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ABSTRACT. Rothe’s method for parabolic initial bound-
ary value problems, also known as the horizontal line method,
consists of a time discretization by finite differences and leads
to a sequence of boundary value problems for an inhomo-
geneous elliptic equation. Whereas in the traditional ap-
proach in the solution of this sequence of boundary value prob-
lems volume potentials are incorporated, in order to preserve
the advantages of the boundary integral equation method we
present an approach involving only boundary integrals.

1. Introduction. For boundary value problems for elliptic differ-
ential equations with constant coefficients the use of boundary integral
equations has a long history both for establishing existence of solutions
and for numerical approximations. Similarly, integral equations have
also been successfully applied to initial boundary value problems for
parabolic equations. These integral equations, in general, are of Fred-
holm type with respect to the space variable and of Volterra type with
respect to the time variable. Due to the simplicity of the Fredholm al-
ternative and the use of successive approximations, integral equations
of the second kind for the heat equation have been considered already
for almost a century. Following earlier work of Holmgren [11, 12] and
Gevrey [10], a rigorous existence proof for the initial boundary value
problem with Dirichlet boundary condition via an integral equation
of the second kind obtained through a double-layer heat potential ap-
proach was given by Miintz [20] already in 1934 (see also [14]). On
the other hand, a corresponding theory for the integral equation of the
first kind arising from a single-layer heat potential approach has been
developed only very recently by Arnold and Noon [1], by Costabel [6]
and by Hsiao and Saranen [13].
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Semi-discrete approximation methods for the heat equation can be
obtained by a discretization of these integral equations with respect
to the time variable, that is, by discretization of the Volterra part of
the integral equations. This leads to a system of boundary integral
equations for the approximate solution on each of the consecutive time
levels. Using any of the well established methods for the approximate
solution of boundary integral equations, the semi-discrete methods
can be turned into fully discrete methods. For details we refer to
Brebbia, Telles, and Wroblel [2] and Lubich and Schneider [17], and
the literature therein.

In this paper we shall present a slightly different approach for ob-
taining semi-discrete methods in terms of systems of boundary integral
equations without using heat potentials and Volterra integral equations.
This is achieved through applying the time discretization directly to the
differential equation as suggested by Rothe [23] in 1930. This method
where only the time derivative in the heat equation is approximated by
finite differences and which is also known as horizontal line method has
been analyzed by many authors [2, 9, 22] and has also been extended
to hyperbolic problems [19]. The Rothe method reduces the initial
boundary value problem to a sequence of boundary value problems for
inhomogeneous elliptic equations with a positive definite operator. As
mentioned above, for these boundary value problems the boundary in-
tegral equation approach can be used both for establishing existence of
solutions and for numerical approximations. In particular for exterior
problems, the reformulation of the boundary value problem in terms
of a boundary integral equation not only reduces the dimensionality of
the problem, but also replaces a problem over an unbounded domain
by one over a bounded domain.

For Rothe’s method, a difficulty arises through the fact that the re-
sulting sequence of elliptic equations consists of inhomogeneous equa-
tions with the inhomogeneities given in terms of the solutions on the
previous time levels. The classical approach to deal with such a bound-
ary value problem for an inhomogeneous elliptic equation is to reduce
it to a problem for the homogeneous equation by incorporating a vol-
ume potential as a particular solution to the inhomogeneous equation.
This approach also has been suggested in the literature for the Rothe
method [2, 9]. However, using volume potentials has the drawback of
destroying the two main advantages of the boundary integral equation
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method mentioned above. In this paper we therefore will describe a so-
lution method which only uses boundary integrals for the solution of the
Rothe system. The basic tool for achieving this goal is the construction
of single- and double-layer potentials for the sequence of elliptic equa-
tions arising in the Rothe method. In contrast, the classical approach
via volume potentials uses only single- and double-layer potentials for
the homogeneous part which remains invariant on each time level.

In order to explain the basic ideas of our approach we confine
ourselves to the initial boundary value problem for the two-dimensional
heat equation in an exterior domain with Dirichlet boundary condition
and to the use of the backward Euler method for the time discretization.
The extensions to interior problems and other boundary conditions are
obvious. The analysis can also be carried over to higher order finite
difference approximations for the time discretization and also to the
case of three dimensions. In the latter case, of course, one is faced with
the more delicate problem to discretize surface integral equations for
the fully discrete version.

The plan of this paper is as follows. In Section 2 we will describe the
basic features of the Rothe method. The following Section 3 is the main
part of our paper since it presents the idea of reducing the sequence
of boundary value problems resulting from the time discretization into
integral equations merely involving boundary integrals. In Section 4
we will briefly describe how well established numerical methods can be
applied to numerically solve these boundary integral equations. Then
we proceed with some convergence and error analysis in Section 5,
and in Section 6 we will demonstrate the feasibility of our method
through some numerical examples. Finally, in Section 7 we conclude
with some observations on similarities of our method with the method
of the Laguerre transformation [4, 8].

As we will describe in more detail in Section 3, our method is closely
related to the method proposed by Lubich and Schneider [17] based on
the operational quadrature method. However, we feel that the approach
of the present paper is more easily accessible. In addition, we will
provide a more explicit procedure for the computation of the kernels
involved in the sequence of boundary integral equations.

2. Rothe’s method. Let D ¢ R2 be an unbounded domain such
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that its complement is bounded and simply connected, assume that the
boundary T' of D is of class C? and let 7' > 0. We consider the initial
boundary value problem for the heat equation

10
(2.1) Ea_? = Au in D x (0,T]
with heat conduction coefficient ¢ > 0. We are looking for a classical
solution u € C(D x [0,T1]) of (2.1) which is twice continuously differen-
tiable with respect to the space variable and continuously differentiable
with respect to the time variable on D x (0,7] and satisfies the homo-
geneous initial condition

(2.2) u(z,0) =0, ze€D,

and the boundary condition

(2.3) u=F onT x[0,7T)

where F' is a given function satisfying the compatibility condition
F(z,0)0=0, zeTl.

At infinity we assume that

(2.4) u(z,t) — 0, |z| — oo,

uniformly with respect to all directions z/|z| and all ¢ € [0,T]. Exis-
tence and uniqueness of a solution to this initial boundary value prob-
lem is well established (see [7, 14]). The homogeneity of the initial
condition (2.2) is not a severe restriction since inhomogeneous initial
conditions can be reduced to the homogeneous case through the use of
an appropriate volume heat potential (see [7, 14]).

Now Rothe’s method consists of discretizing the time derivative in
the heat equation (2.1) by a finite difference approximation. For the
sake of simplicity here we only consider the backward Euler difference
approximation. We choose N € N and with the stepsize h = T//N we
consider the grid points ¢, = (n+ 1)h, n =0,1,... ,N — 1. Then we
replace the initial boundary value problem for the heat equation by the
sequence of N Dirichlet boundary value problems

(2.5) Au, —v*u, = —v*up,_ 1 in D
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with the boundary condition
(2.6) Up=fn onT

where we have set f, = F(-,(n+ 1)h) and 4% = 1/(ch). At infinity we
have to require

(2.7) up(z) — 0, |z| — oo,
uniformly for all directions. With the initial condition u_; = 0
in D for n = 0,1,...,N — 1, we need to recursively find solutions

u, € C2(D) N C(D) of (2.5)—(2.7).
We proceed by noting the following results on uniqueness and stabil-
ity.

Theorem 2.1. The system (2.5)—(2.7) has at most one solution.

Proof. By the maximum-minimum principle (see [21]) any solution
v € C?(D)NC(D) of Av—~2v = 0 in D which has vanishing boundary
values v = 0 on I' and vanishes at infinity uniformly for all directions
must vanish identically in D. Then the statement of the theorem follows
by induction. ]

Theorem 2.2. Let g € C(D) be bounded and f € C(T). Then for
the unique solution v € C%(D) N C(D) of the Dirichlet problem

(2.8) Av—~*v=—g inD
with boundary condition
(2.9) v=f onl

and v(z) — 0, |z| — oo, uniformly for all directions we have the
estimate

1
(2.10) [[]lo0,0 < [ flloc,r + " 19]loc, 0
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Proof. We follow Gerdes [9] and split v = v; + v, where Avy —~2v; =
0in D, v; = fon T, and Avy —y?vy; = —g in D, v = 0 on I'. Then
for vy, by the maximum-minimum principle, we have

(2.11) [villoo,0 < [ f]loo,r-

For vy we can write

vala) = /D G(x,y)gy)dy, =€ D,

where G denotes the Green’s function for the boundary value problem
(2.8)—(2.9). By the maximum-minimum principle it can be seen that
the Green’s function satisfies

1
0 < G(z,y) < 5 ®o(z,y), z#yeD,

where

(2.12) Dy (z,y) = Ko(vlz —yl)

denotes the fundamental solution of (2.8) in terms of the modified
Hankel function Ky which is also known as Basset function or as
Macdonald function. Then we can estimate

1
020) < 5ol [ (o) dy
n D

IA

1
o ldlen [ Kolrluhdy, @€ D,
T R2

and use the integral (see [16])
2m
2

2 [
[ Koty =75 [ Ko(s)sds =25
R2 7" Jo Y

to obtain that

1
(2.13) [[v2]lo0,0 < ~ 19llo0, -

Now the statement (2.10) follows by piecing (2.11) and (2.13) together.
O
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3. Boundary integral equation method. The solution of the
sequence of boundary value problems (2.5)—(2.7), in principle, can be
obtained by the boundary integral equation approach involving volume
potentials for the inhomogeneity in (2.5) (see [2, 9]). For this, the
solution u,, is decomposed u, = un,1 + up 2 Where the volume potential

2

Up,1(z) = -

/ QO(xay)un—l(y) dy7 TE Da

D

satisfies the inhomogeneous differential equation, and where the double-
layer potential

l 8©0 (xa y)

) M en(y)ds(y), =z €D,

Un2(z) =
with density ¢, € C(T") is used to deal with the boundary condition.
By v we denote the outward unit normal to the boundary curve I'. The
boundary condition (2.6) is fulfilled if ¢,, is a solution to the boundary
integral equation

l aq)O (I, y)

(3.1) gan(:v)ﬂ-7T L oY)

on(y) ds(y) = fu(x) —una(z), zeT.

However, as already mentioned in the introduction, the numerical eval-
uation of the volume potential, in particular for unbounded exterior
domains, poses difficulties. Hence, an approach avoiding volume po-
tentials altogether is highly desirable.

This can be achieved by constructing a singular solution ®,, to the
sequence of equations (2.5) of the form

1
3.2 ®,(z,y) =ln—— + ¥, (z,y
(32) (@0) = In 4 ()

where the ¥,, are continuously differentiable in R? x R2. The funda-
mental solution (2.12) and the modified Bessel differential equation

(3.3) 2K (2) + 2K} (2) — 22 Ko(2) = 0
suggest to try to find ®,, in the form

@n(2,y) = Ko(vlz — yl) vallz — y[)

(3.4) — Ky(yle —yDwa(lz —yl), = #y,
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where v,, and w,, are polynomials with v9 = 1 and wy = 0. Using (3.3),
straightforward calculations show that the ®,, satisfy (2.5) if and only
if the polynomials v, and w,, solve the sequence of systems of ordinary
differential equations

1
U = v = 29w, = =y e,
(3.5) r
/ " 1 / 1 2
—2vv, F W, — - W, + 5 Wp = —Y Wp1
r r
forn=1,2,... ,N — 1. In view of vg = 1 and wy = 0, obviously the

v, must be even and the w, must be odd polynomials. Therefore, for
n=20,1,2,... , N —1 we write

[n/2] [(n—1)/2]
(3.6) v (r) = Z an,2kr", wp(r) = Z ok 172t
k=0 k=0

where by the square bracket [-] we denote the integer part of a real
number. Inserting (3.6) into (3.5), straightforward equating of powers
of r shows that the polynomials v, and w, solve the system (3.5) if
and only if the coefficients a,, ;. satisfy the recurrence relation

Un,n = % Ap—1,n—1,
2
3.7 1 k+1
(3.7) Qnk = 2’y—k{4[? On,k+1 T+ 72an71,k71 )
k=n-—1,...,1,

forn=1,2,...,N—1.

Clearly, by (3.7) the coefficients are uniquely determined with the
exception of the coefficient a, o of the constant term in v,. (This
reflects the possibility to add an arbitrary solution to the homogeneous
equation.) To ensure the form (3.2) and keep in line with [4, 8] we
choose

(3.8) ano=1, n=12,... N-L

Before we proceed, at this stage we wish to discuss the relation of
our method to the method presented by Lubich and Schneider based
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on the method of operational quadratures. For the special case of the
backward Euler method in [17] the sequence ®,, of kernels is defined
through the power series expansion of the holomorphic function

(39  Ko(/(I=2)lz—y) =) ®ulz,y)2", |2/ <L

From

AKy(vy/(1 = 2) |z —y|) = 7¥*(1 = 2) Ko(vv/(1 — 2) |z — y]) =0,

by applying the Laplacian to (3.9) and equating powers of z, it readily
follows that the coefficients ®,, solve (2.5). By induction, it can be seen
that

LA /=)l — )

nldzn
~ k—2n k
=Y anfle =y Vi—z K (/1= 2) e - y))
k=1
with real coefficients a,, . Hence, for the coefficients

310)  Ba(ey) = Kol /T2 le—u)|

n! dzn

in the Taylor series (3.9), it follows that

0

= k
(3.11) E(z,y) = > anpyle — y* KL (vl - y)).
k=1

In view of the modified Bessel differential equation (3.3), this implies
that

®n(2,y) = Ko(vlz — yl)on(lz —y))
— Ky(yle —yD @n(lz —yl), z#vy,
where the ¢, are even polynomials of degree 2[n/2] and the w,, are odd

polynomials of degree 2[(n — 1)/2] + 1. From our above analysis on
system (3.5), it now can be concluded that the coefficients in

(3.12)

(n/2]
77n(7ﬂ) = Z dn,ZkT‘Qka
k=0
(n—1)/2
Wy (r) = Z &n,2k+17“2k+1

k=0
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must satisfy the recurrence relation (3.7). Only the coefficient for the
constant term in ¥, is different from the one in v, since apo = 1 and
ano =0 for n =1,2,.... Comparing this to the solution ®, — ®,_; of
(2.5), this implies the relations ®; = ®, and

(3.13) $, =8, -, 1, n=12...,

between the kernels in our method and in the method of Lubich and
Schneider.

This coincidence (3.13) is not surprising since the operational quadra-
ture method coincides with time discretization in the differential equa-
tion as pointed out in Theorem 4.3 of [17]. However, as a simplification
obtained through our approach, we wish to point out that we are work-
ing with the explicit recurrence formulas (3.7) for the construction of
the kernels whereas Lubich and Schneider rely on evaluating (3.10) by
the Cauchy integral formula and numerical integration in the complex
plane.

Now we consider the single-layer potential

B14) Unle) = =2 3 [ an@)®0 @) dslr), w e REAT.

and the double-layer potential

315) Va(@) = = 3. [ 000) oy ®rm(@ ) ds(a), o€ RET,

with continuous densities ¢,, for n = 0,1,2,... ,N — 1. Then both
the single- and the double-layer potential solve (2.5). The asymptotic
behavior of the modified Hankel function Ky(z) as z — oo (see [16])
implies that both potentials tend to zero for |z| — oo uniformly for
all directions. From the power series expansions for K, (see [16]) we
conclude that ®,, indeed is of the form (3.2). Hence, by the classical
jump- and regularity properties of the logarithmic potentials (see [14]),
we have the following transformations into sequences of boundary
integral equations.

Theorem 3.1. The single-layer potential U, given by (3.14) solves
the sequence of boundary value problems (2.5)—(2.7) provided the den-
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sities solve the sequence of integral equations of the first kind

[ s

(3.16) | et

1@+ 3 2 [ an@Pucnlz)dsly), w €T,
m=0 r

forn=0,1,2,... ,N—1. The double-layer potential V,, given by (3.15)
solves the sequence of boundary value problems (2.5)—(2.7) provided the
densities solve the sequence of integral equations of the second kind

(3.17) = fulz) — Z gm ()

forn=0,1,2,... ,N — 1.

As in the approach using volume potentials, on each time level we
have to solve an integral equation where the integral operator remains
the same and only the righthand side changes. However, as opposed to
(3.1), the righthand sides of (3.16) and (3.17) contain only boundary
integrals.

By standard potential theoretic arguments (see [14] for the corre-
sponding case of Laplace’s equation) and the Riesz-Fredholm theory,
the following existence results can be established (through induction).

Theorem 3.2. For any given righthand sides f,, n=0,... ,N —1,
from the Holder space C1*(T) the sequence (3.16) of integral equations
of the first kind possesses a unique solution q,, n =10,... ,N —1, in
C%«(T'). For any given righthand sides f,, n =0,... ,N —1, in C(T)
the sequence (3.17) of integral equations of the second kind possesses a
unique solution ¢, n=20,... ,N —1, in C(T").
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These existence results for the boundary integral equations of course
imply the following existence result for the Rothe sequence of boundary
value problems.

Theorem 3.3. The system (2.5)—(2.7) has a unique solution.

4. Numerical solution of the integral equations. We assume
that the boundary curve I is given through a parametric representation

I'={z(s):0<s<2rm}

where z : R — R? is C? and 27-periodic with |z'(s)| > 0 for all s.
Then we transform (3.16) into the parametric form

1 27

2 Jo

(4.1)

Ho(s,0)¢n(0) do

In( Z/ H, (s,0)pm(c)do, 0<s<2m,

where we have set

pn(s) == |2'(s)] gn(2(5)),
s) =Y om(s)
gn(s) = fn(x(s))
and where the kernels are given by

Hy(s,0) := —2®¢(2(s),z(0)),
Hn(s,0) := =2[®n(2(s), 2(0)) — Ro(x(s), z(0))]
fors#candn=1,2,... ,N —1.

Taking into account the logarithmic singularity of Ky, we can write

4 _ _
Hy(s,0) =1In (—sin2s U){l—i—H&(s,a)sinZs 0}+H§(s,o)
e

and

4 _
H,(s,0) =In <E sin’ %)H}L(s,a) + HZ2(s,0)
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forn =1,2,...,N — 1, with appropriately chosen smooth kernels H}
and H?. In particular, the kernels H} are defined analogously to the
kernels H,, in terms of the modified Bessel function I instead of Ky,

that is,
Io(v]z(s) —x(o)]) — 1

H&(S’ o) = sin?(s — ) /2 ’

and
Hy(s,0) = Io(v]z(s) — z(o)[){va(jz(s) — 2(0)]) — 1}
— Li(vlz(s) = z(o)wn(lz(s) — z(0)]),
forn=1,2,...,N — 1. Hence, we have to solve a sequence of integral
equation of the first kind of the form

1 2w 4 _ _
o /. [In<gsin25 0>{1+H6(s,0)sin2520}

+ Hi(s, 0)} (o) do = Gr(s)

(4.2)

for 0 < s < 27 with righthand sides

Guls) = aul Z/ i (Lai? 250 1 (s0)
+ H? | (s, 0’):| om(0o) do.

For integral equations of the form (4.2), a combined quadrature and
collocation method based on trigonometric interpolation with equidis-
tant grid points has been suggested and analyzed by Chapko and Kress
[3] and by Kress and Sloan [15], including an error and convergence
analysis.

For this method, we choose M € N and an equidistant mesh by
setting
spi=km/M, k=0,...,2M -1,

and use the following quadrature rules

2M—1

2m
4 -
(4.3) —/ o)ln <—sm2 U)dO'N Z Ry;_k| 9(sk),
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(4.4)
1 [ o $;i—0 frang
o g(o)sin® = In <— sin? = )da ~ Z Flj_k 9(sk),
0 k=0

1 2 1 2M—1
(4.5) oo | slo)do o ST (o)

™ Jo 2

k=0
with the weights
M-1 j
R; ::—{co+2Zcmcos +(—1)]cM},
2M —
1 Nl mjm
T 1)
F;: 2M{70+2mz_:1'ymcos i +(-1) 'yM}
where
1
Cm - 9
max(1,|m|)
1

Ym ‘= Z (2Cm — Cm+1 — Cm—l)

for m = 0,£1 £ 2,.... These quadratures are obtained by replacing

the integrand g by its trigonometric interpolation polynomial of degree
M with respect to the grid points sg, £ =0,... ,2M — 1.

We collocate the integral equation (4.2) at the nodal points and
use the quadrature rules (4.3)-(4.5) to approximate the three types
of integrals to obtain the linear system

2M—1

1
Z Tﬁn,M(Sk){Rjk + Flj_x Hg (55, s%) + WHS(Sj,Sk)}
k=0

=Gum(sj), j=0,...,2M -1,
which we have to solve for the nodal values v, a(s;) of the approx-

imating trigonometric polynomial 9, as. Of course, the approximate
values G, 1 (s;) for the righthand side are also obtained through using
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(4.3) and (4.5) by

—12M-1

(4.6) Gnm(sj) = gn(sj) — Z Z

=0 k=

3

{R|ij711m(sj7Sk)

o

1

(50 foman(s1)

(where @o a1 (sk) = o,n(sk) and on ar(sk) = Y pr(sk) = Yn-1,m(sk)
forn=1,2,... ,N—1).
The sequence of integral equation (3.17) of the second kind can be

solved numerically by a similar approach using a Nystrém method (see
4, 5, 14)).

5. Error analysis. For the semi-discrete Rothe method, we have
the following convergence result.

Theorem 5.1. Assume that the boundary values F are three times
continuously differentiable with respect to the time variable (with van-
ishing derivatives for t = 0). Then we have the error estimate

1 ||0%F
1 . +1Dh) —unlloo.p < =h||—=
(5-1) n:O,lS,]fP,Nfl It (n+1)h) = tn .0 < 2 H ot

00,I'x[0,T']

Proof. We first note that by the regularity results on the initial
boundary value problem (see [7]) our assumption on F implies that
the solution u to (2.1)—(2.3) is three times continuously differentiable
with respect to ¢ and the second derivate 9%u/0t? also satisfies the
heat equation. From the representation of the solution in terms of a
heat potential with density on I x [0, 7], it can be seen that 9%u/0t?
tends to zero for |z| — oo uniformly for all directions and all ¢ € [0, T].
Therefore, from the maximum-minimum principle for the heat equation
(see 7) it follows that

0?F

o DX[0T] H ot Hoo,Fx[O,T]‘

0%u

|
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We now define e, := u(-,(n +1)h) — up, n = 0,1,... ,N — 1, and
using (2.1) for u we have that

Ae, —v%e, = —v*ep_1+ 17, inD
with homogeneous boundary condition
e, =0 onl

and e,(z) — 0, |z| = oo, for n = 0,1,...,N — 1. Here we have set
e_1 =0 and

1

Tp = =
c

{2000 Bt 0t ),
n=0,1,...,N—1.

The classical error estimate for the approximation of the derivative by
finite differences yields that
0%u

ot

h

(5.3) Irnllos,n < 5 , n=0,1,... N—1.

00,D x[0,T]

Now we apply Theorem 2.2 and use (5.2) and (5.3) to obtain

0%F
llenlloo,0 < llen—1lloo,p + > h? o8 H J
= 1l oo, 0x[0,77]

n=0,1,... ,N—1,
whence

n+1
lealloon < ™5

HOO] 1
8 ,I'x|0,
TL—O,].,... ,N_].,

and therefore the error estimate (5.1) follows. O

Now let up ar, » =0,1,... ,N — 1, denote the approximate solution
to (2.5)—(2.7) corresponding to the approximate solution ¢, ar, n =
0,1,...,N —1, of the integral equation (3.16) obtained via the method
described in Section 4. Here we can base a discussion of the error on the
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results of Chapko and Kress [3] and of Kress and Sloan [15]. The error
analysis in [15] is carried out in a Sobolev space setting and implies
that

1
(54) ||un - un,MHoo,D S Clm
for some constant C; provided I is analytic and the boundary function
F is (g + 1)-times continuously differentiable with respect to the space
variable. The error analysis in [3] is carried out in a Holder space
setting and implies that

(55) ”un - un,M”oo,D < C267GM

for some constants C; and a provided I' and the boundary values F'
are analytic. Of course, here the constants C;, C2 and a depend on
the integral operator, that is, they depend on the stepsize h of the
time discretization since it enters the integral equation through the
parameter v in the kernel. Since v — oo for h — 0, the fundamental
solution given in terms of Ko(y|z — y|) will have a pronounced delta
function like behavior which requires a sufficiently large number M of
quadrature points for sufficient accuracy. This need for an increase
of the number M of spatial grid points when the number N of time
grid points is increased, of course, is in agreement with the general
requirement to balance spatial and time discretization in the numerical
solution of the heat equation.

6. Numerical examples. For a first numerical example we consider
the boundary curve

I' = {z(s) = (0.2cos s, 0.4sins — 0.3sin” 5)},

6.1
(6.1) 0< s <2,

which is illustrated in Figure 1. The boundary function is given by the
restriction of the fundamental solution

|z

(6.2) u(z,t) = 1 exp < y

0,t>0
L ) e s0e>0

on the boundary I'. Obviously, the heat coefficient is chosen ¢ = 1. For
the length of the time interval we assume T = 1.
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+

FIGURE 1. Boundary curve (6.1).

Table 1 gives the error between the exact solution v and the numerical
solution obtained via the integral equations of the first kind at the
two points z = (0.3,0) and = = (0.6,0) and for the time steps
t = 0.2,0.4,0.6,0.8,1.0. The exponential convergence with respect
to the number M of quadrature points and the linear convergence
with respect to the time stepsize h as described in Section 5 is clearly
exhibited.

TABLE 1. Numerical results for the boundary condition (6.2).

z = (0.3,0) z = (0.6,0)

t |M| N=10 | N=20 | N=40 | N=10 | N=20 | N=40
0.2 | 16 | 0.037041 | 0.016590 | 0.006758 | 0.090398 | 0.047760 | 0.021026
32 | 0.037042 | 0.016591 | 0.006758 | 0.090398 | 0.047760 | 0.021026
0.4 | 16 | 0.009531 | 0.004943 | 0.002157 | 0.029354 | 0.015252 | 0.006741
32 | 0.009532 | 0.004945 | 0.002160 | 0.029354 | 0.015252 | 0.006741
0.6 | 16 | 0.004840 | 0.002620 | 0.001112 | 0.014893 | 0.007966 | 0.003568
32 | 0.004841 | 0.002620 | 0.001171 | 0.014893 | 0.007966 | 0.003568
0.8 | 16 | 0.003088 | 0.001701 | 0.000237 | 0.009408 | 0.005121 | 0.002312
32 | 0.003089 | 0.001701 | 0.000768 | 0.009408 | 0.005121 | 0.002312
1.0 | 16 | 0.002057 | 0.001225 | 0.016353 | 0.006675 | 0.003671 | 0.001657
32 | 0.002058 | 0.001225 | 0.000557 | 0.006675 | 0.003671 | 0.001665
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For the second numerical example the boundary curve is again given
by (6.1) and the boundary function now is

(6.3) F(z,t) = 4t exp(—4t + 2).

Table 2 gives some values for the numerical solution obtained via the
integral equations of the first kind at the two points z = (0.6,0) and
z = (0.9,0). Again our theoretical results on the convergence order are

confirmed.

TABLE 2. Numerical results for the boundary condition (6.3).

z = (0.6,0) « = (0.9,0)
t |[M| N=10 | N=20 | N=40 | N=10 | N=20 | N=40
0.2 | 16 | 0.138605 | 0.125782 | 0.119124 | 0.053948 | 0.043383 | 0.037730
32 | 0.138605 | 0.125782 | 0.119124 | 0.053948 | 0.043383 | 0.037730
0.4 | 16 | 0.358963 | 0.356059 | 0.354857 | 0.176034 | 0.169198 | 0.165712
32 | 0.358963 | 0.356059 | 0.354857 | 0.176034 | 0.169198 | 0.165712
0.6 | 16 | 0.471362 | 0.475889 | 0.478338 | 0.274481 | 0.275544 | 0.276246
32 | 0.471362 | 0.475889 | 0.478338 | 0.274481 | 0.275544 | 0.276246
0.8 | 16 | 0.466251 | 0.472258 | 0.475306 | 0.311024 | 0.315963 | 0.318569
32 | 0.466251 | 0.472258 | 0.475306 | 0.311024 | 0.315963 | 0.318569
1.0 | 16 | 0.397980 | 0.402688 | 0.405013 | 0.297807 | 0.303078 | 0.305762
32 | 0.397980 | 0.402688 | 0.405013 | 0.297807 | 0.303078 | 0.305762

7. Laguerre transformation. In passing we wish to mention the
close connection of the above analysis to using the Laguerre transfor-

mation for the numerical solution of the initial boundary value problem
(2.1)-(2.3). To this end, let by

(7.1) L,(z):=—=€e*—2z"e¢* z€eR, n=0,1,2,....

denote the normalized Laguerre polynomials. They form a complete
orthonormal system with respect to the scalar product

(f,9) = / e H(2)a(2) de



66 R. CHAPKO AND R. KRESS

in the space L%([0,00);w) of real valued functions with the weight
function w(z) = e~*. Choosing a fixed parameter x > 0 we can scale
the Fourier expansion with respect to the Laguerre polynomials into

(7.2) u(z,t) = Kk Z U () Ly (K1)
where

(7.3) m@y:/ e F L (kt)ulz, ) dt, n=0,1,2,... .
0

For these Laguerre-Fourier coeflicients, by using the recurrence rela-
tions for the Laguerre polynomials, it can be shown that they solve the
sequence of boundary value problems

n—1
(7.4) Aiiy, — Bily =Y il in D,
m=0

with boundary condition

(7.5) Up=fn onT
and
(7.6) Un(z) = 0, |z| = oo,

uniformly for all directions. Here,

h@y:/ e ML (k) F(z,8)dt, n=0,1,2,...,
0

are the Laguerre-Fourier coefficients of the given boundary values and
B = k/c. The sequence (7.4)—(7.6) can be treated analogously to our
analysis for (2.5)—(2.7). For details we refer to [4, 8].

In order to illustrate that both methods yield comparable results,
we conclude with Table 3 which gives the numerical results for the
boundary curve (6.1) with boundary values (6.3) obtained via the
method of Laguerre transformation with scaling coefficient kK = 4. By
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N we denote the number of terms in the finite truncation of the series
(7.2).

TABLE 3. Numerical results for Laguerre transformation.

x = (0.6,0) x = (0.9,0)
t |M| N=30| N=35 | N=40 | N=30 | N=35 | N=40
0.0 | 16 | 0.000119 | -0.000026 | -0.000080 | -0.000295 | -0.000172 | -0.000095
32 | 0.000119 | -0.000026 | -0.000080 | -0.000295 | -0.000172 | -0.000095
0.2 | 16 | 0.112226 | 0.112278 | 0.112292 | 0.031782 | 0.031738 | 0.031720
32| 0.112226 | 0.112278 | 0.112292 | 0.031782 | 0.031738 | 0.031720
0.4 | 16 | 0.353852 | 0.353827 | 0.353841 | 0.162233 | 0.162253 | 0.162231
32 | 0.353852 | 0.353827 | 0.353841 | 0.162233 | 0.162253 | 0.162231
0.6 | 16 | 0.480926 | 0.480952 | 0.480926 | 0.277068 | 0.277051 | 0.277089
32 | 0.480926 | 0.480952 | 0.480926 | 0.277068 | 0.277051 | 0.277089
0.8 | 16 | 0.478417 | 0.478341 | 0.478371 | 0.321280 | 0.321338 | 0.321293
32 | 0.478417 | 0.478341 | 0.478371 | 0.321280 | 0.321338 | 0.321293
1.0 | 16 | 0.407189 | 0.407347 | 0.407335 | 0.308569 | 0.308437 | 0.308461
32 | 0.407189 | 0.407347 | 0.407335 | 0.308569 | 0.308437 | 0.308461
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