ f(· + t0))(s),

s ∈ (0, (τ3 − τ1)ρ).

Observe that t0 + s ∈ (τ2ρ, τ3ρ) corresponds to

s ∈ V (ρ) = ((τ2 − τ1)ρ, (τ3 − τ1)ρ).

In this case we may estimate

(s/t0)α

1 + (s/t0)
≥ ((τ2 − τ1)/τ1)α

1 + ((τ3 − τ1)/τ1)

and thus get

(19) inf
W+(0,ρ)

u ≥ Ctα−1
0 (g1−α ∗ u)(t0) + inf

V (ρ)
(gα ∗ f(· + t0)),

where C = C(α, τ1, τ2, τ3, ω1). With ω0 = τα
1 ω1 we rewrite then (19)

as

inf
W+(0,ρ)

u

≥ Ctα−1
0

1 + Γ(1 − α)ω0

(
[1 + Γ(1 − α)ω0](g1−α ∗ u)(t0) + (1 ∗ [−f ])(t0)

)

− Ctα−1
0

1 + Γ(1 − α)ω0
(1 ∗ [−f ])(t0) − sup

V (ρ)

(gα ∗ [−f(· + t0)]),

whence, by Lemma 2.2,

inf
W+(0,ρ)

u ≥ C

1 + Γ(1 − α)ω0
· t

−1/p
0 |u|Lp(0,t0)

C(α, p)

− Ctα−1
0

1 + Γ(1 − α)ω0
(1 ∗ [−f ])(t0) − sup

V (ρ)

(gα ∗ [−f(· + t0)])

for all 0 < p < 1/(1−α). The assertion follows now immediately.
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Remarks 2.1 (i). The exponent 1/(1 − α) in Theorem 2.1 is optimal.
To see this, consider the sequence of functions un, n ∈ N , defined by

un(t) =
{
gα(1/n) : 0 ≤ t ≤ 1/n
gα(t) : 1/n ≤ t.

One verifies that (g1−α ∗ un)(t) = gα(1/n)g2−α(t) for all t ∈ [0, 1/n].
Further,

(g1−α ∗ un)(t) =
∫ 1/n

0

g1−α(t−τ )gα(1/n) dτ +
∫ t

1/n

g1−α(t−τ )gα(τ ) dτ

=
∫ 1/n

0

g1−α(t−τ )[gα(1/n) − gα(τ )] dτ

+
∫ t

0

g1−α(t−τ )gα(τ ) dτ

=
∫ 1/n

0

g1−α(t−τ )[gα(1/n) − gα(τ )] dτ + 1, t ≥ 1/n.

For the fractional derivative we thus obtain

∂α
t un(t) =

⎧⎨
⎩
gα(1/n)g1−α(t) : 0 < t < 1/n∫ 1/n

0

ġ1−α(t− τ )[gα(1/n) − gα(τ )] dτ : 1/n < t,

which shows that ∂α
t un(t) ≥ 0 in (0,∞) for all n ∈ N .

Now take τi = i, i = 0, 1, 2, 3, ρ = 1 and ω1 = 0. Suppose that
p ≥ 1/(1 − α). Then, on the one hand, |un|Lp((0,1)) becomes infinite as
n goes to ∞. On the other hand, inf(2,3) un = gα(3), and so we see
that (17) cannot hold in this case.

(ii) In the limit case α = 1 and p = ∞, the estimate (17) in
Theorem 2.1 becomes

sup
W−(τ0,ρ)

u ≤ C
(

inf
W+(τ0,ρ)

u+ |f |L1(τ0,τ0+τ3ρ)

)
,

where C = C(τ1, τ2, τ3, ω1). Indeed, it is an easy exercise to verify
that such an inequality holds in the above setting (μρ ≤ ω1) for any
nonnegative differentiable function u subject to ∂tu+ μu ≥ f .
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(iii) The estimate (17) in Theorem 2.1 is a weak Harnack inequality
in the sense that it does not provide an estimate for the supremum
of u (but only an Lp-estimate) on the set W−(τ0, ρ) in terms of the
infimum of u on W+(τ0, ρ) and the data f . Corresponding estimates
are well known for nonnegative supersolutions of second order elliptic
and parabolic equations, see e.g., [8, Theorem 8.18] and [14, Theorem
6.18].

(iv) Another remark concerns the Lp-estimate of Lemma 2.2. Taking
t0 = 1 and f = 0, it says that for any solution u ∈ Z1 of the fractional
differential inequality (5) with T = 1 (which is necessarily nonnegative
in this case) one has the estimate

(20) |u|Lp(0,1) ≤ C(α, μ, p)(g1−α ∗ u)(1)

whenever 0 < p < 1/(1 − α). In particular,

(21) |u|Lp(0,1) ≤ C(α, μ, p)|g1−α ∗ u|L∞(0,1)

for all 0 < p < 1/(1 − α). Observe that if 0 < p ≤ 1, the inequality
(20) is satisfied for any nonnegative u ∈ L∞(0, 1) (without assuming a
supersolution property). In fact, in this case

|u|Lp([0,1]) ≤ |u|L1([0,1]) ≤ [g1−α(1)]−1

∫ 1

0

g1−α(1 − τ )u(τ ) dτ

= Γ(1 − α)(g1−α ∗ u)(1).

So it is natural to ask whether (20) or (21) holds for all 0 ≤ u ∈
L∞([0, 1]) with some p > 1. It turns out that the answer is negative in
either case, see Section 3 for a counterexample.

To illustrate the significance of the latter fact with regard to a priori
estimates for fractional evolution equations, consider a nonnegative
function u ∈W 1,2([0, 1]) with u(0) = 0 which is subject to an estimate
of the form

(22)
∫ t

0

u(τ )∂α
τ u(τ ) dτ ≤ C, t ∈ [0, 1],

where α ∈ (0, 1] and C is some positive number not depending on u
and t. If α = 1, (22) immediately yields the bound |u2|L∞([0,1]) ≤ 2C.
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What can we say in the case α ∈ (0, 1)? It is well known, see e.g., [15,
Lemma 3.4] and [9, Chapter 18], that

1
2

(g1−α ∗ u2)(t) =
∫ t

0

1
2
∂α

τ u
2(τ ) dτ ≤

∫ t

0

u(τ )∂α
τ u(τ ) dτ, t ∈ [0, 1],

and thus we obtain the bound |g1−α ∗ u2|L∞([0,1]) ≤ 2C. However,
this does not give an estimate of the form |u2|Lp([0,1]) ≤ C̃(α, p, C)
with some p > 1. This indicates that, in order to be able to set up
a Moser iteration scheme or to prove Caccioppoli type inequalities for
(weak) solutions of fractional evolution equations such as (6), one has
to proceed carefully when defining the notion of weak solution for these
problems.

We conclude this section with an interesting application of Theorem
2.1.

Corollary 2.1. Let T > 0 be fixed and 0 ≤ u ∈ C([0, T ]). Suppose
that {μn}n∈N is a nonnegative and bounded sequence and that {βn}n∈N

is an increasing and unbounded sequence. Then if, for all n ∈ N,
uβn ∈ ZT and

∂α
t u

βn + μn u
βn ≥ 0 in (0, T ),

then the function u is nondecreasing in [0, T ].

Proof. Given 0 ≤ a1 < a2 < b1 < b2 ≤ T we find τ0 ≥ 0, τi > 0,
i = 1, 2, 3 and ρ > 0 such that (a1, a2) ⊂ W−(τ0, ρ) and (b1, b2) ⊂
W+(τ0, ρ). We then apply Theorem 2.1 with ω1 = ρα supn∈N μn and
p = 1 to the function uβn to get

|uβn |L1(W−(τ0,ρ)) ≤ C inf
W+(τ0,ρ)

uβn , n ∈ N,

with C = C(α, τ1, τ2, τ3, ρ, ω1). Hence

|u|Lβn (W−(τ0,ρ)) ≤ C1/βn inf
W+(τ0,ρ)

u, n ∈ N.

Letting now n tend to ∞ yields
sup

(a1,a2)

u ≤ sup
W−(τ0,ρ)

u ≤ inf
W+(τ0,ρ)

u ≤ inf
(b1,b2)

u,

which proves the claim.
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2.3. An Lp-estimate à la Moser. In this and the following paragraph
we will assume that f = 0 in (5). Recall that this entails that solutions
of the fractional differential inequality (5) are necessarily nonnegative.

Theorem 2.2. Let ω1 ≥ 0 and 0 < p0 < 1/(1 − α) =: κ be fixed.
Then, for any τ0 ≥ 0, any ρ > 0 with μρα ≤ ω1, and any (nonnegative)
solution u ∈ Zτ0+ρ of (5) in (0, τ0 + ρ) with f = 0, there holds

|u|Lp0 (τ0,τ0+σ′ρ) ≤
(

M

(σ − σ′)κ

)1/p

ρ1/p0−1/p |u|Lp(τ0+σ′ρ,τ0+σρ),

0 < σ′ < σ ≤ 1, 0 < p < p0,

where the constant M = M(α, p0, ω1).

Proof. Without loss of generality we may again assume that τ0 = 0.
Let 0 < p0 < 1/(1 − α) be fixed.

We apply Lemma 2.1 with t0 = σ′ρ, T = σρ and ω = ω1 to get

u(σ′ρ+ s) ≥ C(α, ω1)
α(s/σ′ρ)α

1 + (s/σ′ρ)
(σ′ρ)α−1(g1−α ∗ u)(σ′ρ),

s ∈ (0, (σ − σ′)ρ),

which implies for any p ∈ (0, p0),

|u|Lp(σ′ρ,σρ)

≥ C1(α, ω1)(σ′ρ)α−1(g1−α ∗ u)(σ′ρ)
( ∫ (σ−σ′)ρ

0

[
(s/σ′ρ)α

1+(s/σ′ρ)

]p

ds

)1/p

.

Since αp+ 1 < 1/(1 − α) = κ, we have∫ (σ−σ′)ρ

0

[
(s/σ′ρ)α

1 + (s/σ′ρ)

]p

ds = σ′ρ
∫ (σ−σ′)/σ′

0

rαp

(1 + r)p
dr

≥ σ′ρ
αp+ 1

(σ′/σ)p

(
σ − σ′

σ′

)αp+1

= ρ

[
σ′1−α

σ

]p (σ − σ′)αp+1

αp+ 1

≥ (1 − α)ρ
[
σ′1−α

σ

]p

(σ − σ′)κ,
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and thus obtain
(23)
|u|Lp(σ′ρ,σρ)

≥ C1(α, ω1)(1−α)1/p(σ′ρ)α−1(g1−α ∗ u)(σ′ρ)ρ1/p σ
′1−α

σ
(σ − σ′)κ/p.

By Lemma 2.2 with ω0 = ω1,

(24) (σ′ρ)−1/p0 |u|Lp0(0,σ′ρ)
≤ C(α, p0, ω1)(σ′ρ)α−1(g1−α ∗ u)(σ′ρ).

Combining (23) and (24) yields

|u|Lp0(0,σ′ρ)
≤ C2(α, p0, ω1)σσ′1/p0−1+αρ1/p0−1/p

(1 − α)1/p(σ − σ′)κ/p
|u|Lp(σ′ρ,σρ)

≤
(
M(α, p0, ω1)

(σ − σ′)κ

)1/p

ρ1/p0−1/p |u|Lp(σ′ρ,σρ),

with M(α, p0, ω1) = [1 + C2(α, p0, ω1)]κ/(1 − α).

2.4. Log-estimates. For τ0 ≥ 0, 0 < η < 1, and ρ > 0, we will employ
the notation K−(τ0, ρ) = (τ0, τ0+ηρ) and K+(τ0, ρ) = (τ0+ηρ, τ0+ρ).
By |A| we mean the Lebesgue measure of a measurable set A ⊂ R.

Theorem 2.3. Let η ∈ (0, 1) be fixed. Let further ω1 ≥ 0. Then
for any τ0 ≥ 0, any ρ > 0 with μρα ≤ ω1, and any positive solution
u ∈ Zτ0+ρ of (5) in (0, τ0 + ρ) with f = 0, there holds

eλ|{t ∈ K−(τ0, ρ) : log u(t) > c(u) + λ}| ≤Mρ, λ > 0,
(25)

and

eλ|{t ∈ K+(τ0, ρ) : log u(t) < c(u) − λ}| ≤Mρ, λ > 0,
(26)

where

c(u) = log
(

(g1−α ∗ u(· + τ0))(ηρ)
g2−α(ηρ)

)
and the constant M = M(α, η, ω1).
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Proof. By positivity of u in (0, τ0 + ρ) and the time-shifting property
of the fractional derivative, we may without loss of generality assume
that τ0 = 0.

We begin by showing (25). Note that here we will merely use the
positivity of u; we do not need the fact that u is a solution of (5).

In what follows we will write J−(λ) for the set {t ∈ K−(0, ρ) :
log u(t) > c(u) + λ}. For λ > 0 we have

eλ|J−(λ)| = eλ|{t ∈ K−(0, ρ) : elog u(t) > ec(u)eλ}| =
∫

J−(λ)

eλ dt

≤
∫

J−(λ)

elog u(t)−c(u) dt ≤
∫

K−(0,ρ)

elog u(t)−c(u) dt

=
g2−α(ηρ)

(g1−α ∗ u)(ηρ)
∫ ηρ

0

u(t) dt

≤ g2−α(ηρ)

(g1−α ∗ u)(ηρ) · 1
g1−α(ηρ)

∫ ηρ

0

g1−α(ηρ− t)u(t) dt

=
Γ(1 − α)
Γ(2 − α)

ηρ =
ηρ

1 − α
.

We turn now to (26). Set J+(λ) = {t ∈ K+(0, ρ) : log u(t) < c(u)−λ}.
Proceeding as above we see that

(27)

eλ|J+(λ)| ≤
∫

K+(0,ρ)

ec(u)−log u(t) dt =
(g1−α ∗ u)(ηρ)
g2−α (ηρ)

∫
K+(0,ρ)

u(t)−1 dt.

Since u is a positive solution of (5) in (0, ρ) with f = 0, we may apply
Lemma 2.1 with t0 = ηρ, T = ρ, and ω = (1−η)αω1, thereby obtaining

(28)
u(ηρ+ s) ≥ C(α, ω)

α(s/ηρ)α

1 + (s/ηρ)
(ηρ)α−1(g1−α ∗ u)(ηρ),

s ∈ (0, (1 − η)ρ).

Combining (27) and (28) we find that
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eλ|J+(λ)| ≤ (g1−α ∗ u)(ηρ)
g2−α(ηρ)

∫ (1−η)ρ

0

[u(ηρ+ s)]−1 ds

≤ C(α, ω)−1(ηρ)1−α

αg2−α(ηρ)

∫ (1−η)ρ

0

(1 + s/ηρ)(s/ηρ)−α ds

=
Γ(2 − α)ηρ
αC(α, ω)

∫ (1−η/η)

0

σ−α(1 + σ) dσ = C(α, η, ω1)ρ.

This finishes the proof of Theorem 2.3.

Remark 2.1. By considering the limit case α = 1 in Theorem 2.3,
one recovers the corresponding log-estimates for positive solutions of
the differential inequality ∂tu + μu ≥ 0. Observe that in this case
c(u) = log u(ηρ).

Interestingly, in the above proof, the property of u to solve (5) is
merely employed for the estimate on K+(τ0, ρ); for the estimate on
K−(τ0, ρ) we use only integrability and positivity. This is no longer
possible in the case α = 1, where one really needs that property on the
whole interval (τ0, τ0 + ρ).

We explain now the significance of the above log-estimates in connec-
tion with the subsequent abstract lemma of Bombieri and Giusti [4],
see also [23, Lemma 2.2.6] or [5, Lemma 2.6].

Lemma 2.3. Let Uσ, 0 < σ ≤ 1, be a collection of measurable
subsets of a fixed finite measure space endowed with a measure ν, such
that Uσ′ ⊂ Uσ if σ′ ≤ σ. Let δ, η ∈ (0, 1), and let γ, C be positive
constants and 0 < p0 ≤ ∞. Suppose v is a positive measurable function
on U1 =: U which satisfies the following two conditions :

(i) |v|Lp0 (Uσ′ ) ≤ [C(σ−σ′)−γν(U)−1]1/p−1/p0 |v|Lp(Uσ), for all σ, σ′, p
such that 0 < δ ≤ σ′ < σ ≤ 1 and 0 < p ≤ min{1, ηp0}.

(ii) ν(log v > λ) ≤ Cν(U)λ−1 for all λ > 0.

Then |v|Lp0 (Uδ) ≤ Mν(U)1/p0 , where M depends only on δ, η, γ, C
and p0.
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By considering positive solutions of the fractional differential inequal-
ity (5) we will demonstrate how this lemma is typically applied to prove
a (weak) Harnack inequality. We refer to [23, subsections 2.2.3 and
2.3.1] for the elliptic case and to [23, subsections 5.4.1 and 5.4.2] for
second order parabolic equations. Of course, for (5) such a result has
already been established in Theorem 2.1. However, to achieve this we
merely used Lemmas 2.1 and 2.2. So, as to (5), the approach to be
described via Lemma 2.3 and the log-estimates in Theorem 2.3 gives
an alternative proof of Theorem 2.1. Note that Theorem 2.3 was purely
a consequence of Lemma 2.1.

Let ω1 ≥ 0, μ ≥ 0, τ0 ≥ 0, ρ > 0 and 0 < τ1 < 1/2 < τ2 < 1. For
σ ∈ (0, 1], set Uσ = (τ0, τ0 + σρ/2). Now suppose μρα ≤ ω1 and that
u ∈ Zτ0+ρ is positive and solves (5) in (0, τ0 + ρ) with f = 0. Putting
v1 = ue−c(u) with

c(u) = log
(

(g1−α ∗ u(· + τ0))(ρ/2)
g2−α(ρ/2)

)

it follows from Theorem 2.3 with K−(τ0, ρ) = (τ0, τ0 + ρ/2) that v1
satisfies condition (ii) in Lemma 2.3 with ν(A) = |A|. Moreover, by
Theorem 2.2, which followed from Lemmas 2.1 and 2.2, v1 also fulfills
condition (i) with p0 < 1/(1− α), δ = 2τ1, γ = 1/(1− α) and η = 1/2.
Hence, by Lemma 2.3, we obtain an estimate of the form

(29) ρ−1/p0 |u|Lp0 (Uδ) ≤Mec(u).

Note that (29) is also a consequence of Lemma 2.2. We consider
then v2 = u−1ec(u) on K+(τ0, ρ) = (τ0 + ρ/2, τ0 + ρ). Letting
U ′

σ = (τ0 + (1 − σ/2)ρ, τ0 + ρ), σ ∈ (0, 1], we see from Theorem 2.3
that v2 satisfies condition (ii) in Lemma 2.3 applied to the family (U ′

σ).
Further, we remark that it is possible to show that v2 is also subject
to condition (i) with p0 = ∞, δ = 2(1− τ2), and appropriate constants
γ and η. This follows from results in [25]. Hence Lemma 2.3 gives a
bound |v2|L∞(U ′

δ
) ≤ M̃ which is equivalent to

(30) ec(u) ≤ M̃ inf
U ′

δ

u.

Combining (29) and (30) yields the weak Harnack inequality in Theo-
rem 2.1 with f = 0 and τ3 = 1.
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We point out that this strategy can be used successfully to prove a
weak Harnack inequality for nonnegative weak supersolutions u of frac-
tional evolution equations of the form (6), cf. [25]. The corresponding
local Lp mean value inequalities are obtained by means of Moser itera-
tions and Lemma 2.2, while the proof of the log-estimates heavily relies
on Theorem 2.3 applied to certain weighted spatial means of u.

3. Counterexample. In this section we give an example showing
that for any α ∈ (0, 1) and p > 1 an inequality of the form

(31) |u|Lp([0,1]) ≤ C|gα ∗ u|L∞([0,1])

with C = C(α, p) cannot hold for all 0 ≤ u ∈ L∞([0, 1]). The
significance of the counterexample to be presented was discussed in
Remark 2.1 (iv) in connection with the Lp-estimate of Lemma 2.2.

Set tj = j1/(1−α), j = 0, 1, . . . , and

un(t) =
n−1∑
i=0

χ[tihn,(ti+1)hn](t), t ∈ [0, 1], hn =
1

tn−1 + 1
.

Clearly,

(32) |un|Lp([0,1]) = (nhn)1/p.

Fix k ∈ {0, 1, . . . , n− 1} and let t ∈ [tkhn, (tk + 1)hn]. We have

(gα ∗ un)(t)

=
k∑

i=0

(gα ∗ χ[tihn,(ti+1)hn])(t)

=
k−1∑
i=0

∫ (ti+1)hn

tihn

gα(t− s) ds+
∫ t

tkhn

gα(t− s) ds

=
k−1∑
i=0

[−g1+α(t− s)](ti+1)hn

tihn
+ [−g1+α(t− s)]ttkhn

=
k−1∑
i=0

(g1+α(t− tihn) − g1+α(t− (ti + 1)hn)) + g1+α(t− tkhn)
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≤
k−1∑
i=0

(g1+α(tkhn − tihn) − g1+α(tkhn − (ti + 1)hn))

+ g1+α((tk + 1)hn − tkhn)

=
hα

n

Γ(1 + α)

( k−1∑
i=0

[(tk − ti)α − (tk − ti − 1)α] + 1
)
.

Suppose now that k ≥ 2. Then, by concavity of {t 	→ tα},
k−1∑
i=0

[(tk − ti)α − (tk − ti − 1)α]

=
k−1∑
i=0

(tk − ti)α

[
1 −

(
1 − 1

tk − ti

)α]

≤
k−1∑
i=0

(tk − ti)αα

(
1 − 1

tk − ti

)α−1 1
tk − ti

≤ α

k−1∑
i=0

(tk − ti)α−1

(
1 − 1

tk − tk−1

)α−1

≤ α

(
1 − 1

t2 − t1

)α−1 k−1∑
i=0

(tk − ti)α−1

= α

(
1 − 1

21/(1−α) − 1

)α−1 k∑
j=1

(tk − tk−j)α−1

= C(α)
k∑

j=1

(
k1/(1−α) − (k − j)1/(1−α)

)α−1

= C(α)
(
k−1 +

k−1∑
j=1

(
k1/(1−α) − (k − j)1/(1−α)

)α−1
)
.

Since {t 	→ φ(t) := t1/(1−α)} is convex, we see that

φ(k) − φ(k − j) ≥ φ′(k − j)j =
1

1 − α
(k − j)α/(1−α)j,

and thus
k−1∑
j=1

(
k1/(1−α) − (k − j)1/(1−α)

)α−1

≤ (1 − α)1−α
k−1∑
j=1

(k − j)−αjα−1.
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For j = 1, . . . , k − 1 we may estimate∫ j

j−1

(k − x)−αxα−1 dx ≥
∫ j

j−1

(k − (j − 1))−αjα−1 dx

=
(k − (j − 1) − 1)α

(k − (j − 1))α
(k − j)−αjα−1

=
(

1 − 1
k − (j − 1)

)α

(k − j)−αjα−1

≥
(

1 − 1
k − (k − 2)

)α

(k − j)−αjα−1

= 2−α(k − j)−αjα−1.

Hence
k−1∑
j=1

(k − j)−αjα−1 ≤ 2α
k−1∑
j=1

∫ j

j−1

(k − x)−αxα−1 dx

= 2α

∫ k−1

0

(k − x)−αxα−1 dx

≤ 2αΓ(1 − α)Γ(α)(g1−α ∗ gα)(k)
= 2αΓ(1 − α)Γ(α) =: C1(α).

All in all we find that

(33) (gα ∗ un)(t) ≤M(α)hα
n

for all t ∈ [tkhn, (tk + 1)hn] with k ∈ {0, 1, . . . , n − 1}. Here M(α) is
independent of k and n.

Suppose next that n ≥ 2 and t ∈ [(tk + 1)hn, tk+1hn] with k ∈
{0, . . . , n− 2}. Then we have

(gα ∗ un)(t) =
k∑

i=0

(g1+α(t− tihn) − g1+α(t− (ti + 1)hn))

≤
k∑

i=0

(g1+α((tk + 1)hn − tihn)

− g1+α((tk + 1)hn − (ti + 1)hn))
= (gα ∗ un)((tk + 1)hn) ≤M(α)hα

n,
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in view of (33). Consequently,

(34) |gα ∗ un|L∞([0,1]) ≤M(α)hα
n.

Combining (32) and (34) we get

|un|Lp([0,1])

|gα ∗ un|L∞([0,1])
≥ (nhn)1/p

M(α)hα
n

=
n1/p

M(α)

(
1

(n− 1)1/(1−α) + 1

)(1/p)−α

≥ n1/p

M(α)

(
1

n1/(1−α)

)(1/p)−α

=
1

M(α)
n1/p−(1/(1−α))(1/p−α),

which shows that

lim
n→∞

|un|Lp([0,1])

|gα ∗ un|L∞([0,1])
= ∞

whenever α ∈ (0, 1) and p > 1.
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